MODULE MODULE FOR BLDC MOTORS Firmware Version V2.07 TMCL™ FIRMWARE MANUAL + + TMCM-1630 1-Axis BLDC Controller / Driver 10A / 48V RS232 / CAN or RS485 / USB + TRINAMIC Motion Control GmbH & Co. KG Hamburg, Germany www.trinamic.com + TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Table of Contents 1 2 3 Features ........................................................................................................................................................................... 4 Overview ......................................................................................................................................................................... 5 Putting the TMCM-1630 into Operation .................................................................................................................. 6 3.1 Starting up ............................................................................................................................................................. 6 3.2 Operating the Module in Direct Mode ........................................................................................................... 8 4 TMCL and TMCL-IDE.................................................................................................................................................... 10 4.1 Binary Command Format ................................................................................................................................ 10 4.2 Reply Format ....................................................................................................................................................... 11 4.2.1 Status Codes ................................................................................................................................................. 11 4.3 Standalone Applications .................................................................................................................................. 12 4.4 Testing with a Simple TMCL Program ......................................................................................................... 12 4.5 TMCL Command Overview .............................................................................................................................. 13 4.5.1 Motion Commands ...................................................................................................................................... 13 4.5.2 Parameter Commands ................................................................................................................................ 13 4.5.3 Control Commands ..................................................................................................................................... 13 4.5.4 I/O Port Commands .................................................................................................................................... 13 4.5.5 Calculation Commands .............................................................................................................................. 14 4.6 Commands ........................................................................................................................................................... 15 4.6.1 ROR (rotate right)......................................................................................................................................... 15 4.6.2 ROL (rotate left) ............................................................................................................................................ 16 4.6.3 MST (motor stop) ......................................................................................................................................... 17 4.6.4 MVP (move to position) ............................................................................................................................. 18 4.6.5 SAP (set axis parameter) ........................................................................................................................... 19 4.6.6 GAP (get axis parameter)........................................................................................................................... 20 4.6.7 STAP (store axis parameter) ..................................................................................................................... 21 4.6.8 RSAP (restore axis parameter) ................................................................................................................. 22 4.6.9 SGP (set global parameter) ....................................................................................................................... 23 4.6.10 GGP (get global parameter) ...................................................................................................................... 24 4.6.11 STGP (store global parameter)................................................................................................................. 24 4.6.12 RSGP (restore global parameter) ............................................................................................................. 25 4.6.13 SIO (set output) and GIO (get input / output) ................................................................................... 26 4.6.14 CALC (calculate) ............................................................................................................................................ 28 4.6.15 COMP (compare) ........................................................................................................................................... 29 4.6.16 JC (jump conditional).................................................................................................................................. 30 4.6.17 JA (jump always).......................................................................................................................................... 31 4.6.18 CSUB (call subroutine) ................................................................................................................................ 32 4.6.19 WAIT (wait for an event to occur) ......................................................................................................... 33 4.6.20 STOP (stop TMCL program execution) ................................................................................................... 34 4.6.21 CALCX (calculate using the X register) .................................................................................................. 35 4.6.22 AAP (accumulator to axis parameter) .................................................................................................... 36 4.6.23 AGP (accumulator to global parameter) ............................................................................................... 37 4.6.24 Customer Specific TMCL Command Extension (user functions 0… 7) ........................................... 37 4.6.25 Command 136 – Get Firmware Version ................................................................................................ 38 5 Axis Parameter Overview (SAP, GAP, STAP, RSAP, AAP) ................................................................................. 39 5.1 Axis Parameter Sorted by Functionality ...................................................................................................... 43 6 Global Parameter Overview (SGP, GGP, STGP, RSGP) ....................................................................................... 47 6.1 Bank 0 ................................................................................................................................................................... 47 6.2 Bank 2 ................................................................................................................................................................... 48 7 Motor Regulation ........................................................................................................................................................ 49 7.1 Structure of the Cascaded Motor Regulation Modes............................................................................... 49 7.2 Current Regulation ............................................................................................................................................ 50 7.3 Velocity Regulation ........................................................................................................................................... 51 7.4 Velocity Ramp Generator ................................................................................................................................. 52 7.5 Position Regulation ........................................................................................................................................... 52 8 Temperature Calculation........................................................................................................................................... 54 9 I²t Monitoring .............................................................................................................................................................. 54 10 Life Support Policy ..................................................................................................................................................... 55 www.trinamic.com 2 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 11 Revision History .......................................................................................................................................................... 56 11.1 Firmware Revision ............................................................................................................................................. 56 11.2 Document Revision ........................................................................................................................................... 56 12 References..................................................................................................................................................................... 