Application Note TEP 200WIR Series TEP 200WIR 8.5 to 36Vdc, 9 to 36 Vdc, 16.5 to 75 Vdc and 43 to 160Vdc input, 3.3 to 48 Vdc Single Output, 240W Features ► Industry standard half-brick footprint 2.40 x 2.28 x 0.50 inch ( 61.0 x 57.9 x 12.7 mm ) ► RoHS directive compliant ► Six-sided continuous shield for 24VIN and 48 VIN module ► Soft-start ► High power density of 87.7W / inch3 ► 4:1 ultra wide input voltage range ► High efficiency up to 91% ► Input to output basic Insulation: 2250 VDC ► Output current up to 50A ► Adjustable output voltage ► No minimum load required ► Railway application Applications Options ► Wireless Network ► Heat-sink available for extended operation ► Telecom/ Datacom ► Positive logic remote ON/OFF ► Industry Control System ► Case pin ► Distributed Power Architectures ► Synchronous ► Semiconductor Equipment ► Terminal block ► Railway System General Description The TEP 200WIR series DC/DC converters provide up to 240 watts of output power in an industry standard halfbrick package and footprint. All models feature a wide input range, adjustable output voltage. Table of contents Output Specification Input Specification General Specification Environmental Specification EMC characteristic Characteristic Curves Testing Configurations EMI Considerations Output Voltage Adjustment Remote Sense Input Source Impedance Output Over Current Protection Short Circuitry Protection http://www.tracopower.com P2 P4 P5 P6 P6 P7 P49 P52 P56 P58 P58 P59 P59 Output Over Voltage Protection Over Temperature Protection Thermal Considerations Heat-Sink Considerations Remote ON/OFF Control Synchronous Pin Mechanical Data Recommended Pad Layout Soldering Considerations Packaging Information Part Number Structure Safety and Installation Instruction MTBF and Reliability P59 P59 P60 P61 P62 P63 P64 P67 P68 P69 P70 P71 P71 Page 1 of 71 Application Note TEP 200WIR Series Output Specification Parameter Device Min Typ Max Unit TEP 200-xx10WIR TEP 200-xx11WIR TEP 200-xx12WIR TEP 200-xx13WIR TEP 200-xx15WIR TEP 200-xx16WIR TEP 200-xx18WIR 3.267 4.95 11.88 14.85 23.76 27.72 47.52 3.3 5 12 15 24 28 48 3.333 5.05 12.12 15.15 24.24 28.28 48.48 VDC VDC VDC VDC VDC VDC VDC Voltage Adjustability (see page 2) All -20 +10 % Output Regulation Line (Vin(min) to Vin(max) at Full Load) Load (0% to 100% of Full Load) All All ±0.1 ±0.1 ±0.2 ±0.2 % % TEP 200-xx10WIR TEP 200-xx11WIR TEP 200-xx12WIR TEP 200-xx13WIR TEP 200-xx15WIR TEP 200-xx16WIR TEP 200-xx18WIR 75 75 100 100 200 200 300 100 100 125 125 250 250 350 mVp-p mVp-p mVp-p mVp-p mVp-p mVp-p mVp-p +0.02 %/C 5 % Vout Output Voltage (Vin = Vin(nom) , Full Load , TA = 25C) Output Ripple & Noise (Vin = Vin(nom) , Full Load , TA = 25C). Peak to Peak (5Hz to 20MHz bandwidth) Measured with a ripple &noise test board: COUT, ext. = 1μF 25V 1206 X7R MLCC and 22μF 25V D-type POS-CAP COUT, ext. = 4.7μF 50V 1812 X7R MLCC COUT, ext. = 2.2μF 100V 1812 X7R MLCC Temperature Coefficient All Output Voltage Overshoot (Vin = Vin(min) to Vin(max) , Full Load , TA=25C). All 0 TEP 200-xx10WIR TEP 200-xx11WIR TEP 200-xx12WIR TEP 200-xx13WIR TEP 200-xx15WIR TEP 200-xx16WIR TEP 200-xx18WIR 300 600 900 900 900 1100 1200 mV mV mV mV mV mV mV All 250 μS Dynamic Load Response (Vin = Vin(nom) , TA=25C) Load step change between 75% to 100% of Full Load Peak Deviation Setting Time (Vout < 10% peak deviation) http://www.tracopower.com -0.02 Page 2 of 71 Application Note TEP 200WIR Series Parameter Output Current Output Capacitor Load Device Min TEP 200-2410WIR TEP 200-2411WIR TEP 200-2412WIR TEP 200-2413WIR TEP 200-2415WIR TEP 200-2416WIR TEP 200-2418WIR TEP 200-4810WIR TEP 200-4811WIR TEP 200-4812WIR TEP 200-4813WIR TEP 200-4815WIR TEP 200-4816WIR TEP 200-4818WIR TEP 200-7210WIR TEP 200-7211WIR TEP 200-7212WIR TEP 200-7213WIR TEP 200-7215WIR TEP 200-7216WIR TEP 200-7218WIR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Typ TEP 200-2410WIR TEP 200-2411WIR TEP 200-2412WIR TEP 200-2413WIR TEP 200-2415WIR TEP 200-2416WIR TEP 200-2418WIR TEP 200-4810WIR TEP 200-4811WIR TEP 200-4812WIR TEP 200-4813WIR TEP 200-4815WIR TEP 200-4816WIR TEP 200-4818WIR TEP 200-7210WIR TEP 200-7211WIR TEP 200-7212WIR TEP 200-7213WIR TEP 200-7215WIR TEP 