RT9013 500mA, Low Dropout, Low Noise Ultra-Fast Without Bypass Capacitor CMOS LDO Regulator General Description The RT9013 is a high-performance, 500mA LDO regulator, offering extremely high PSRR and ultra-low dropout. Ideal for portable RF and wireless applications with demanding performance and space requirements. The RT9013 quiescent current as low as 25μA, further prolonging the battery life. The RT9013 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in handheld wireless devices. The RT9013 consumes typical 0.7μA in shutdown mode and has fast turn-on time less than 40μs. The other features include ultra-low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. Available in the SC-82, SOT-23-5, SC-70-5 and WDFN-6L 2x2 package. Ordering Information RT9013 - Note : Package Type Y : SC-82 B : SOT-23-5 U5 : SC-70-5 QW : WDFN-6L 2x2 (W-Type) Lead Plating System P : Pb Free G : Green (Halogen Free and Pb Free) Fixed Output Voltage 12 : 1.2V 13 : 1.3V 15 : 1.5V 16 : 1.6V : 32 : 3.2V 33 : 3.3V 1B : 1.25V 1H : 1.85V 2H : 2.85V Richtek products are : ` RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. Wide Operating Voltage Ranges : 2.2V to 5.5V Low Dropout : 250mV at 500mA Ultra-Low-Noise for RF Application Ultra-Fast Response in Line/Load Transient Current Limiting Protection Thermal Shutdown Protection High Power Supply Rejection Ratio Output Only 1μ μF Capacitor Required for Stability TTL-Logic-Controlled Shutdown Input RoHS Compliant and 100% Lead (Pb)-Free Applications CDMA/GSM Cellular Handsets Portable Information Appliances Laptop, Palmtops, Notebook Computers Hand-Held Instruments Mini PCI & PCI-Express Cards PCMCIA & New Cards Marking Information For marking information, contact our sales representative directly or through a Richtek distributor located in your area. Pin Configurations (TOP VIEW) VIN VOUT 4 3 2 EN GND SC-82 VOUT NC 5 4 2 3 VIN GND EN SOT-23-5 / SC-70-5 EN GND VIN 1 2 3 GND ` Features 7 6 5 4 NC NC VOUT WDFN-6L 2x2 DS9013-10 April 2011 www.richtek.com 1 RT9013 Typical Application Circuit VIN VIN CIN 1µF/X7R VOUT VOUT COUT 1µF/X7R RT9013 Chip Enable NC EN Rpull_down GND 100k Functional Pin Description Pin Number Pin Name SC-82 SOT-23-5 / SC-70-5 WDFN-6L 2x2 3 5 4 -- 4 5, 6 2 2 2, 7 (Exposed Pad) 1 3 4 1 Pin Function VOUT Regulator Output. NC No Internal Connection. GND Common Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation. 1 EN Enable Input Logic, Active High. When the EN goes to a logic low, the device will be shutdown mode. 3 VIN Supply Input. Function Block Diagram EN Current Limit POR OTP VIN VREF + MOS Driver VOUT GND www.richtek.com 2 DS9013-10 April 2011 RT9013 Absolute Maximum Ratings (Note 1) Supply Input Voltage -----------------------------------------------------------------------------------------------------EN Input Voltage ----------------------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C SOT-23-5 -------------------------------------------------------------------------------------------------------------------SC-70-5/ SC-82 -----------------------------------------------------------------------------------------------------------WDFN-6L 2x2 -------------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2) SOT-23-5, θJA --------------------------------------------------------------------------------------------------------------SOT-23-5, θJC -------------------------------------------------------------------------------------------------------------SC-70-5/ SC-82, θJA -----------------------------------------------------------------------------------------------------WDFN-6L 