56 www.trinamic.com 3 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4 1 Features The TMCM-1630 is a highly integrated single axis BLDC servo controller module with several interface-options. The highly integrated module (size: 50mm x 92.5 mm) has been designed in order to be plugged onto a baseboard. It integrates velocity and position control and offers hall sensor and incremental encoder (a/b/n) inputs. The module can be used in standalone operation or remote controlled. Applications Demanding single and multi-axis BLDC motor solutions Electrical data Supply voltage: +24V DC or +48V DC nominal (+12… +55V DC max.) Motor current: up to 10A RMS (programmable) peak Integrated motion controller High performance ARM Cortex™-M3 microcontroller for system control and communication protocol handling Integrated motor driver High performance integrated pre-driver (TMC603A) Support for sensorless back EMF commutation (hallFX™) High-efficient operation, low power dissipation (MOSFETs with low RDS(ON)) Dynamic current control Integrated protection On the fly alteration of motion parameters (e.g. position, velocity, acceleration) Interfaces Two standard assembly options: RS232 and CAN (2.0B up to 1Mbit/s) RS485 and USB 2 analogue and 2 digital inputs 3 open drain outputs Motor type Block commutated 3 phase BLDC motors with optional hall sensors / optional encoder Motor power from a few Watts to nearly 500W Motor velocity up to 100,000 RPM (electrical field) Common supply voltages of 12V DC, 24V DC, 36V DC and 48V DC supported Coil current up to 10A peak Software TMCL standalone operation or remote controlled operation TMCL program memory (non volatile) for up to 2048 TMCL commands TMCL PC-based application development software TMCL-IDE and TMCL-BLDC available for free CANopen ready: CiA 301 + CiA 402 (homing mode, profile position mode and velocity mode) under development Other Two double-row 2.54mm connectors ROHS compliant Size: 50x92.5mm² Please see separate TMCM-1630 Hardware Manual for additional information www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 5 2 Overview The software running on the microprocessor of the TMCM-1630 consists of two parts, a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com). The firmware is related to the standard TMCL firmware [TMCL] with regard to protocol and commands. The module is based on the ARM Cortex-M3 microcontroller and the high performance pre-driver TMC603 and supports the standard TMCL with a special range of values. The new FOC firmware V2.02 is field oriented control software for brushless DC applications. It is developed for high-performance motor applications which can operate smoothly over the full velocity range, can generate full torque at zero speed and is capable of fast acceleration and deceleration. This saves energy and quiets rotating machinery. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 6 3 Putting the TMCM-1630 into Operation Here you can find basic information for putting your module into operation. The text contains a simple example for a TMCL program and a short description of operating the module in direct mode. THINGS YOU NEED: TMCM-1630 Interface suitable to your TMCM-1630 with cables Nominal supply voltage +24V DC or +48V DC for your module Encoder optional BLDC motor TMCL-IDE program and PC PRECAUTIONS - Do not mix up connections or short-circuit pins. Avoid bounding I/O wires with motor power wires as this may cause noise picked up from the motor supply. The power supply has to be buffered by a capacitor. Otherwise the module will be damaged! Do not exceed the maximum power supply of 55V DC. Do not connect or disconnect the motor while powered! Start with power supply OFF! 3.1 Starting up The following figure shows how the connectors have to be used. Figure 3.1: Connectors of the TMCM-1630 Domain I/Os, interfaces, encoder Power, hallFX™, motor www.trinamic.com Connector type TSM-113-03-L-DV-K-A, 2x13 poles, double row, 2.54mm pitch, SMD vertical, Samtec TSM-113-03-L-DV-K-A, 2x13 poles, double row, 2.54mm pitch, SMD vertical, Samtec Mating connector type SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW, CES, HLE , IDSS and IDSD series, Samtec SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW, CES, HLE , IDSS and IDSD series, Samtec TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 1. 7 Connect the motor, power supply and hall sensors Since the two connectors of the TMCM-1630 are similar be careful not to connect the module turned around. When powered up this damage the as module. Be sure to place the connectors exactly to 1. Connect the motor and would the power supply follows: their opponents. A deviation of only one pin row can damage the module also. Start with power supply OFF! Pin Label 1 3 5 7 9 11 13 15 W W V V U U VM VM 17 GND 19 GND 21 GND 23 +5V 25 HALL1 2. Description Pin Motor coil W Motor coil W Motor coil V Motor coil V Motor coil U Motor coil U Module driver supply voltage Module driver supply voltage Module ground (power supply and signal ground) Module ground (power supply and signal ground) Module ground (power supply and signal ground) +5V output (100mA max.) for encoder and/or hall sensor supply Hall sensor 1 signal input 2 4 6 8 10 12 14 16 Label W W V V U U VM VM 18 GND 20 GND 22 GND Description Motor coil W Motor coil W Motor coil V Motor coil V Motor coil U Motor coil U Module driver supply voltage Module driver supply voltage Module ground (power supply and signal ground) Module ground (power supply and signal ground) Module ground (power supply and signal ground) 24 HALL3 Hall sensor 3 signal input 26 HALL2 Hall sensor 2 signal input Connect the interface, IOs and the encoder as follows: Since the two connectors of the TMCM-1630 are similar be careful not to connect the module turned around. When powered up this would damage the module. Be sure to place the connectors exactly to their opponents. A deviation of only one pin row can damage the module also. Pin 1 Label +5V 3 Torque 5 Dir_IN 7 Stop_IN 9 LED-Curlim 11 13 15 GND Enc_A+ Enc_B+ www.trinamic.com Description Pin 5V analog reference as used by the internal DAC. Max. load 0.5mA 2 Velocity 4 GND Module ground (power supply and signal ground) 6 Tacho This pin outputs a tacho impulse, i.e. toggles on each hall sensor change LED-Temp 5V TTL output: Toggling with 3Hz when temperature prewarning threshold is exceeded, high when module shut down due to overtemperature Used for max. motor current / torque control in standalone operation by supplying external 010V signal 5V TTL input. Tie to GND to inverse motor direction, leave open or tie to 5V otherwise. Emergency stop. Tie this pin to GND to stop the motor (same as the Motor OFF switch on PCB). The motor can be restarted via the interface, or by cycling the power supply High, when module goes into current limiting mode GND reference Encoder A+ channel Encoder B+ channel 8 Label 10 +5V 12 GND 14 Enc_A16 Enc_B- Description Used for velocity control in standalone operation by supplying external 0 - 10V signal 5V output as reference for external purpose GND reference Encoder A- channel Encoder B- channel TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 17 19 21 23 25 Enc_N+ Encoder N+ channel CAN low / CANL/USBDUSB D- bus line CAN high / CANH/USBD+ USB D+ bus line Use to detect availability of USB_+VB attached host system (e.g. PC) GND GND reference 18 Enc_NRXD/ 20 485TXD/ 22 485+ 8 Encoder N- channel RXD signal for RS232 / inverting signal for RS485 TXD signal for RS232 / non inverting signal for RS485 24 n.c. 26 GND GND reference 3. Switch ON the power supply The power LED is ON now. If this does not occur, switch power OFF and check your connections as well as the power supply. 4. Start the TMCL-IDE software development environment The TMCL-IDE is available on the TechLibCD and on www.trinamic.com. Installing the TMCL-IDE Make sure the COM port you intend to use is not blocked by another program. Open TMCL-IDE by clicking TMCL.exe. Choose Setup and Options and thereafter the Connection tab. Choose Type. The TMCL-IDE shows you which Port the module uses. Click OK. Figure 3.2: Setup menu Figure 3.3: Connection tab of TMCL-IDE 3.2 Operating the Module in Direct Mode 1. Start TMCL Direct Mode. 2. If the communication is established the TMCM-1630 is automatically detected. If the module is not detected, please check all points above (cables, interface, power supply, COM port, baud rate). Issue a command by choosing instruction, type (if necessary), motor, and value and click execute to send it to the module. 3. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Figure 3.4: TMCL direct mode window - Examples: ROR rotate right, motor 0, value 500 -> Click Execute. The first motor is rotating now. MST motor stop, motor 0 -> Click Execute. The first motor stops now. www.trinamic.com 9 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 10 4 TMCL and TMCL-IDE The TMCM-1630 module supports TMCL direct mode (binary commands) and standalone TMCL program execution. You can store up to 2048 TMCL instructions on it. In direct mode the TMCL communication over USB, CAN, RS232, and RS485 follows a strict master/slave relationship. That is, a host computer (e.g. PC/PLC) acting as the interface bus master will send a command to the module. The TMCL interpreter on it will then interpret this command, do the initialization of the motion controller, read inputs and write outputs or whatever is necessary according to the specified command. As soon as this step has been done, the module will send a reply back over the interface to the bus master. The master should not transfer the next command till then. Normally, the module will just switch to transmission and occupy the bus for a reply, otherwise it will stay in receive mode. It will not send any data over the interface without receiving a command first. This way, any collision on the bus will be avoided when there are more than two nodes connected to a single bus. The Trinamic Motion Control Language (TMCL) provides a set of structured motion control commands. Every motion control command can be given by a host computer or can be stored on the TMCM-1630 to form programs that run standalone on the module. For this purpose there are not only motion control commands but also commands to control the program structure (like conditional jumps, compare and calculating). Every command has a binary representation and a mnemonic: - The binary format is used to send commands from the host to a module in direct mode. The mnemonic format is used for easy usage of the commands when developing standalone TMCL applications with the TMCL-IDE (IDE means Integrated Development Environment). There is also a set of configuration variables for the axis and for global parameters which allow individual configuration of nearly every function of a module. This manual gives a detailed description of all TMCL commands and their usage. 4.1 Binary Command Format When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes. When a command is to be sent via RS232, USB or RS485 interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. In this case it consists of nine bytes. The binary command format for RS232/RS485/USB is structured as follows: Bytes 1 1 1 1 4 1 - Meaning Module address Command number Type number Motor or Bank number Value (MSB first!) Checksum When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out. Do not send the next command before you have received the reply! www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 11 Checksum calculation As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition. Here is an example for the calculation: - in C: unsigned char i, Checksum; unsigned char Command[9]; //Set the “Command” array to the desired command Checksum = Command[0]; for(i=1; i<8; i++) Checksum+=Command[i]; Command[8]=Checksum; //insert checksum as last byte of the command //Now, send the command back to the module 4.2 Reply Format Every time a command has been sent to a module, the module sends a reply. The reply format for RS232/RS485/USB is structured as follows: Bytes 1 1 1 1 4 1 - Meaning Reply address Module address Status (e.g. 100 means no error) Command number Value (MSB first!) Checksum The checksum is calculated by adding up all the other bytes using an 8-bit addition. When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out. Do not send the next command before you have received the reply! 