200-7216WIR TEP 200-7218WIR Max Unit 50.0 36.0 15.0 12.0 7.5 6.5 3.7 50.0 40.0 18.0 14.0 9.0 7.5 4.5 57.0 44.0 20.0 16.0 10.0 8.5 5.0 A A A A A A A A A A A A A A A A A A A A A 151000 72000 12500 8000 3100 2300 770 151000 80000 15000 9300 3700 2600 930 172000 88000 16600 10600 4100 3000 1000 μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF TEP 200-xx10WIR TEP 200-xx11WIR TEP 200-xx12WIR TEP 200-xx13WIR TEP 200-xx15WIR TEP 200-xx16WIR TEP 200-xx18WIR 3.795 5.75 13.80 17.25 27.60 32.20 55.20 4.29 6.50 15.60 19.50 31.20 36.40 62.40 VDC VDC VDC VDC VDC VDC VDC Output Over Current Protection (Hiccup Mode) All 120 150 % FL Output Short Circuit Protection (Hiccup Mode) All Output Over Voltage Protection (Hiccup Mode) http://www.tracopower.com Automatics recovery Page 3 of 71 Application Note TEP 200WIR Series Input Specification Parameter Operating Input Voltage Input Voltage Continuous Transient (1sec maximum) Device Min Typ Max Unit TEP 200-2410WIR TEP 200-2411WIR TEP 200-24xxWIR TEP 200-48xxWIR TEP 200-72xxWIR 9 9 8.5 16.5 43 24 24 24 48 110 36 36 36 75 160 VDC VDC VDC VDC VDC 40 80 165 50 100 185 VDC VDC VDC VDC VDC VDC TEP 200-24xxWIR TEP 200-48xxWIR TEP 200-72xxWIR TEP 200-24xxWIR TEP 200-48xxWIR TEP 200-72xxWIR TEP 200-2410WIR TEP 200-2411WIR TEP 200-2412WIR TEP 200-2413WIR TEP 200-2415WIR TEP 200-2416WIR TEP 200-2418WIR TEP 200-4810WIR TEP 200-4811WIR TEP 200-4812WIR TEP 200-4813WIR TEP 200-4815WIR TEP 200-4816WIR TEP 200-4818WIR TEP 200-7210WIR TEP 200-7211WIR TEP 200-7212WIR TEP 200-7213WIR TEP 200-7215WIR TEP 200-7216WIR TEP 200-7218WIR 25 30 30 30 35 40 45 20 20 20 20 20 25 25 10 10 10 10 10 15 15 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Input reflected ripple current (see page 2) (5 to 20MHz, 12μH source impedance) All 50 mAp-p Start Up Time (Vin = Vin(nom) and constant resistive load) Power up Remote ON/OFF All Input Standby Current (Vin = Vin(nom) , No Load , TA=25C) Remote ON/OFF (see page 2) (The CTRL pin voltage is referenced to -INPUT) Negative logic (Standard) : Device code without Suffix DC-DC ON (Short) DC-DC OFF (Open) Positive logic (Option) : Device code with Suffix “-P” DC-DC ON (Open) DC-DC OFF (Short) Remote Off state Input Current Input Current of Remote Control Pin All SYNC pin output signal (see page 2) All http://www.tracopower.com 75 75 100 100 mS mS 0 3 1.2 12 VDC VDC 3 0 12 1.2 1 VDC VDC mA mA 6 V -0.5 -0.3 3 Page 4 of 71 Application Note TEP 200WIR Series Parameter Device Under Voltage Lockout Turn-on Threshold TEP 200-24xxWIR TEP 200-48xxWIR TEP 200-72xxWIR Under Voltage Lockout Turn-off Threshold TEP 200-24xxWIR TEP 200-48xxWIR TEP 200-72xxWIR Min Typ 7.3 15.5 33.0 Max Unit 9 18 43 VDC VDC VDC 8.1 16.3 36.0 VDC VDC VDC Max Unit General Specification Parameter Efficiency (Vin = Vin(nom) , Full Load , TA = 25C) Device Min Typ % % % % % % % % % % % % % % % % % % % % % 87 90 89 90 90 90 89 88 91 90 91 90 91 90 87 89 89 90 89 90 89 TEP 200-2410WIR TEP 200-2411WIR TEP 200-2412WIR TEP 200-2413WIR TEP 200-2415WIR TEP 200-2416WIR TEP 200-2418WIR TEP 200-4810WIR TEP 200-4811WIR TEP 200-4812WIR TEP 200-4813WIR TEP 200-4815WIR TEP 200-4816WIR TEP 200-4818WIR TEP 200-7210WIR TEP 200-7211WIR TEP 200-7212WIR TEP 200-7213WIR TEP 200-7215WIR TEP 200-7216WIR TEP 200-7218WIR Isolation voltage (Basic Insulation) (1 minute) Input to Output Input (Output) to Case All 2250 1600 VDC VDC Isolation resistance All 1 GΩ Isolation capacitance All Switching Frequency All Weight All 105 g MTBF Bellcore TR-NWT-000332, TC = 40, MIL-HDBK-217F All 1.010×106 7.416×104 hours hours Over Temperature Protection (see page 2) All 120 C 225 250 2500 pF 275 KHz Case material TEP 200-24xxWIR TEP 200-48xxWIR TEP 200-72xxWIR Metal Metal Aluminum base-plate with plastic case Base material TEP 200-24xxWIR TEP 200-48xxWIR FR4 PCB FR4 PCB Potting material All Silicon (UL94-V0) Dimensions All 2.40 X 2.28 X 0.50 (61.0×57.9×12.7) http://www.tracopower.com Inch (mm) Page 5 of 71 Application Note TEP 200WIR Series Environmental Specification Model Min Max Unit Operating case temperature Parameter All -40 Typ 115 C Storage temperature All -55 125 C Over temperature protection (see page 2) All 120 C Thermal impedance* without Heat-sink