2x2, θJA --------------------------------------------------------------------------------------------------------WDFN-6L 2x2, θJC --------------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------Junction Temperature ----------------------------------------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------------------ESD Susceptibility (Note 3) HBM -------------------------------------------------------------------------------------------------------------------------MM ---------------------------------------------------------------------------------------------------------------------------- Recommended Operating Conditions 6V 6V 0.4W 0.3W 0.606W 250°C/W 25°C/W 333°C/W 165°C/W 20°C/W 260°C 150°C −65°C to 150°C 2kV 200V (Note 4) Supply Input Voltage ------------------------------------------------------------------------------------------------------ 2.2V to 5.5V Junction Temperature Range -------------------------------------------------------------------------------------------- −40°C to 125°C Ambient Temperature Range -------------------------------------------------------------------------------------------- −40°C to 85°C Electrical Characteristics (VIN = VOUT + 0.5V, VEN = VIN, CIN = COUT = 1μF (Ceramic, X7R), TA = 25°C unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit 2.2 -- 5.5 V Input Voltage Range VIN Output Noise Voltage VON VOUT = 1.5V, COUT = 1μF, IOUT = 0mA -- 30 -- μVRMS Output Voltage Accuracy (Fixed Output Voltage) ΔVOUT IOUT = 10mA −2 0 +2 % Quiescent Current IQ VEN = 5V, IOUT = 0mA -- 25 50 μA Shutdown Current ISHDN VEN = 0V -- 0.7 1.5 μA Current Limit ILIM RLOAD = 0Ω, 2.2V ≤ VIN < 2.6V 0.4 0.5 0.85 A RLOAD = 0Ω, 2.7V ≤ VIN ≤ 5.5V 0.5 0.6 0.85 A IOUT = 400mA, 2.2V ≤ VIN < 2.7V -- 160 320 IOUT = 500mA, 2.7V ≤ VIN ≤ 5.5V -- 250 400 -- -- 0.6 Dropout Voltage (Note 5) (Note 6) Load Regulation (Note 7) (Fixed Output Voltage) VDROP ΔVLOAD 1mA < IOUT < 400mA 2.2V ≤ VIN < 2.7V 1mA < IOUT < 500mA 2.7V ≤ VIN ≤ 5.5V mV % -- -- 1 To be continued DS9013-10 April 2011 www.richtek.com 3 RT9013 Parameter EN Threshold Voltage Symbol Test Conditions Min Typ Max Logic-Low VIL 0 -- 0.6 Logic-High VIH 1.6 -- 5.5 -- 0.1 1 μA -- −50 -- dB -- 0.01 0.2 %/V Enable Pin Current IEN Power Supply Rejection Rate PSRR Line Regulation ΔVLINE Thermal Shutdown Temperature TSD -- 170 -- Thermal Shutdown Hysteresis ΔT SD -- 30 -- IOUT = 100mA, f = 10kHz VIN = (VOUT+0.5) to 5.5V, IOUT = 1mA Unit V °C Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard. The case position of θJC is on the exposed pad for the package. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under no load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground pin current. Note 6. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) - 100mV. Note 7. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load regulation in the load range from 10mA to 500mA. www.richtek.com 4 DS9013-10 April 2011 RT9013 Typical Operating Characteristics (CIN = COUT = 1μ/X7R, unless otherwise specified) Output Voltage vs. Temperature 1.60 Quiescent Current vs. Temperature 30 VIN = 2.5V 1.58 Quiescent Current (uA) 1.56 Output Voltage (V) VIN = 2.5V 28 1.54 1.52 1.50 1.48 1.46 1.44 26 24 22 20 18 16 14 12 1.42 10 1.40 -50 -25 0 25 50 75 100 -50 125 -25 Temperature (°C) RT9013-33PQW TJ = 125°C TJ = 25°C 200 150 TJ = -40°C 100 50 Dropout Voltage (mV) Dropout Voltage (mV) 250 100 125 RT9013-25PQW TJ = 125°C 250 TJ = 25°C 200 150 TJ = -40°C 100 50 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 