4.2.1 Status Codes The reply contains a status code. The status code can have one of the following values: Code 100 101 1 2 3 4 5 6 Meaning Successfully executed, no error Command loaded into TMCL program EEPROM Wrong checksum Invalid command Wrong type Invalid value Configuration EEPROM locked Command not available www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 12 4.3 Standalone Applications The module is equipped with an EEPROM for storing TMCL applications. You can use the TMCL-IDE for developing standalone TMCL applications. You can load your program down into the EEPROM and then it will run on the module. The TMCL-IDE contains an editor and a TMCL assembler where the commands can be entered using their mnemonic format. They will be assembled automatically into their binary representations. Afterwards this code can be downloaded into the module to be executed there. 4.4 Testing with a Simple TMCL Program Open the file test2.tmc of the TMCL-IDE. The following source code appears on the screen: //A simple example for using TMCL and TMCL-IDE Loop: ROL 0, 4000 WAIT TICKS, 0, 2000 ROR 0, 4000 WAIT TICKS, 0, 2000 JA Loop //rotate left with 4000 rev/min //rotate right with 4000 rev/min Figure 4.1: Assemble, download, stop, and run icons of TMCL-IDE 1. 2. 3. 4. Click on icon Assemble to convert the example into binary code. Then download the program to the TMCM-1630 module via the icon Download. Press icon Run. The desired program will be executed. Click Stop button to stop the program. For further information about the TMCL-IDE and TMCL programming techniques please refer to the TMCL-IDE User Manual on TRINAMICs website. TRINAMIC offers two software tools for BLDC applications: the TMCM-BLDC and the BLDC tool of the TMCL-IDE. Whereas the TMCM-BLDC is used for testing different configurations in all modes of operation the TMCL-IDE is mainly designed for conceiving programs and firmware updates. New versions of the TMCM-BLDC and the TMCL-IDE can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com). www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 13 4.5 TMCL Command Overview The following section provides a short overview of the TMCL commands supported by the TMCM-1630. 4.5.1 Motion Commands These commands control the motion of the motor. They are the most important commands and can be used in direct mode or in standalone mode. Mnemonic ROL ROR MVP MST 4.5.2 Command number 2 1 4 3 Meaning Rotate left Rotate right Move to position Motor stop Parameter Commands These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set independently for the axis, whereas global parameters control the behavior of the module itself. These commands can also be used in direct mode and in standalone mode. Mnemonic SAP GAP STAP RSAP SGP GGP STGP RSGP 4.5.3 Command number 5 6 7 8 9 10 11 12 Meaning Set axis parameter Get axis parameter Store axis parameter into EEPROM Restore axis parameter from EEPROM Set global parameter Get global parameter Store global parameter into EEPROM Restore global parameter from EEPROM Control Commands These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to use them in direct mode. They are intended for standalone mode only. Mnemonic JA JC COMP CSUB RSUB WAIT STOP 4.5.4 Command number 22 21 20 23 24 27 28 Meaning Jump always Jump conditional Compare accumulator with constant value Call subroutine Return from subroutine Wait for a specified event End of a TMCL program I/O Port Commands These commands control the external I/O ports and can be used in direct mode and in standalone mode. Mnemonic SIO GIO Command number 14 15 www.trinamic.com Meaning Set output Get input TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.5.5 14 Calculation Commands These commands are intended to be used for calculations within TMCL applications in standalone mode, only. For calculating purposes there are an accumulator (or accu or A register) and an X register. When executed in a TMCL program (in standalone mode), all TMCL commands that read a value store the result in the accumulator. The X register can be used as an additional memory when doing calculations. It can be loaded from the accumulator. Mnemonic CALC CALCX AAP AGP Command number 19 33 34 35 Meaning Calculate using the accumulator and a constant value Calculate using the accumulator and the X register Copy accumulator to an axis parameter Copy accumulator to a global parameter MIXING STANDALONE PROGRAM EXECUTION AND DIRECT MODE It is possible to use some commands in direct mode while a standalone program is active. When a command which reads out a value is executed (direct mode) the accumulator will not be affected. While a TMCL program is running standalone on the module, a host can still send commands like GAP and GGP to it (e.g. to query the actual position of the motor) without affecting the flow of the TMCL program running standalone on the module. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 15 4.6 Commands The module specific commands are explained in more detail on the following pages. They are listed according to their command number. 4.6.1 ROR (rotate right) The motor will be instructed to rotate with a specified velocity in right direction (increasing the position counter). Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2 (target velocity). Related commands: ROL, MST, SAP, GAP Mnemonic: ROR 0, <velocity> Binary representation: COMMAND 1 TYPE don’t care MOT/BANK 0 Reply in direct mode: STATUS 100 – OK COMMAND 1 VALUE don’t care VALUE <velocity> -200000… +200000 Example: Rotate right, velocity = 350 Mnemonic: ROR 0, 350 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $01 2 Type $00 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $01 7 Operand Byte0 $5e TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.2 16 ROL (rotate left) The motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the position counter). Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2 (target velocity). Related commands: ROR, MST, SAP, GAP Mnemonic: ROL 0, <velocity> Binary representation: COMMAND 2 TYPE don’t care MOT/BANK 0 Reply in direct mode: STATUS 100 – OK COMMAND 2 VALUE don’t care VALUE <velocity> -200000… +200000 Example: Rotate left, velocity = 1200 Mnemonic: ROL 0, 1200 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $02 2 Type $00 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $04 7 Operand Byte0 $b0 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.3 17 MST (motor stop) The motor will be instructed to stop. Internal function: The axis parameter target velocity is set to zero. Related commands: ROL, ROR, SAP, GAP Mnemonic: MST 0 Binary representation: COMMAND 3 TYPE don’t care MOT/BANK 0 Reply in direct mode: STATUS 100 – OK COMMAND 3 VALUE don’t care VALUE don’t care Example: Stop motor Mnemonic: MST 0 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $03 2 Type $00 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.4 18 MVP (move to position) The motor will be instructed to move to a specified relative or absolute position. It uses the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is nonblocking (like all commands). A reply will be sent immediately after command interpretation. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration are defined by axis parameters #4 and #11. TWO OPERATION TYPES ARE AVAILABLE: - Moving to an absolute position in the range from -2147483648… +2147483647. Starting a relative movement by means of an offset to the actual position. In this case, the new resulting position value must not exceed the above mentioned limits, too. Internal function: A new position value is transferred to the axis parameter #0 target position. Related commands: SAP, GAP, and MST Mnemonic: MVP <ABS|REL>, 0, <position|offset value> Binary representation: COMMAND 4 TYPE 0 ABS – absolute MOT/BANK 0 1 REL – relative Reply in direct mode: STATUS 100 – OK VALUE <position> -2147483648… +2147483647 <offset> -2147483648… +2147483647 0 COMMAND 4 VALUE don’t care Example MVP ABS: Move motor to (absolute) position 9000 Mnemonic: MVP ABS, 0, 9000 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 1 Instruction Number $04 2 Type $00 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $23 7 Operand Byte0 $28 6 Operand Byte1 $fc 7 Operand Byte0 $18 Example MVP REL: Move motor from current position 1000 steps backward (move relative -1000) Mnemonic: MVP REL, 0, -1000 Binary: Byte Index Function Value (hex) 0 Targetaddress $00 www.trinamic.com 1 Instruction Number $04 2 Type $01 3 Motor/ Bank $00 4 Operand Byte3 $ff 5 Operand Byte2 $ff TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.5 19 SAP (set axis parameter) Most of the motion control parameters of the module can be specified by using the SAP command. The settings will be stored in SRAM and therefore are volatile. Thus, information will be lost after power off. Please use command STAP (store axis parameter) in order to store any setting permanently. Related commands: GAP, STAP, and RSAP Mnemonic: SAP <parameter number>, 0, <value> Binary representation: COMMAND 5 TYPE <parameter number> MOT/BANK 0 Reply in direct mode: STATUS 100 – OK COMMAND 5 VALUE don’t care VALUE <value> A list of all parameters which can be used for the SAP command is shown in section 5. Example: Set the absolute maximum current to 2000mA Mnemonic: SAP 6, 0, 2000 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $05 2 Type $06 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $07 7 Operand Byte0 $D0 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.6 20 GAP (get axis parameter) Most parameters of the TMCM-1630 can be adjusted individually. They can be read out using the GAP command. Related commands: SAP, STAP, and RSAP Mnemonic: GAP <parameter number>, 0 Binary representation: COMMAND 6 TYPE <parameter number> MOT/BANK 0 Reply in direct mode: STATUS 100 – OK COMMAND 6 VALUE don’t care VALUE don’t care A list of all parameters which can be used for the GAP command is shown in section 5. Example: Get the actual position of motor Mnemonic: GAP 1, 0 Binary: Byte Index Function Value (hex) Reply: Byte Index Function Value (hex) 0 Targetaddress $01 Instruction Number $06 $01 0 Hostaddress $00 1 Targetaddress $01 2 Status www.trinamic.com 1 2 Type $64 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 3 Instructio n $06 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $02 7 Operand Byte0 $c7 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.7 21 STAP (store axis parameter) The STAP command stores an axis parameter previously set with a Set Axis Parameter command (SAP) permanently. Most parameters are automatically restored after power up. Internal function: An axis parameter value stored in SRAM will be transferred to EEPROM and loaded from EEPORM after next power up. Related commands: SAP, RSAP, and GAP Mnemonic: STAP <parameter number>, 0 Binary representation: COMMAND 7 TYPE <parameter number> MOT/BANK 0 VALUE don’t care* * The value operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is saved. Reply in direct mode: STATUS 100 – OK COMMAND 7 VALUE don’t care A list of all parameters which can be used for the STAP command is shown in section 5. Example: Store the maximum speed Mnemonic: STAP 4, 0 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 1 Instruction Number $07 2 Type $04 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 Note: The STAP command will not have any effect when the configuration EEPROM is locked. The error code 5 (configuration EEPROM locked) will be returned in this case. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.8 22 RSAP (restore axis parameter) For all configuration related axis parameters non-volatile memory locations are provided. By default, most parameters are automatically restored after power up. A single parameter that has been changed before can be reset by this instruction also. Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location. Related commands: SAP, STAP, and GAP Mnemonic: RSAP <parameter number>, 0 Binary representation: COMMAND 8 TYPE <parameter number> MOT/BANK 0 Reply in direct mode: STATUS 100 – OK COMMAND 8 VALUE don’t care VALUE don’t care A list of all parameters which can be used for the RSAP command is shown in section 5. Example: Restore the maximum current Mnemonic: RSAP 6, 0 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $08 2 Type $06 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 4.6.9 23 SGP (set global parameter) Global parameters are related to the host interface, peripherals or other application specific variables. The different groups of these parameters are organized in banks to allow a larger total number for future products. Currently, bank 0 is used for global parameters and bank 2 is intended for user variables. Related commands: GGP, STGP, RSGP Mnemonic: SGP <parameter number>, <bank number>, <value> Binary representation: COMMAND 9 TYPE <parameter number> Reply in direct mode: STATUS 100 – OK VALUE don’t care MOT/BANK <bank number> VALUE <value> A list of all parameters which can be used for the SGP command is shown in section 6. Example: Set variable 0 at bank 2 to 100 Mnemonic: SGP, 0, 2, 100 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $09 2 Type $00 3 Motor/ Bank $02 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $64 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 24 4.6.10 GGP (get global parameter) All global parameters can be read with this function. Related commands: SGP, STGP, RSGP Mnemonic: GGP <parameter number>, <bank number> Binary representation: COMMAND 10 TYPE <parameter number> Reply in direct mode: STATUS 100 – OK VALUE <value> MOT/BANK <bank number> VALUE don’t care A list of all parameters which can be used for the GGP command is shown in section 6. Example: Get variable 0 from bank 2 Mnemonic: GGP, 0, 2 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 1 Instruction Number $0a 2 Type $00 3 Motor/ Bank $02 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 4.6.11 STGP (store global parameter) Some global parameters are located in RAM memory, so modifications are lost at power down. This instruction copies a value from its RAM location to the configuration EEPROM and enables permanent storing. Most parameters are automatically restored after power up. Related commands: SGP, GGP, RSGP Mnemonic: STGP <parameter number>, <bank number> Binary representation: COMMAND 11 TYPE <parameter number> Reply in direct mode: STATUS 100 – OK VALUE don’t care MOT/BANK <bank number> VALUE don’t care A list of all parameters which can be used for the STGP command is shown in section 6. Example: Copy variable 0 at bank 2 to the configuration EEPROM Mnemonic: STGP, 0, 2 Binary: Byte Index 0 1 2 3 Instruction Type Function TargetMotor/ Number address Bank Value (hex) $01 $0b $00 $02 www.trinamic.com 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 25 4.6.12 RSGP (restore global parameter) This instruction copies a value from the configuration EEPROM to its RAM location and so recovers the permanently stored value of a RAM-located parameter. Most parameters are automatically restored after power up. Related commands: SGP, GGP, STGP Mnemonic: RSGP <parameter number>, <bank number> Binary representation: COMMAND 12 TYPE <parameter number> Reply in direct mode: STATUS 100 – OK VALUE don’t care MOT/BANK <bank number> VALUE don’t care A list of all parameters which can be used for the RSGP command is shown in section 6. Example: Copy variable 0 at bank 2 from the configuration EEPROM to the RAM location Mnemonic: RSGP, 0, 2 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $0c 2 Type $00 3 Motor/ Bank $02 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 26 4.6.13 SIO (set output) and GIO (get input / output) The TMCM-1630 provides two commands for dealing with inputs and outputs: - SIO sets the status of the general digital output either to low (0) or to high (1). With GIO the status of all general purpose inputs of the module can be read out. The command reads out a digital or analogue input port. Digital lines will read 0 and 1, while the ADC channel delivers 12 bit in the range of 0… 4095. CORRELATION BETWEEN I/OS AND BANKS Bank Bank 0 Bank 1 Bank 2 Inputs/ Outputs Digital inputs Analogue inputs Digital outputs Description Digital inputs are accessed in bank 0. Analog inputs are accessed in bank 1. The states of the OUT lines (that have been set by SIO commands) can be read back using bank 2. 4.6.13.1 SIO (set output) Bank 2 is used for setting the status of the general digital output either to low (0) or to high (1). Internal function: the passed value is transferred to the specified output line. Related commands: GIO, WAIT Mnemonic: SIO <port number>, <bank number>, <value> Binary representation: INSTRUCTION NO. TYPE 14 <port number> Reply structure: STATUS 100 – OK Binary: Byte Index Function Value (hex) MOT/BANK <bank number> 2 0 Targetaddress $01 VALUE <value> 0/1 VALUE don’t care 1 Instruction Number $0e 2 Type $07 3 Motor/ Bank $02 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $01 4.6.13.2 GIO (get input/output) GIO can be used in direct mode or in standalone mode. GIO IN STANDALONE MODE In standalone mode the requested value is copied to the accumulator (accu) for further processing purposes such as conditioned jumps. GIO IN DIRECT MODE In direct mode the value is output in the value field of the reply without affecting the accumulator. The actual status of a digital output line can also be read. Internal function: the specified line is read. Related commands: SIO, WAIT www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 27 Mnemonic: GIO <port number>, <bank number> Binary representation: INSTRUCTION NO. 15 Reply in direct mode: STATUS 100 – OK Binary: Byte Index Function Value (hex) Reply: Byte Index Function Value (hex) TYPE <port number> MOT/BANK <bank number> VALUE don’t care VALUE <status of the port> 0 Targetaddress $01 Instruction Number 1 2 Type $0f $00 0 Hostaddress $02 1 Targetaddress $01 2 Status $64 3 Motor/ Bank $01 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 3 Instructio n $0f 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $01 7 Operand Byte0 $2e Figure 4.2 Connector of TMCM-1630 PROVIDED SIO AND GIO COMMANDS Pin 2 3 5 6 7 Digital x x x www.trinamic.com Analog x x - GIO <port>, <bank> GIO 0, 1 (velocity) GIO 1, 1 (torque) GIO 0, 0 (DIR_IN) GIO 0, 2 (tacho) GIO 1, 0 (STOP_IN) SIO <port>, <bank>, <value> SIO 0, 2, <value> - Value range 0… 4095 0… 4095 0/1 0/1 0/1 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 28 THE FOLLOWING PROGRAM WILL SHOW THE STATES OF THE INPUT LINES ON THE OUTPUT LINES: Loop: GIO 255, 0 SIO 255, 2,-1 JA Loop 4.6.14 CALC (calculate) A value in the accumulator variable, previously read by a function such as GAP (get axis parameter), can be modified with this instruction. Nine different arithmetic functions can be chosen and one constant operand value must be specified. The result is written back to the accumulator, for further processing like comparisons or data transfer. Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO Mnemonic: CALC <op>, <value> Binary representation: COMMAND 19 0 1 2 3 4 5 6 7 8 9 TYPE <op> ADD – add to accu SUB – subtract from accu MUL – multiply accu by DIV – divide accu by MOD – modulo divide by AND – logical and accu with OR – logical or accu with XOR – logical exor accu with NOT – logical invert accu LOAD – load operand to accu MOT/BANK don’t care VALUE <operand> Example: Multiply accu by -5000 Mnemonic: CALC MUL, -5000 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $13 2 Type $02 3 Motor/ Bank $00 4 Operand Byte3 $FF 5 Operand Byte2 $FF 6 Operand Byte1 $EC 7 Operand Byte0 $78 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 29 4.6.15 COMP (compare) The specified number is compared to the value in the accumulator register. The result of the comparison can be used for example by the conditional jump (JC) instruction. This command is intended for use in standalone operation, only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. It does not make sense to use this command in direct mode. Internal function: The specified value is compared to the internal accumulator, which holds the value of a preceding get or calculate instruction (see GAP/GGP/CALC/CALCX). The internal arithmetic status flags are set according to the comparison result. Related commands: JC (jump conditional), GAP, GGP, CALC, CALCX Mnemonic: COMP <value> Binary representation: COMMAND 20 TYPE don’t care MOT/BANK don’t care VALUE <comparison value> Example: Jump to the address given by the label when the position of the motor #0 is greater or equal to 1000. GAP 1, 0, 0 COMP 1000 JC GE, Label //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don’t care //compare actual value to 1000 //jump, type: 5 greater/equal, the label must be defined somewhere else in the program Binary format of the COMP 1000 command: Byte Index 0 1 2 Instruction Function TargetType Number address Value (hex) $01 $14 $00 www.trinamic.com 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $03 7 Operand Byte0 $e8 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 30 4.6.16 JC (jump conditional) The JC instruction enables a conditional jump to a fixed address in the TMCL program memory, if the specified condition is met. The conditions refer to the result of a preceding comparison. This function is for standalone operation only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. It is not possible to use this command in direct mode. Internal function: The TMCL program counter is set to the passed value if the arithmetic status flags are in the appropriate state(s). Related commands: JA, COMP, WAIT Mnemonic: JC <condition>, <label> where <condition>=ZE|NZ|EQ|NE|GT|GE|LT|LE|ETO|EAL Binary representation: COMMAND 21 0 1 2 3 4 5 6 7 8 9 TYPE ZE - zero NZ - not zero EQ - equal NE - not equal GT - greater GE - greater/equal LT - lower LE - lower/equal ETO - time out error EAL - external alarm MOT/BANK don’t care VALUE <jump address> Example: Jump to address given by the label when the