With 0.24” Height Heat-sink With 0.45” Height Heat-sink Terminal block Only mount on the iron base-plate All 6.1 5.1 4.6 4.4 2.8 K / Watt K / Watt K / Watt K / Watt K / Watt Relative humidity All 5 95 Thermal shock EN61373,MIL-STD-810F Vibration EN61373,MIL-STD-810F % RH * Test condition with vertical direction by natural convection 20FLM EMC characteristic** EMI (see page 2) EN55011,EN55022 Class A ±8KV ±6KV Perf. Criteria A EN61000-4-3 20V/m Perf. Criteria A EN61000-4-4 ±2KV Perf. Criteria A Surge EN61000-4-5 ±2KV Perf. Criteria A Conducted immunity EN61000-4-6 10Vr.m.s Perf. Criteria A ESD EN61000-4-2 Radiated immunity Fast transient Air Contact ** The TEP 200WIR series meets EMC characteristics only with external components connected before the input pin to the converter. If customer only need to meet EN61000-4-4, EN61000-4-5, an external input filter capacitor is required. The TEP 200-24xxWIRCMF and TEP 200-48xxWIRCMF recommended 2 pcs of aluminum electrolytic capacitor (Nippon chemi-con KY series, 220μF/100V, ESR 48mΩ) to connect in parallel. The TEP 200-72xxWIRCMF recommended 3 pcs of aluminum electrolytic capacitor (Ruby-con BXF series, 100μF/250V) to connect in parallel. The TEP 200WIR-CMF meets EMC characteristic: Surge meet EN55024 ±1KV and EN50155 ±2KV Perf. Criteria A http://www.tracopower.com Page 6 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-2410WIR Vin= 9V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 10 100 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) 100 9 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 36 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 9V Vin= 12V Vin= 24V Vin= 36V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 7 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-2410WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 8 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-2411WIR Vin= 9V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 10 100 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) 100 9 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 36 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 9V Vin= 12V Vin= 24V Vin= 36V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 9 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-2411WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 10 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25c.The figures are identical for TEP 200-2412WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) 100 8.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 36 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 11 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-2412WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 12 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-2413WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) 100 8.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 36 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 13 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-2413WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 14 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-2415WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) 100 8.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 36 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 15 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-2415WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 16 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-2416WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) 100 8.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 36 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 17 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-2416WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 18 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-2418WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) 100 8.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 36 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 19 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-2418WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 20 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-4810WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 24 30 36 42 48 54 60 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) 100 16.