Load Current (mA) Load Current (mA) EN Pin Shutdown Response Start Up VIN = 2.5V, ILOAD = 50mA 4 RT9013-15PQW 2 Output Voltage (V) 0 2 1 0 Time (100μs/Div) DS9013-10 April 2011 EN Pin Voltage (V) 0 EN Pin Voltage (V) 75 300 0 Output Voltage (V) 50 Dropout Voltage vs. Load Current 350 300 25 Temperature (°C) Dropout Voltage vs. Load Current 350 0 4 VIN = 2.5V, ILOAD = 75mA RT9013-15PQW 2 0 1.0 0.5 0 Time (5μs/Div) www.richtek.com 5 RT9013 Line Transient Response Line Transient Response Input Voltage Deviation (V) 3.6 2.6 20 0 -20 VIN = 2.6V to 3.6V, ILOAD = 100mA Output Voltage Deviation (mV) Output Voltage Deviation (mV) Input Voltage Deviation (V) VIN = 2.6V to 3.6V, ILOAD = 10mA RT9013-15PQW 3.6 2.6 20 0 -20 Time (100μs/Div) Time (100μs/Div) Load Transient Response Load Transient Response VIN = 2.5V, ILOAD = 10mA to 300mA Load Current (mA) 50 0 Output Voltage Deviation (mV) Output Voltage Deviation (mV) Load Current (mA) VIN = 2.5V, ILOAD = 10mA to 100mA 100 50 0 -50 RT9013-15PQW 400 200 0 50 0 -50 Time (100μs/Div) Noise Noise VIN = 3.0V (By Battery), ILOAD = 10mA 300 300 200 200 Noise (μV/Div) Noise (μV/Div) RT9013-15PQW Time (100μs/Div) VIN = 3.0V (By Battery), No Load 100 0 -100 100 0 -100 -200 -200 -300 RT9013-15PQW -300 RT9013-15PQW Time (10ms/Div) www.richtek.com 6 RT9013-15PQW Time (10ms/Div) DS9013-10 April 2011 RT9013 Noise 20 VIN = 3.0V (By Battery), ILOAD = 300mA VIN = 2.5V to 2.6V 10 300 0 200 -10 100 PSRR(dB) Noise (μV/Div) PSRR 0 -100 -200 -300 -20 -30 -40 ILOAD = 100mA ILOAD = 300mA -50 -60 RT9013-15PQW ILOAD = 10mA -70 Time (10ms/Div) 10 100 1000 10000 100000 1000000 Frequency (Hz) DS9013-10 April 2011 www.richtek.com 7 RT9013 Applications Information Like any low-dropout regulator, the external capacitors used with the RT9013 must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 1μF/X7R on the RT9013 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The RT9013 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1μF with ESR is > 5mΩ on the RT9013 output ensures stability. The RT9013 still works well with output capacitor of other types due to the wide stable ESR range. Figure 1. shows the curves of allowable ESR range as a function of load current for various output capacitor values. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the RT9013 and returned to a clean analog ground. Enable The RT9013 goes into sleep mode when the EN pin is in a logic low condition. During this condition, the RT9013 has an EN pin to turn on or turn off regulator, When the EN pin is logic hight, the regulator will be turned on. The supply current to 0.7μA typical. The EN pin may be directly tied to VIN to keep the part on. The Enable input is CMOS logic and cannot be left floating. PSRR The power supply rejection ratio (PSRR) is defined as the gain from the input to output divided by the gain from the supply to the output. The PSRR is found to be ⎛ ⎞ PSRR = 20 × log⎜ ΔGain Error ⎟ ⎝ ΔSupply ⎠ Note that when heavy load measuring, Δsupply will cause Δtemperature. And Δtemperature will cause Δoutput voltage. So the heavy load PSRR measuring is include temperature effect. Current limit The RT9013 contains an independent current limiter, which monitors and controls the pass transistor's gate voltage, limiting the output current to 0.6A (typ.). The output can be shorted to ground indefinitely without damaging the part. Thermal Considerations Region of Stable COUT ESR vs. Load Current (Ω)ESR (Ω) OUT ESR Region of CStable COUT 100.000 100 Unstable Range 10.000 0 1 1.000 Stable Range For continuous operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is : 0.100 0.1 0.01 0.010 COUT = 1μF 0.001 0 50 150 200 Load Current (mA) Figure 1 www.richtek.com 8 PD = (VIN − VOUT) x IOUT + VIN x IQ Unstable Range 100 Thermal protection limits power dissipation in RT9013. When the operation junction temperature exceeds 170°C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turn on again after the junction temperature cools by 30°C. 250 300 The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula : DS9013-10 April 2011 RT9013 PD(MAX) = ( TJ(MAX) − TA ) /θJA Where T J(MAX) is the maximum operation junction temperature, TA is the ambient temperature and the θJA is the junction to ambient thermal resistance. For recommended operating conditions specification of RT9013 the maximum junction temperature is 125°C and TA is the operated ambient temperature. The junction to ambient thermal resistance θJA (θJA is layout dependent) for WDFN-6L 2x2 package is 165°C/W, SOT-23-5 package is 250°C/W and SC-70-5/ SC-82 package is 333°C/W on the standard JEDEC 51-3 single-layer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by following formula : PD(MAX) = (125°C − 25°C) / 165°C/W = 0.606 W for WDFN-6L 2x2 packages PD(MAX) = (125°C − 25°C) / 250°C/W = 0.400 W for SOT-23-5 packages PD(MAX) = (125°C − 25°C) / 333°C/W = 0.300 W for SC-70-5/ SC-82 packages The maximum power dissipation depends on operating ambient temperature for fixed TJ(MAX) and thermal resistance θJA. For RT9013 package, the Figure 2 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed. 0.7 Single Layer PCB Power Dissipation (W) 0.6 0.5 WDFN-6L 2x2 SOT-23-5 0.4 0.3 SC-70-5/ SC-82 0.2 0.1 0 0 12.5 25 37.5 50 62.5 75 87.5 100 113 125 Ambient Temperature (°C) Figure 2. Derating Curves for RT9013 Packages DS9013-10 April 2011 www.richtek.com 9 RT9013 Outline Dimension D e H L B C b1 b A A1 e Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.800 1.100 0.031 0.043 A1 0.000 0.100 0.000 0.004 B 1.150 1.350 0.045 0.053 b 0.150 0.400 0.006 0.016 b1 0.350 0.500 0.014 0.020 C 1.800 2.450 0.071 0.096 D 1.800 2.200 0.071 0.087 e 1.300 0.051 H 0.080 0.260 0.003 0.010 L 0.200 0.460 0.008 0.018 SC-82 Surface Mount Package www.richtek.com 10 DS9013-10 April 2011 RT9013 H D L B C b A A1 e Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.889 1.295 0.035 0.051 A1 0.000 0.152 0.000 0.006 B 1.397 1.803 0.055 0.071 b 0.356 0.559 0.014 0.022 C 2.591 2.997 0.102 0.118 D 2.692 3.099 0.106 0.122 e 0.838 1.041 0.033 0.041 H 0.080 0.254 0.003 0.010 L 0.300 0.610 0.012 0.024 SOT-23-5 Surface Mount Package DS9013-10 April 2011 www.richtek.com 11 RT9013 H D L B C b A A1 e Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.800 1.100 0.031 0.044 A1 0.000 0.100 0.000 0.004 B 1.150 1.350 0.045 0.054 b 0.150 0.400 0.006 0.016 C 1.800 2.450 0.071 0.096 D 1.800 2.250 0.071 0.089 e 0.650 0.026 H 0.080 0.260 0.003 0.010 L 0.210 0.460 0.008 0.018 SC-70-5 Surface Mount Package www.richtek.com 12 DS9013-10 April 2011 RT9013 D2 D L E E2 1 2 e 1 2 1 b A A1 SEE DETAIL A A3 DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.200 0.350 0.008 0.014 D 1.950 2.050 0.077 0.081 D2 1.000 1.450 0.039 0.057 E 1.950 2.050 0.077 0.081 E2 0.500 0.850 0.020 0.033 e L 0.650 0.300 0.026 0.400 0.012 0.016 W-Type 6L DFN 2x2 Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 5F, No. 95, Minchiuan Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)86672399 Fax: (8862)86672377 Email: [email protected] Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. DS9013-10 April 2011 www.richtek.com 13