position of the motor is greater than or equal to 1000. GAP 1, 0, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don’t care COMP 1000 //compare actual value to 1000 JC GE, Label //jump, type: 5 greater/equal ... ... Label: ROL 0, 1000 Binary format of JC GE, Label when Label is at address 10: Byte Index 0 1 2 3 Instruction Function TargetType Motor/ Number address Bank Value (hex) $01 $15 $05 $00 www.trinamic.com 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $0a TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 31 4.6.17 JA (jump always) Jump to a fixed address in the TMCL program memory. This command is intended for standalone operation, only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. This command cannot be used in direct mode. Internal function: The TMCL program counter is set to the passed value. Related commands: JC, WAIT, CSUB Mnemonic: JA <Label> Binary representation: COMMAND 22 TYPE don’t care MOT/BANK don’t care VALUE <jump address> Example: An infinite loop in TMCL Loop: MVP ABS, 0, 10000 WAIT POS, 0, 0 MVP ABS, 0, 0 WAIT POS, 0, 0 JA Loop //Jump to the label Loop Binary format of JA Loop assuming that the label Loop is at address 20: Byte Index 0 1 2 3 4 Instruction Function TargetType Motor/ Operand Number address Bank Byte3 Value (hex) $01 $16 $00 $00 $00 www.trinamic.com 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $14 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 32 4.6.18 CSUB (call subroutine) For implementing subroutines there are two commands: CSUB calls a subroutine in the TMCL program memory. It is intended for standalone operation, only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. This command cannot be used in direct mode. RSUB is used for returning from a subroutine to the next command behind the CSUB command. Example: Call a subroutine Loop: MVP ABS, 0, 10000 CSUB SubW //Save program counter and jump to label SubW (see below) MVP ABS, 0, 0 JA Loop SubW: WAIT POS, 0, 0 WAIT TICKS, 0, 50 RSUB //Continue with the command following the CSUB command (in this example: MVP ABS). 4.6.18.1 CSUB (call subroutine) Internal function: The actual TMCL program counter value is saved to an internal stack, afterwards overwritten with the passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls to 8. The command will be ignored if there is no more stack space left. Related commands: RSUB, JA Mnemonic: CSUB <Label> Binary representation: COMMAND 23 TYPE don’t care MOT/BANK don’t care VALUE <subroutine address> Binary format of the CSUB SubW command assuming that the label SubW is at address 100: Byte Index 0 1 2 3 4 5 6 Instruction Function TargetType Motor/ Operand Operand Operand Number address Bank Byte3 Byte2 Byte1 Value (hex) $01 $17 $00 $00 $00 $00 $00 7 Operand Byte0 $64 4.6.18.2 RSUB (return from subroutine) Internal function: The TMCL program counter is set to the last value of the stack. The command will be ignored if the stack is empty. Related command: CSUB Mnemonic: RSUB Binary representation: COMMAND 24 Binary format of RSUB: Byte Index 0 Function Targetaddress Value (hex) $01 www.trinamic.com TYPE don’t care 1 Instruction Number $18 2 Type $00 MOT/BANK don’t care 3 Motor/ Bank $00 4 Operand Byte3 $00 VALUE don’t care 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 33 4.6.19 WAIT (wait for an event to occur) This instruction interrupts the execution of the TMCL program until the specified condition is met. This command is intended for standalone operation only. The host address and the reply are only used to take the instruction to the TMCL program memory while the TMCL program downloads. This command is not to be used in direct mode. THERE ARE DIFFERENT WAIT CONDITIONS THAT CAN BE USED: TICKS: Wait until the number of timer ticks specified by the <ticks> parameter has been reached. POS: Wait until the target position of the motor specified by the <motor> parameter has been reached. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter. The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command to check for such errors or clear the error using the CLE command. Internal function: The TMCL program counter is held until the specified condition is met. Related commands: JC, CLE Mnemonic: WAIT <condition>, <motor number>, <ticks> where <condition> is TICKS|POS Binary representation: COMMAND TYPE 27 0 TICKS - timer ticks* 1 POS - target position reached MOT/BANK don’t care <motor number> 0 VALUE <no. of ticks*> <no. of ticks* for timeout>, 0 for no timeout * One tick is 10msec (in standard firmware). Example: Wait for motor to reach its target position, without timeout Mnemonic: WAIT POS, 0, 0 Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $1b 2 Type $01 3 Motor/ Bank $01 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 34 4.6.20 STOP (stop TMCL program execution) This function stops executing a TMCL program. The host address and the reply are only used to transfer the instruction to the TMCL program memory. Every standalone TMCL program needs the STOP command at its end. It is not to be used in direct mode. Internal function: TMCL instruction fetching is stopped. Related commands: none Mnemonic: STOP Binary representation: COMMAND 28 TYPE don’t care MOT/BANK don’t care VALUE don’t care Example: Stop TMCL execution Mnemonic: STOP Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $1c 2 Type $00 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 35 4.6.21 CALCX (calculate using the X register) This instruction is very similar to CALC, but the second operand comes from the X register. The X register can be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the accumulator for further processing like comparisons or data transfer. Related commands: CALC, COMP, JC, AAP, AGP Mnemonic: CALCX <operation> Binary representation: COMMAND TYPE <operation> 33 0 ADD – add X register to accu 1 SUB – subtract X register from accu 2 MUL – multiply accu by X register 3 DIV – divide accu by X-register 4 MOD – modulo divide accu by x-register 5 AND – logical and accu with X-register 6 OR – logical or accu with X-register 7 XOR – logical exor accu with X-register 8 NOT – logical invert X-register 9 LOAD – load accu to X-register 10 SWAP – swap accu with X-register MOT/BANK don’t care VALUE don’t care Example: Multiply accu by X-register Mnemonic: CALCX MUL Binary: Byte Index Function Value (hex) 0 Targetaddress $01 www.trinamic.com 1 Instruction Number $21 2 Type $02 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 36 4.6.22 AAP (accumulator to axis parameter) The content of the accumulator register is transferred to the specified axis parameter. For practical use, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction. Related commands: AGP, SAP, GAP, SGP, GGP, CALC, CALCX Mnemonic: AAP <parameter number>, 0 Binary representation: COMMAND 34 TYPE <parameter number> Reply in direct mode: STATUS 100 – OK VALUE don’t care MOT/BANK 0 VALUE <don't care> See chapter 5 for a complete list of axis parameters. Example: Positioning a motor by a potentiometer connected to analogue input #0: Start: GIO 0, 1 CALC MUL, 4 AAP 0, 0 JA Start // // // // get value of analogue input line 0 multiply by 4 transfer result to target position of motor 0 jump back to start Binary format of the AAP 0, 0 command: Byte Index 0 1 Instruction Function TargetNumber address Value (hex) $01 $22 www.trinamic.com 2 Type $00 3 Motor/ Bank $00 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 37 4.6.23 AGP (accumulator to global parameter) The content of the accumulator register is transferred to the specified global parameter. For practical use, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction. - Note that the global parameters in bank 0 are mostly EEPROM-only and thus should not be modified automatically by a standalone application. - See chapter Fehler! Verweisquelle konnte nicht gefunden werden. for a complete list of global parameters. Related commands: AAP, SGP, GGP, SAP, GAP Mnemonic: AGP <parameter number>, <bank number> Binary representation: COMMAND 35 TYPE <parameter number> Reply in direct mode: STATUS 100 – OK VALUE don’t care MOT/BANK <bank number> VALUE don’t care Example: Copy accumulator to TMCL user variable #3 Mnemonic: AGP 3, 2 Binary: Byte Index Function Value (hex) 0 1 Target- Instruction address Number $01 $23 2 Type $03 3 Motor/ Bank $02 4 Operand Byte3 $00 5 Operand Byte2 $00 6 Operand Byte1 $00 7 Operand Byte0 $00 4.6.24 Customer Specific TMCL Command Extension (user functions 0… 7) The user definable functions UF0… UF7 are predefined functions without topic for user specific purposes. A user function UF command uses three parameters. Please contact TRINAMIC for a customer specific programming. Internal function: Call user specific functions implemented in C by TRINAMIC. Related commands: none Mnemonic: UF0… UF7 <parameter number> Binary representation: COMMAND 64… 71 Reply in direct mode: Byte Index 0 Function Targetaddress Value (hex) $02 www.trinamic.com TYPE user defined 1 Targetaddress $01 2 Status user defined MOT/BANK user defined 3 Instructio n 64… 71 4 Operand Byte3 user defined VALUE user defined 5 Operand Byte2 user defined 6 Operand Byte1 user defined 7 Operand Byte0 user defined TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 38 4.6.25 Command 136 – Get Firmware Version Command 136 is used for reading out the module type and firmware version as a string or in binary format. (Motor/Bank and Value are ignored.) Other control functions can be used with axis parameters. Command Type 136 0 – string 1 – binary Parameter Description Firmware version Get the module type and firmware revision as a string or in binary format. (Motor/Bank and Value are ignored.) TYPE SET TO 0 - REPLY AS A STRING: Byte index 1 2… 9 Contents Host Address Version string (8 characters, e.g. 1630V202) There is no checksum in this reply format! TYPE SET TO 1 - VERSION NUMBER IN BINARY FORMAT: The version number is output in the value field. Byte index in value field 1 2 3 4 www.trinamic.com Contents Version number, low byte Version number, high byte Type number, low byte Type number, high byte Access read TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 39 5 Axis Parameter Overview (SAP, GAP, STAP, RSAP, AAP) The following section describes all axis parameters that can be used with the SAP, GAP, STAP and RSAP commands. MEANING OF THE LETTERS IN COLUMN ACCESS: Access type R W E Number 0 1 2 3 4 6 Related command(s) GAP SAP, AAP STAP, RSAP Description Parameter readable Parameter writable Parameter automatically restored from EEPROM after reset or power-on. These parameters can be stored permanently in EEPROM using STAP command and also explicitly restored (copied back from EEPROM into RAM) using RSAP. Axis Parameter Description Range [Unit] Target position The target position of a currently executed ramp. -2147483648… +2147483647 Actual position Set/get the position counter without moving the -2147483648… motor. +2147483647 Target speed Set/get the desired target velocity. -200000… +200000 [rpm] Actual speed The actual velocity of the motor. -2147483648… +2147483647 [rpm] Max. absolute The maximum velocity used for velocity ramp in 0… +200000 velocity mode and positioning mode. Set this [rpm] ramp velocity value to a realistic velocity which the motor can reach! Max current Set/get the max allowed motor current. 