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 75 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 21 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-4810WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 22 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-4811WIR 100 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 24 30 36 42 48 54 60 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) 100 16.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 75 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 23 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-4811WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 24 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-4812WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 24 30 36 42 48 54 60 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) 100 16.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 75 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 25 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-4812WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 26 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-4813WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 24 30 36 42 48 54 60 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) 100 16.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 75 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 27 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-4813WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 28 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-4815WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 24 30 36 42 48 54 60 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) 100 16.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 75 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 29 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-4815WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 30 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-4816WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 24 30 36 42 48 54 60 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) 100 16.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 75 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 31 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25℃.The figures are identical for TEP 200-4816WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 32 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25℃.The figures are identical for TEP 200-4818WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 24 30 36 42 48 54 60 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) 100 16.5 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 75 Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 33 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-4818WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 34 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-7210WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) 100 43 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 35 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-7210WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 36 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-7211WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) 100 43 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 37 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-7211WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 38 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-7212WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) 100 43 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 39 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-7212WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 40 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-7213WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) 100 43 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 41 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-7213WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 42 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-7215WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) 100 43 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 43 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-7215WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 44 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-7216WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) 100 43 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 45 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-7216WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 46 of 71 Application Note TEP 200WIR Series Characteristic Curves EFFICIENCY(%) 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) All test conditions are at 25C.The figures are identical for TEP 200-7218WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) 100 43 80 40 20 0 -40 100 100 OUTPUT POWER(%) 120 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 120 Derating Output Current Versus Ambient Temperature with 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 -20 Derating Output Current versus Ambient Temperature with Airflow , Vin = Vin(nom) 120 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load OUTPUT POWER(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 47 of 71 Application Note TEP 200WIR Series Characteristic Curves All test conditions are at 25C.The figures are identical for TEP 200-7218WIR (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load , Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 48 of 71 Application Note TEP 200WIR Series Testing Configurations Input reflected-ripple current measurement test up TEP 200-24xxWIR Component Value Voltage Reference L1 12μH ---- C1, C2 330μF 50V NIPPON CHEMI-CON : KY series Component Value Voltage Reference L1 12μH ---- C1, C2 220μF 100V NIPPON CHEMI-CON : KY series Component Value Voltage Reference L1 12μH ---- C1, C2 68μF 200V TEP 200-48xxWIR TEP 200-72xxWIR Ruby-con : BXF series Peak to peak output ripple & noise measurement test up TEP 20-xx10WIR, TEP 200-xx11WIR, TEP 200-xx12WIR, TEP 200-xx13WIR Component Value Voltage C1 1μF 25V SANYO:25TQC22MV C2 22µF 25V TDK : C3216X7R1E105 http://www.tracopower.com Reference Page 49 of 71 Application Note TEP 200WIR Series Testing Configurations Peak to peak output ripple & noise measurement test up TEP 200-xx15WIR, TEP 200-xx16WIR Component Value Voltage Reference C2 4.7μF 50V TDK : C4532X7R1H475M Component Value Voltage Reference C2 2.2μF 100V TDK : C4532X7R2A225M TEP 200-xx18WIR Output voltage and efficiency measurement test up Note: All measurements are taken at the module terminals. V ×I Efficiency = OUT OUT V × I IN I N http://www.tracopower.com × 100% Page 50 of 71 Application Note TEP 200WIR Series Testing Configurations Output voltage and efficiency measurement test up http://www.tracopower.com Page 51 of 71 Application Note TEP 200WIR Series EMI considerations Suggested schematic for EN55011,EN55022 conducted emission Class A limits Recommended Layout with Input Filter http://www.tracopower.com Page 52 of 71 Application Note TEP 200WIR Series EMI considerations To meet conducted emissions EN55011,EN55022 CLASS A needed the following components: TEP 200-24xxWIR Component Value Voltage Reference C1,C2,C4 330 μF 50 V Nippon chemicon KY series C3,C6,C7 4.7 μF 50 V 1812 MLCC C8,C9,C10, C11,C13 1000 pF 3 KV 1808 MLCC C12 3300 pF 3 KV 1808 MLCC L1 45μH±35% --- Common Choke,P/ N,TCK-092 Component Value Voltage Reference TEP 200-48xxWIR C1,C2,C4 100 μF 100 V Nippon chemicon KY series C3,C6,C7 2.2 μF 100 V 1812 MLCC C8,C9,C10, C11,C13,C12 1000 pF 3 KV 1808 MLCC L1 224μH±35% --- Common Choke,P/ N,TCK-087 Component Value Voltage TEP 200-72xxWIR Note C1,C2,C4 100uF 250V Reference Rubycon BXF series C3,C6,C7 1 μF 250 V 1812 MLCC C8,C9,C10, C11,C13 1000 pF 3 KV 1808 MLCC L1 521μH±35% ---- Common Choke,P/ N,TCK-088 2. 