0… +20000 *This value can be temporarily exceeded marginal due to the [mA] Access RW RW RW R RWE RWE operation of the current regulator. 7 9 10 11 13 25 26 27 28 29 30 MVP Target Maximum velocity at which end position can be reached velocity set. Prevents issuing of end position when the target is passed at high velocity. Motor halted If the actual speed is below this value the motor velocity halted flag will be set. MVP target Maximum distance at which the position end flag reached is set. distance Acceleration Acceleration parameter for ROL, ROR, and the velocity ramp of MVP. Ramp generator The actual speed of the velocity ramp used for speed positioning and velocity mode. Thermal winding time constant I²t limit I²t sum I²t exceed counter Clear I²t exceeded flag Minute counter www.trinamic.com 0… +200000 [rpm] RWE 0 +200000 [rpm] RWE 0… +100000 RWE 0… +100000 [RPM/s] -2147483648… +2147483647 [rpm] Thermal winding time constant for the used 0… +4294967295 motor. Used for I²t monitoring. [ms] An actual I²t sum that exceeds this limit leads to increasing the I²t exceed counter. Actual sum of the I²t monitor. Counts how often an I²t sum was higher than the I²t limit. Clear the flag that indicates that the I²t sum has exceeded the I²t limit. Counts the module operational time in minutes. RWE R RWE 0… +4294967295 RWE 0… +4294967295 0… +4294967295 R RWE (ignored) W 0… +4294967295 [min] RWE TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Number 31 133 134 146 150 151 152 155 156 159 161 162 Axis Parameter BLDC re-initialization PID regulation loop delay Current regulation loop delay Activate ramp 40 Description Restart the timer and initialize encoder. Range [Unit] (ignored) Access W Delay of the position and velocity regulator 0… +10 [ms] 0… +10 [50µs] RWE Delay of the PID current regulator. 1: Activate velocity ramp generator for position 0/1 and velocity mode. (Allows usage of acceleration and positioning velocity for MVP command.) Actual motor Get actual motor current. -2147483648… current +2147483647 [mA] Actual voltage Actual supply voltage. 0… +4294967295 Actual driver Actual temperature of the motor driver. 0… +4294967295 temperature Target current Get desired target current or set target current to -20000… +20000 activate current regulation mode. (+= turn motor [mA] in right direction; -= turn motor in left direction) Error/Status Bit 0: Overcurrent flag. This flag is set if the max. 0…+4294967295 flags current limit is exceeded. Bit 1: Undervoltage flag. This flag is set if supply voltage is too low for motor operation. Bit 2: Overvoltage flag. This flag is set if the motor becomes switched off due to overvoltage. Bit 3: Overtemperature flag. This flag is set if overtemperature limit is exceeded. Bit 4: Motor halted flag. This flag is set if motor has been switched off. Bit 5: Hall error flag. This flag is set upon a hall error. Bit 6: TMC603 error flag Bit 7: unused Bit 8: unused Bit 9: Velocity mode active flag Bit 10: Position mode active flag. Bit 11: Torque mode active flag. Bit 12: unused Bit 13: unused Bit 14: Position end flag. This flag is set if the motor has been stopped at the target position. Bit 15: unused Bit 16: unused Bit 17: I²t exceeded flag. This flag is set if the I²t sum exceeded the I²t limit of the motor. (reset by SAP 29 after the time specified by the I²t thermal winding time constant) Flag 0 to 15 are automatically reset. Only flag 17 must be cleared manually. Commutation 6: FOC based on hall sensor 6, 7, 8 mode 7: FOC based on encoder 8: FOC controlled Encoder set 1: set position counter to zero at next N channel 0/1 NULL event. Switch set NULL 1: set position counter to zero at next switch 0/1 event. www.trinamic.com RWE RWE R R R RW R RWE RWE RWE TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Number 163 164 Axis Parameter Description Encoder clear 1: set position counter to zero only once set NULL 0: always at an N channel event Left stop switch When this bit is set Activate stop Bit 0 enable the motor will be switch Bit 1 165 166 173 177 200 201 210 211 212 226 228 229 230 Range [Unit] 0/1 Access RWE 0… 3 RWE stopped if it is moving in negative direction and the left stop switch input becomes active When this bit is set the motor will be stopped if it is moving in positive direction and the right stop switch input becomes active Please see parameter 166 for selecting the stop switch input polarity. Actual encoder This value represents the internal commutation 0… 65535 offset. commutation offset (0 … max. encoder steps per rotation) Bit 0 Left stop switch Bit set: Left stop Stop switch 0… 3 polarity switch input is high polarity Bit 1 172 Right stop switch enable 41 Right stop switch polarity RWE active Bit clear: Left stop switch input is low active Bit set: Right stop switch input is high active Bit clear: Right stop switch input is low active P parameter for P parameter of current PID regulator. 0… 65535 current PID I parameter for I parameter of current PID regulator. 0… 65535 current PID Start current Motor current for controlled commutation. This 0… +20000 parameter is used in commutation mode. [mA] Current PID Actual error of current PID regulator -2147483648… error +2147483647 Current PID Sum of errors of current PID regulator -2147483648… error sum +2147483647 Actual hall Actual hall angle value -32767… +32767 angle Actual encoder Actual encoder angle value -32767… +32767 angle Actual Actual controlled angle value -32767… +32767 controlled angle Position PID Actual error of position PID regulator -2147483648… error +2147483647 Velocity PID Actual error of velocity PID regulator -2147483648… error +2147483647 Velocity PID Sum of errors of velocity PID regulator -2147483648… error sum +2147483647 P parameter for P parameter of position PID regulator. 0… 65535 position PID www.trinamic.com RWE RWE RWE RWE R R R R R R R R RWE TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Number 234 235 241 244 245 249 250 251 253 254 Axis Parameter P parameter for velocity PID I parameter for velocity PID Sine initialization speed Init sine delay Overvoltage protection Init sine mode Encoder steps Encoder direction Number of motor poles Hall sensor invert www.trinamic.com 42 Description P parameter of velocity PID regulator. Range [Unit] 0… 65535 Access RWE I parameter of velocity PID regulator. 0… 65535 RWE Velocity during initialization in init sine mode 2. -200000… +200000 RWE Refer to axis parameter 249, too. [rpm] Duration for sine initialization sequence. This 0… 10000 parameter should be set in a way, that the motor [ms] has stopped mechanical oscillations after the specified time. 1: Enable overvoltage protection. 0/1 0: Initialization in controlled sine commutation (determines the encoder offset) 1: Initialization in block commutation using hall sensors 2: Initialization in controlled sine commutation (use the previous set encoder offset) Encoder steps per rotation. Set the encoder direction in a way, that ROR increases position counter. Number of motor poles. RWE RWE 0, 1, 2 RWE 0… +65535 0/1 RWE RWE +2… +254 RWE 1: Hall sensor invert. Invert the hall scheme, e.g. 0/1 used by some Maxon motors. RWE TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 43 5.1 Axis Parameter Sorted by Functionality The following section describes all axis parameters that can be used with the SAP, GAP, STAP and RSAP commands. MEANING OF THE LETTERS IN COLUMN ACCESS: Access type R W E Related command(s) GAP SAP, AAP STAP, RSAP Description Parameter readable Parameter writable Parameter automatically restored from EEPROM after reset or power-on. These parameters can be stored permanently in EEPROM using STAP command and also explicitly restored (copied back from EEPROM into RAM) using RSAP. MOTOR / MODULE SETTINGS Number 253 25 26 27 28 29 30 245 Axis Parameter Number of motor poles Thermal winding time constant I²t limit I²t sum I²t exceed counter Clear I²t exceeded flag Minute counter Overvoltage protection Description Number of motor poles. Range [Unit] +2… +254 Access RWE Thermal winding time constant for the used 0… +4294967295 motor. Used for I²t monitoring. [ms] RWE An actual I²t sum that exceeds this limit leads to increasing the I²t exceed counter. Actual sum of the I²t monitor. Counts how often an I²t sum was higher than the I²t limit. Clear the flag that indicates that the I²t sum has exceeded the I²t limit. Counts the module operational time in minutes. 0… +4294967295 RWE 0… +4294967295 0… +4294967295 R RWE (ignored) W 0… +4294967295 [min] 0/1 RWE Description 1: restart the timer and initialize encoder. Range [Unit] (Ignored) Access W 6: FOC based on hall sensor 7: FOC based on encoder 8: FOC controlled This value represents the internal commutation offset. (0 … max. encoder steps per rotation) Motor current for controlled commutation. This parameter is used in commutation mode. Actual hall angle value 6, 7, 8 RWE 0… 65535 RWE 0… +20000 [mA] -32767… +32767 RWE Actual encoder angle value -32767… +32767 R Actual controlled angle value -32767… +32767 R 1: Enable overvoltage protection. RWE ENCODER / INITIALIZATION SETTINGS Number 31 159 165 177 210 211 212 241 Axis Parameter BLDC re-initialization Commutation mode Actual encoder commutation offset Start current Actual hall angle Actual encoder angle Actual controlled angle Sine initialization speed www.trinamic.com R Velocity during initialization in init sine mode 2. -200000… +200000 RWE Refer to axis parameter 249, too. [rpm] TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Number 244 249 250 251 254 Axis Parameter Description Init sine delay Duration for sine initialization sequence. This parameter should be set in a way, that the motor has stopped mechanical oscillations after the specified time. Init sine mode 0: Initialization in controlled sine commutation (determines the encoder offset) 1: Initialization in block commutation using hall sensors 2: Initialization in controlled sine commutation (use the previous set encoder offset) Encoder steps Encoder steps per rotation. Encoder Set the encoder direction in a way, that ROR increases position counter. direction Hall sensor 1: Hall sensor invert. Invert the hall scheme, e.g. invert used by some Maxon motors. 44 Range [Unit] 0… 10000 [ms] Access RWE 0… 2 RWE 0… +65535 0/1 RWE RWE 0/1 RWE TORQUE REGULATION MODE Number 6 Axis Parameter Description Max current Set/get the max allowed motor current. Range [Unit] 0… +20000 This value can be temporarily exceeded marginal due to the [mA] 150 Actual motor Get actual motor current. current Target current Get desired target current or set target current to activate current regulation mode. (+= turn motor in right direction; -= turn motor in left direction) Current Delay of the PID current regulator. regulation loop delay P parameter for P parameter of current PID regulator. current PID I parameter for I parameter of current PID regulator. current PID Current PID Actual error of current PID regulator error Current PID Sum of errors of current PID regulator error sum Access RWE operation of the current regulator. 155 134 172 173 200 201 -2147483648… R +2147483647 [mA] -20000… +20000 RW [mA] 0… +10 [50µs] RWE 0… 65535 RWE 0… 65535 RWE -2147483648… +2147483647 -2147483648… +2147483647 R R VELOCITY REGULATION MODE Number 2 Axis Parameter Description Target speed Set/get the desired target velocity. Access RW 3 Actual speed R 9 Motor halted velocity PID regulation loop delay P parameter for velocity PID Velocity PID error Velocity PID error sum 133 234 228 229 www.trinamic.com Range [Unit] -2147483648… +2147483647 [rpm] The actual velocity of the motor. -2147483648… +2147483647 [rpm] If the actual speed is below this value the motor 0 +200000 [rpm] halted flag will be set. Delay of the position and velocity 0… +10 [ms] P parameter of velocity PID regulator. 0… +10 [50µs] Actual error of PID velocity regulator -2147483648… +2147483647 Sum of errors of PID velocity regulator -2147483648… +2147483647 RWE RWE RWE R R TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 45 VELOCITY RAMP PARAMETER Number 4 11 13 146 Axis Parameter Description Max. absolute The maximum velocity used for velocity ramp in velocity mode and positioning mode. Set this ramp velocity value to a realistic velocity which the motor can reach! Acceleration Acceleration parameter for ROL, ROR, and the velocity ramp of MVP. Ramp generator The actual speed of the velocity ramp used for speed positioning and velocity mode. Activate ramp Range [Unit] 0 +200000 [rpm] 0… +100000 [RPM/s] -2147483648… +2147483647 [rpm] 1: Activate velocity ramp generator for position 0/1 PID control. (Allows usage of acceleration and positioning velocity for MVP command.) Access RWE RWE R RWE POSITION REGULATION MODE Number 1 0 7 10 161 162 163 164 Axis Parameter Description Actual position Set/get the position counter without moving the motor. Target position The target position of a currently executed ramp. Range [Unit] -2147483648… +2147483647 -2147483648… +2147483647 MVP Target Maximum velocity at which end position flag can 0 +200000 [rpm] reached velocity be set. Prevents issuing of end position when the target is passed at high velocity. MVP target Maximum distance at which the position end flag 0… +100000 reached is set. distance Encoder set 1: set position counter to zero at next N channel 0/1 NULL event. Switch set NULL 1: set position counter to zero at next switch 0/1 event. Encoder clear 1: set position counter to zero only once 0/1 set NULL 0: always at an N channel event Bit 0 Left stop switch When this bit is set Activate stop 0… 3 enable the motor will be switch Bit 1 Right stop switch enable stopped if it is moving in negative direction and the left stop switch input becomes active When this bit is set the motor will be stopped if it is moving in positive direction and the right stop switch input becomes active Please see parameter 166 for selecting the stop switch input polarity. www.trinamic.com Access RW RW RWE RWE RWE RWE RWEP RWE TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Number 166 Axis Parameter Description Bit 0 Left stop switch Stop switch polarity polarity Range [Unit] 0… 3 Access RWE 0… 65535 RWE -2147483648… +2147483647 R Description Actual supply voltage. Actual temperature of the motor driver. Range [Unit] 0… +4294967295 0… +4294967295 Access R R Bit 0: Overcurrent flag. This flag is set if the max. current limit is exceeded. Bit 1: Undervoltage flag. This flag is set if supply voltage is too low for motor operation. Bit 2: Overvoltage flag. This flag is set if the motor becomes switched off due to overvoltage. Bit 3: Overtemperature flag. This flag is set if overtemperature limit is exceeded. Bit 4: Motor halted flag. This flag is set if motor has been switched off. Bit 5: Hall error flag. This flag is set upon a hall error. Bit 6: TMC603 error flag Bit 7: unused Bit 8: unused Bit 9: Velocity mode active flag Bit 10: Position mode active flag. Bit 11: Torque mode active flag. Bit 12: unused Bit 13: unused Bit 14: Position end flag. This flag is set if the motor has been stopped at the target position. Bit 15: unused Bit 16: unused Bit 17: I²t exceeded flag. This flag is set if the I²t sum exceeded the I²t limit of the motor. (reset by SAP 29 after the time specified by the I²t thermal winding time constant) 0…+4294967295 R Bit 1 230 226 46 Right stop switch polarity Bit set: Left stop switch input is high active Bit clear: Left stop switch input is low active Bit set: Right stop switch input is high active Bit clear: Right stop switch input is low active P parameter for P parameter of position PID regulator. ( position PID Position PID Actual error of PID position regulator error STATUS INFORMATION Number 151 152 156 Axis Parameter Actual voltage Actual driver temperature Error/Status flags Flag 0 to 15 are automatically reset. Only flag 17 must be cleared manually. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 47 6 Global Parameter Overview (SGP, GGP, STGP, RSGP) The following section describes all global parameters that can be used with the SGP, GGP, STGP and RSGP commands. TWO BANKS ARE USED FOR GLOBAL PARAMETERS: - Bank 0 (global configuration of the module) Bank 2 (user TMCL variables) 6.1 Bank 0 PARAMETERS 64… 255 Parameters below 63 configure stuff like the serial address of the module RS485 baud rate or the telegram pause time. Change these parameters to meet your needs. The best and easiest way to do this is to use the appropriate functions of the TMCL-IDE. The parameters between 64 and 85 are stored in EEPROM only. A SGP command on such a parameter will always store it permanently and no extra STGP command is needed. Take care when changing these parameters, and use the appropriate functions of the TMCL-IDE to do it in an interactive way. MEANING OF THE LETTERS IN COLUMN ACCESS: Access type R W E Related command(s) GGP SGP, AGP STGP, RSGP Description Parameter readable Parameter writable Parameter automatically restored from EEPROM after reset or power-on. GLOBAL PARAMETERS OF BANK 0 Number 64 65 Global parameter EEPROM magic Description Setting this parameter to a different value as $E4 will cause 0… 255 re-initialization of the axis and global parameters (to factory defaults) after the next power up. This is useful in case of miss-configuration. 9600 baud Default RS485 baud rate 0 0… 7 1 2 3 4 5 6 7 66 Serial address 73 Configuration EEPROM lock flag Telegram pause time Serial host address Auto start mode 75 76 77 Range www.trinamic.com 14400 baud 19200 baud 28800 baud 38400 baud 57600 baud 76800 baud 115200 baud Access RWE RWE Not supported by Windows! The module (target) address for RS485 and virtual COM 0… 255 port Write: 1234 to lock the EEPROM, 4321 to unlock it. 0/1 Read: 1=EEPROM locked, 0=EEPROM unlocked. RWE Pause time before the reply via RS485 is sent. 0… 255 RWE Host address used in the reply telegrams sent back via 0… 255 RS485. 0: Do not start TMCL application after power up (default). 0/1 1: Start TMCL application automatically after power up. Note: the current initialization has to be finished first. RWE RWE RWE TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) Number 81 85 128 Global parameter TMCL code protection Do not restore user variables TMCL application status 129 Download mode 130 132 TMCL program counter Tick timer 255 Suppress reply 48 Description Range Access Protect a TMCL program against disassembling or overwriting. 0 – no protection 1 – protection against disassembling 2 – protection against overwriting 3 – protection against disassembling and overwriting If you switch off the protection against disassembling, the program will be erased first! Changing this value from 1 or 3 to 0 or 2, the TMCL program will be wiped off. 0 – user variables are restored (default) 1 – user variables are not restored 0 –stop 1 – run 2 – step 3 – reset 0 – normal mode 1 – download mode Attention: Download mode can only be used if the motor has been stopped first. Otherwise the download mode setting will be disallowed. During download mode the motor driver will be deactivated and the actuator will be turned off. The index of the currently executed TMCL instruction. 0, 1, 2, 3 RWE 0/1 RWE 0… 3 R 0/1 R o… 2047 R A 32 bit counter that gets incremented by one every 0… RW +4294967295 millisecond. It can also be reset to any start value. 0 – reply (default) 0/1 RW 1 – no reply 6.2 Bank 2 Bank 2 contains general purpose 32 bit variables for the use in TMCL applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM. Up to 256 user variables are available. MEANING OF THE LETTERS IN COLUMN ACCESS: Access type R W E Related command(s) GGP SGP, AGP STGP, RSGP Description Parameter readable Parameter writable Parameter automatically restored from EEPROM after reset or power-on. GLOBAL PARAMETERS OF BANK 2 Number Global parameter Description Range Access 0… 55 General purpose variable #0… 55 for use in TMCL applications RWE 56… 255 General purpose variables #56… #255 for use in TMCL applications -231…+231 (int32) -231…+231 (int32) www.trinamic.com RW TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 7 7.1 49 Motor Regulation Structure of the Cascaded Motor Regulation Modes The TMCM-1630 supports a current, velocity, and position PID regulation mode for motor control in different application areas. These regulation modes are cascaded as shown in figure 12.1. The individual modes are explained in the following sections. enable/ disable ramp (SAP 146) target position (SAP 0) position PID values target velocity (SAP 2) position PID target velocity max target velocity (SAP 4) velocity PID values accelerat. (SAP 11) ramp generator ramp generator velocity velocity PID max target current (SAP 6) target current (SAP 155) target current current PID values FOC based current PID motor actual current current measurement actual commutation angle actual velocity actual position current regulation mode velocity regulation mode position regulation mode 7.1 Cascaded regulation www.trinamic.com hall sensor or encoder TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 50 7.2 Current Regulation The current regulation mode uses a PID regulator to adjust a desired motor current. This target current can be set by axis parameter 155. The maximal target current is limited by axis parameter 6. The PID regulation uses three basic parameters: The P and I value as well as the timing control value. TIMING CONTROL VALUE The timing control value (current regulation loop multiplier, axis parameter 134) determines how often the current regulation is invoked. It is given in multiple of 50µs: 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 50µs = resulting delay between two current regulation loops = current regulation loop multiplier parameter For most applications it is recommended to leave this parameter unchanged at its default of 2*50µs. Higher values may be necessary for very slow and less dynamic drives. STRUCTURE OF THE CURRENT REGULATOR PPARAM/256 X IPARAM/65536 ITARGET Clip IMax ˗ + Clip ICLIP eSUM X + Clip -32768.. +32767 SVPWM IACTUAL Figure 7.2 Current regulation Parameter Description IACTUAL Actual motor current (GAP 150) ITARGET Target motor current (SAP 155) IMax Max. motor current (SAP 6) eSUM Error sum for integral calculation (GAP 201) PPARAM Current P parameter (SAP 172) IPARAM Current I parameter (SAP 173) PARAMETERIZING THE CURRENT REGULATOR SET 1. 