2. While testing, connect four screw bolts to shield plane, the EMI could be reduced. http://www.tracopower.com Page 53 of 71 Application Note TEP 200WIR Series EMI considerations Suggested schematic for EN55011,EN55022 conducted emission Class B limits Recommended Layout with Input Filter http://www.tracopower.com Page 54 of 71 Application Note TEP 200WIR Series EMI considerations To meet conducted emissions EN55011,EN55022 CLASS B needed the following components: TEP 200-24xxWIR Component Value Voltage Reference C1,C3,C6 330 μF 50 V Nippon chemicon KY series C2,C4,C5,C7,C8 4.7 μF 50 V 1812 MLCC C9,C10,C13,C14 10 nF 2 KV 1812 MLCC C11 1000 pF 3 KV 1808 MLCC C12 4700 pF 3 KV 1812 MLCC L1,L2 45μH±35% ---- Common Choke,P/ N,TCK-092 Component Value Voltage Reference C1,C3,C6 100 μF 100 V Nippon chemicon KY series C2,C4,C5,C7,C8 2.2 μF 100 V 1812 MLCC C9,C10,C13,C14 10 nF 2 KV 1812 MLCC C11 2200 pF 3 KV 1808 MLCC C12 4700 pF 3 KV 1812 MLCC C15 1000pF 2 KV 1808 MLCC L1,L2 224μH±35% ---- Common Choke,P/ N,TCK-087 Component Value Voltage Reference C1,C3,C6 100 μF 250 V Rubycon BXF series C2,C4,C5,C7,C8 1 μF 250 V 1812 MLCC TEP 200-48xxWIR TEP 200-72WIR Note C9,C10 2200pF 2 KV 1808 MLCC C13,C14,C15 1000pF 2 KV 1808 MLCC C11,C12 2200pF 3 KV 1808 MLCC L1,L2 521μH±35% ---- Common Choke,P/ N,TCK-088 2. 2. While testing, connect four screw bolts to shield plane, the EMI could be reduced. http://www.tracopower.com Page 55 of 71 Application Note TEP 200WIR Series EMI considerations These common mode choke have been define as follow: ■TCK-092 Inductance:45μH±35% Impedance:1.4mΩ, max Rated current:31.4A, max. Recommended through hole:ψ2.4 mm ■TCK-087 Inductance:224μH±35% Impedance:4.16mΩ, max Rated current:15.4A, max. Recommended through hole:ψ1.8 mm ■TCK-088 Inductance:521μH±35% Impedance:14.25mΩ, max. Rated current:7.7A, max. Recommended through hole:ψ1.0 mm Measurement Instrument (Test condition): ■ L: HP 4263B LCR Meter (100KHz / 100mV) ■ DCR: HIOKI 3540 mΩ HITESTER ■ IDC: Agilent 34401A Meter All dimensions in millimeters Output Voltage Adjustment Output voltage is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external resistor between the TRIM pin and either the +SENSE or -SENSE pins. With an external resistor between the TRIM and -SENSE pin, the output voltage set point decreases. With an external resistor between the TRIM and +SENSE pin, the output voltage set point increases. Maximum output deviation is +10% inclusive of remote sense. (Please refer to page 2, remote sense) The value of external resistor can be obtained by equation or trim table shown in next page. The external TRIM resistor needs to be at least 1/8W resistors. TRIM UP http://www.tracopower.com TRIM DOWN Page 56 of 71 Application Note TEP 200WIR Series Output Voltage Adjustment (continued) TRIM EQUATION (100 + ∆% ) 100 + 2∆% V RU = OUT − KΩ ∆% ∆ 1 . 225 % 100 RD = − 2 KΩ ∆% TRIM TABLE Trim up (%) VOUT (Volts)= RU (K Ohms)= TEP 200-xx10WIR 1 2 3 4 5 6 7 8 9 10 3.333 3.366 3.399 3.432 3.465 3.498 3.531 3.564 3.597 3.630 170.082 85.388 57.156 43.041 34.571 28.925 24.892 21.867 19.515 17.633 TEP 200-xx11WIR Trim up (%) VOUT (Volts)= RU (K Ohms)= 1 2 3 4 5 6 7 8 9 10 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 310.245 156.163 104.803 79.122 63.714 53.442 46.105 40.602 36.322 32.898 TEP 200-xx12WIR Trim up (%) VOUT (Volts)= RU (K Ohms)= 1 2 3 4 5 6 7 8 9 10 12.12 12.24 12.36 12.48 12.60 12.72 12.84 12.96 13.08 13.20 887.388 447.592 300.993 227.694 183.714 154.395 133.452 117.745 105.528 95.755 TEP 200-xx13WIR Trim up (%) VOUT (Volts)= RU (K Ohms)= 1 2 3 4 5 6 7 8 9 10 15.15 15.30 15.45 15.60 15.75 15.90 16.05 16.20 16.35 16.50 1134.735 572.490 385.075 291.367 235.143 197.660 170.886 150.806 135.188 122.694 TEP 200-xx15WIR Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts)= 24.24 24.48 24.72 24.96 25.20 25.44 25.68 25.92 26.16 26.40 RU (K Ohms)= 1876.776 947.184 637.320 482.388 389.429 327.456 283.190 249.990 224.168 203.510 TEP 200-xx16WIR Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts)= 28.28 28.56 28.84 29.12 29.40 29.68 29.96 30.24 30.52 30.80 RU (K Ohms)= 2206.571 1113.714 749.429 567.286 458.000 385.143 333.102 294.071 263.714 239.429 TEP 200-xx18WIR Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts)= 48.48 48.96 49.44 49.92 50.40 50.88 51.36 51.84 52.32 52.80 RU (K Ohms)= 3855.551 1946.367 1309.973 991.776 800.857 673.578 582.665 514.480 461.447 419.020 All Trim down (%) 1 2 3 4 5 6 7 8 9 10 RD (K Ohms)= 98.000 48.000 31.333 23.000 18.000 14.667 12.286 10.500 9.111 8.000 Trim down (%) 11 12 13 14 15 16 17 18 19 20 RD (K Ohms)= 7.091 6.333 5.692 5.143 4.667 4.250 3.882 3.556 3.263 3.000 http://www.tracopower.com Page 57 of 71 Application Note TEP 200WIR Series Remote Sense To minimum the effects of distribution losses by regulating the voltage at the Remote Sense pin. The voltage between the SENSE pin and OUTPUT pin must not exceed 10% of Vout, i.e. [ +OUTPUT to –OUTPUT ] – [ +SENSE to –SENSE ] ≦ 10% Vout The voltage between +OUTPUT and –OUTPUT terminals must not exceed the minimum output overvoltage protection threshold. This limit includes any increase in voltage due to remote sense compensation and trim function. If not using the remote sense feature to regulate the output at the point of load, then connect +SENSE to +OUTPUT and –SENSE to –OUTPUT. Remote Sense circuit configuration Input Source Impedance The power modules will operate as specifications without external components, assuming that the source voltage has a very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor The TEP 200-24xxWIR and TEP 200-48xxWIR recommended Nippon Chemi-con KY series, 100μF/100V, ESR 110mΩ. The TEP 200-72xxWIR recommended Ruby-con BXF series, 68μF/200V. http://www.tracopower.com Page 58 of 71 Application Note TEP 200WIR Series Output Over Current Protection When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 120~150 percent of rated current for TEP 200 series. Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods. One of the problems resulting from over current is that excessive heat may be generated in power devices, especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged. The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power supply will start up and operate normally, otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower. The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected, or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an overcurrent event is detected, or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices. Short Circuitry Protection Continuous, hiccup and auto-recovery mode. During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety in this condition. Output Over Voltage Protection The output over-voltage protection consists of circuitry that monitors the voltage on the output terminals. If the voltage on the output terminals exceeds the over-voltage protection threshold, then the module enter the non-latch hiccup mode. Over Temperature Protection Sufficient cooling is needed for the power module and provides more reliable operation of the unit. If a fault condition occurs, the temperature of the unit will be higher. And will damage the unit. For protecting the power module, the unit includes over-temperature protection circuit. When the temperature of the case is to the protection threshold, the unit enters “Hiccup” mode. And it will auto restart when the temperature is down. http://www.tracopower.com Page 59 of 71 Application Note TEP 200WIR Series Thermal Consideration TEP 200WIR is a high power density product, it operates in a variety of thermal environments. However, sufficient cooling should be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling can be verified by measuring the point as the figure below. The case temperature at this location is -40 ~115C. When operating, although the maximum point temperature of the power modules is 115C, we suggest to keep the test point temperature at or below 80C for extremely high reliability, so the module can be in stable operation and get better lifecycle. TOP VIEW Measurement shown in inches (mm) The suggested heat dissipation modes as below: 1. Add the heat-sink The main function of heat-sink is to add the touch surface of heat source for air. Under the suitable air convection condition (including natural convection), that can reduce the heat resistance θca apparently. After combination of the heat resistance θca, it’s the sub-total of θcp, θph and θha. Because the air gets big heat resistance under no air convection, the θha which touch the air is the main heat resistance. Suggestions as below: (1) θca=θcp+θph+θha. In order to let the heat-sink reducing the θha in big range, we suggest to