2. 3. 4. Set the P parameter and the I parameter to zero. Start the motor by using a low target current (e.g. 1000 mA). Modify the current P parameter. Start from a low value and go to a higher value, until the actual current nearly reaches 50% of the desired target current. Do the same with the current I parameter. For all tests set the motor current limitation to a realistic value, so that your power supply does not become overloaded during acceleration phases. If your power supply reaches current limitation, the unit may reset or undetermined regulation results may occur. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 7.3 51 Velocity Regulation Based on the current regulation the motor velocity can be controlled by the velocity PID regulator. TIMING CONTROL VALUE Also, the velocity PID regulator uses a timing control value (PID regulation loop delay, axis parameter 133) which determines how often the PID regulator is invoked. It is given in multiple of 1ms: 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 1ms = resulting delay between two PID calculations = PID regulation loop delay parameter For most applications it is recommended to leave this parameter unchanged at its default value of 1ms. Higher values may be necessary for very slow and less dynamic drives. STRUCTURE OF THE VELOCITY REGULATOR PPARAM / 256 IPARAM / 65536 vRAMPGEN Clip Clip Clip eSUM ICLIP VMax ITARGET IMax vACTUAL Figure 7.3 Velocity regulation Parameter Description vACTUAL Actual motor velocity (GAP 3) vRAMPGEN Target velocity of ramp generator (SAP 2, GAP 13) vMax Max. target velocity (SAP 4) eSUM Error sum for integral calculation (GAP 229) PPARAM Velocity P parameter (SAP 234) IPARAM Velocity I parameter (SAP 235) IMax Max. target current (SAP 6) ITarget Target current for current PID regulator (GAP 155) PARAMETERIZING THE VELOCITY REGULATOR SET 1. 2. 3. 4. Set the velocity I parameter to zero. Start the motor by using a medium target velocity (e.g. 2000 rpm). Modify the velocity P parameter. Start from a low value and go to a higher value, until the actual motor speed reaches 80 or 90% of the target velocity. The lasting 10 or 20% speed difference can be reduced by slowly increasing the velocity I parameter. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 52 7.4 Velocity Ramp Generator For a controlled start up of the motor's velocity a velocity ramp generator can be activated/deactivated by axis parameter 146. The ramp generator uses the maximal allowed motor velocity (axis parameter 4), the acceleration (axis parameter 11) und the desired target velocity (axis parameter 2) to calculate a ramp generator velocity for the following velocity PID regulator. 7.5 Position Regulation Based on current and velocity regulators the TMCM-1630 supports a positioning mode based on encoder or hall sensor position. During positioning the velocity ramp generator can be activated to enable motor positioning with controlled acceleration or it can be disabled to support motor positioning with max allowed speed. The PID regulation uses two basic parameters: the P regulation and a timing control value. TIMING CONTROL VALUE The timing control value (PID regulation loop parameter - axis parameter 133) determines how often the PID regulator is invoked. It is given in multiple of 1ms: 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷 ⋅ 1ms = the resulting delay between two position regulation loops = PID regulation loop multiplier parameter For most applications it is recommended to leave the timing control value unchanged at its default of 1ms. Higher values may be necessary for very slow and less dynamic drives. STRUCTURE OF THE POSITION REGULATOR nTARGET nACTUAL PPARAM/256 Clip Clip ±65535 VMAX VTARGET Figure 7.4 Positioning regulation Parameter Description nACTUAL Actual motor position (GAP 1) nTARGET Target motor position (SAP 0) PPARAM Position P parameter (SAP 130, SAP 230) VMAX Max. allowed velocity (SAP 4) VTARGET New target velocity for ramp generator (GAP 13) PARAMETERIZING THE POSITION REGULATION Based on the velocity regulator only the position regulator P has to be parameterized. 1. Disable the velocity ramp generator and set position P parameter to zero. 2. Choose a target position and increase the position P parameter until the motor reaches the target position approximately. 3. Switch on the velocity ramp generator. Based on the max. positioning velocity (axis parameter 4) and the acceleration value (axis parameter 11) the ramp generator automatically calculates the slow down point, i.e. the point at which the velocity has to be reduced in order to stop at the desired target position. 4. Reaching the target position is signaled by setting the position end flag. www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 53 NOTE: - In order to minimize the time until this flag becomes set, the positioning tolerance MVP target reached distance can be chosen with axis parameter 10. - Since the motor typically is assumed not to signal target reached when the target was just passed in a short moment at a high velocity, additionally the maximum target reached velocity (MVP target reached velocity) can be defined by axis parameter 7. - A value of zero for axis parameter 7 is the most universal, since it implies that the motor stands still at the target. But when a fast rising of the position end flag is desired, a higher value for the MVP target reached velocity parameter will save a lot of time. The best value should be tried out in the actual application. CORRELATION OF AXIS PARAMETERS 10 AND 7, THE TARGET POSITION, AND THE POSITION END FLAG MVP target reached distance Slow-down-distance |Velocity| Max. positioning velocity Motor regulated by Velocity PID Acceleration MVP target reached velocity Motor regulated by combination of Velocity and Position PID Position Target position (set via MVP) Target reached flag only set when velocity and position are in this area. Figure 7.5 Positioning algorithm Depending on motor and mechanics a low oscillation is normal. This can be reduced to at least +/-1 encoder steps. Without oscillation the regulation cannot keep the position! www.trinamic.com TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 8 54 Temperature Calculation Axis parameter 152 delivers the actual ADC value of the motor driver. This ADC value can be converted to a temperature in °C as follows: ADC = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺 152 B = 3434 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) T= Example 1: ADC = 1000 RNTC ≈ 6.81 9011,2 − 2.2 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 ∗ 298,16 − 273.16 °𝐶𝐶 𝑅𝑅 𝐵𝐵 + (ln � 𝑁𝑁𝑁𝑁𝑁𝑁 � ∗ 298.16 10 Example 2: ADC = 1200 RNTC ≈ 5.31 T ≈ 35°𝐶𝐶 9 RNTC = T ≈ 42°𝐶𝐶 I²t Monitoring The I²t monitor determines the sum of the square of the motor current over a given time. The integrating time is motor specific. In the datasheet of the motor this time is described as thermal winding time constant and can be set for each module using axis parameter 25. The number of measurement values within this time depends on how often the current regulation and thus the I²t monitoring is invoked. The value of the actual I²t sum can be read by axis parameter 27. With axis parameter 26 the default value for the I²t limit can be changed (default: 211200). If the actual I²t sum exceeds the I²t limit of the motor, flag 17 (in axis parameter 156) is set and the motor pwm is set to zero as long as the I²t exceed flag is set. The actual regulation mode will not be changed. Furthermore, the I²t exceed counter is increased once every second as long as the actual I²t sum exceeds the I²t limit. The I²t exceed flag can be cleared manually using parameter 29 but only after the cool down time given by the thermal winding time constant has passed. The I²t exceed flag will not be reset automatically. The I²t limit can be determined as follows: 𝐼𝐼²𝑡𝑡 = 𝐼𝐼 [𝑚𝑚𝑚𝑚] 𝐼𝐼 [𝑚𝑚𝑚𝑚] ∗ ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 [𝑚𝑚𝑚𝑚] 1000 1000 𝐼𝐼 is the desired average current 𝑡𝑡𝑡𝑡𝑡𝑡 is the thermal winding time constant given by the motor datasheet Example: I²t limits for an average current of a) 1A, b) 2A, c) 3A and d) 4A over a thermal winding time of 13,2s. a) 𝐼𝐼²𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = b) 𝐼𝐼²𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = c) 𝐼𝐼²𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = d) 𝐼𝐼²𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1000 [𝑚𝑚𝑚𝑚] 1000 2000 [𝑚𝑚𝑚𝑚] 1000 3000 [𝑚𝑚𝑚𝑚] 1000 4000 [𝑚𝑚𝑚𝑚] www.trinamic.com 1000 ∗ ∗ ∗ ∗ 1000 [𝑚𝑚𝑚𝑚] 1000 2000 [𝑚𝑚𝑚𝑚] 1000 3000 [𝑚𝑚𝑚𝑚] 1000 4000 [𝑚𝑚𝑚𝑚] 1000 ∗ 13200 [𝑚𝑚𝑚𝑚] = 13200 [𝑚𝑚𝐴𝐴2 ∗ 𝑚𝑚𝑚𝑚] ∗ 13200 [𝑚𝑚𝑚𝑚] = 52800 [𝑚𝑚𝐴𝐴2 ∗ 𝑚𝑚𝑚𝑚] ∗ 13200 [𝑚𝑚𝑚𝑚] = 118800 [𝑚𝑚𝐴𝐴2 ∗ 𝑚𝑚𝑚𝑚] ∗ 13200 [𝑚𝑚𝑚𝑚] = 211200 [𝑚𝑚𝐴𝐴2 ∗ 𝑚𝑚𝑚𝑚] TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 10 Life Support Policy TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG. Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death. © TRINAMIC Motion Control GmbH & Co. KG 2013. Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use. Specifications are subject to change without notice. www.trinamic.com 55 TMCM-1630 TMCL Firmware V2.07 Manual (Rev. 2.02 / 2015-MAR-04) 56 11 Revision History 11.1 Firmware Revision Version 1.0 1.46 1.47 1.48 2.05 2.07 Date 2011-MAY-16 2011-SEP-27 2012-JAN-26 2012-DEC-12 2013-APR-14 2014-Jun-04 Author OK ED ED ED ED ED Description First version New version including hallFX parameters hallFX parameters corrected Axis parameter 178 added. New FOC version, several changes. - Axis parameter 238 deleted (Mass inertia constant) - Axis parameter 239 deleted (BEMF constant) - Axis parameter 240 deleted (Motor coil resistance) - Bug during Encoder-initialization (mode 2) with inverted encoder-signals fixed - readability for encoder-, and hall-angle during controlled mode added 11.2 Document Revision Version 2.00 Date 2013-APR-02 Author SD 2.01 2014-JUN-04 ED 2.02 2015-MAR-09 JP Description Manual for new Field Orientated Control (FOC) firmware - Commands SIO and GIO added. - Axis parameters updated. - Motor regulation updated. - Axis parameter 209 deleted. - Axis parameter 241 (sine initialization speed) added. - Axis parameter 31 (BLDC re-initialization) added. - Axis parameter 212 (actual controlled angle) new. - Axis parameter 159 updated: new FOC controlled mode. - Global parameter 77 (auto start mode) updated. - Global parameter 129 (download mode) updated. - Several axis parameter value ranges updated. - Axis parameter 238 deleted (Mass inertia constant) - Axis parameter 239 deleted (BEMF constant) - Axis parameter 240 deleted (Motor coil resistance) Removed more outputs option 12 References [TMCM-1630] [BB-1630] [TMCL-IDE] [TMCL-BLDC] [TMC603] TMCM-1630 Hardware Manual BB-1630 Hardware Manual TMCL-IDE User Manual TMCL-BLDC User Manual TMC603 Datasheet Please refer to our homepage http://www.trinamic.com. www.trinamic.com