use the thermal pad with good heat conduction and flushing performance. (2) The best layout for heat sink is to put the fin of the heat-sink vertical to the air, and this will cause a good “stack effect”. So, we can have the best natural air convection condition. When there’s no force air to help the heat dissipation, this point is critical. http://www.tracopower.com Page 60 of 71 Application Note TEP 200WIR Series Heat Sink Heat-sink for lower temperature and higher reliability of the module. Order Code: TEP-HS1 Order code: TEP-HS1 Includes heatsink with thermal pad and mounting screws. To order modules with mounted heatsink, please ask factory. http://www.tracopower.com Page 61 of 71 Application Note TEP 200WIR Series Remote ON/OFF Control The CTRL Pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high or low level of the pin referenced to -INPUT. The switch can be open collector transistor, FET and Photo-Couple. The switch must be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the CTRL pin signal maximum voltage is allowable leakage current of the switch at 12V is 0.5 mA. Remote ON/OFF Implementation Circuits Isolated-Closure Remote ON/OFF Level Control Using TTL Output Level Control Using Line Voltage There are two remote control options available, positive logic and negative logic. a. The Positive logic structure turned on of the DC/DC module when the CTRL pin is at high-level logic and low-level logic is turned off it. When TEP 200WIR module is turned off at Low-level logic When TEP 200WIR module is turned on at High-level logic b. The Negative logic structure turned on of the DC/DC module when the CTRL pin is at low-level logic and turned off when at highlevel logic. When TEP 200WIR module is turned on at Low-level logic When TEP 200WIR module is turned off at High-level logic http://www.tracopower.com Page 62 of 71 Application Note TEP 200WIR Series Synchronous Pin 1. Multiple TEP 200WIR series module can be synchronized together simply by connecting the module SYNC pins together. Synchronous Circuits Recommended Layout NOTE: (1) Care should be taken to ensure the ground potential differences between modules are minimized. (2) In this configuration all of the modules will be synchronized to the highest frequency module. (3) Up to three modules can be synchronized using this technique. http://www.tracopower.com Page 63 of 71 Application Note TEP 200WIR Series Mechanical Data Of The Standard Product Metal Case Mechanical Drawing Plastic Case Mechanical Drawing 1. All dimensions in inch (mm) 2. Tolerance :x.xx±0.02 (x.x±0.5) x.xxx±0.01 (x.xx±0.25) 3. Pin pitch tolerance ±0.01 (0.25) 4. Pin dimension tolerance ±0.004(0.1) PIN CONNECTION PIN 1 2 3 4 5 6 7 8 9 10 Define -INPUT CASE(Option) CTRL +INPUT -OUTPUT -SENSE TRIM +SENSE +OUTPUT SYNC(option) Diameter 0.04 inch 0.04 inch 0.04 inch 0.04 inch 0.08 inch 0.04 inch 0.04 inch 0.04 inch 0.08 inch 0.04 inch EXTERNAL OUTPUT TRIMMING Output can be externally trimmed by using the method shown below. 7 6 RU 8 1 TRIM DOWN TRIM UP PIN 2 RD 7 3 4 5 http://www.tracopower.com CA Page 64 of 71 - Application Note TEP 200WIR Series Mechanical Data Of The Terminal Block Type 1. Terminal Block without EMC Filter, Suffix: -CM Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be screwed into 2.8mm maximum. Customer shall take care as select the screw to avoid damaging the converter. TRMINAL CONNECTION PIN 1 2 3 4 5 6 7 8 9 http://www.tracopower.com Define -INPUT NC CTRL +INPUT -OUTPUT -SENSE TRIM +SENSE +OUTPUT Wire range 8AWG to 9AWG NA 14AWG to 18AWG 8AWG to 9AWG 4AWG to 5AWG 14AWG to 18AWG 14AWG to 18AWG 14AWG to 18AWG 4AWG to 5AWG EXTERNAL OUTPUT TRIMMING Output can be externally trimmed by using the method shown below. TRIM DOWN TRIM UP 7 6 RU 8 RD 7 PIN CONNECTION PIN Define Diamet 1 -INPUT 0.04 inc 2 CASE(Option) 0.04 inc 3 CTRL 0.04 inc 4 +INPUT 0.04 inc 5 -OUTPUT 0.08 inc Page 65 of 71 Application Note TEP 200WIR Series Mechanical Data Of The Terminal Block Type 2. Terminal Block with EMC Filter (EN55011, EN55022 Class A), Suffix: -CMF TRMINAL CONNECTION PIN 1 2 3 4 5 6 7 8 9 Define -INPUT NC CTRL +INPUT -OUTPUT -SENSE TRIM +SENSE +OUTPUT Wire range 8AWG to 9AWG NA 14AWG to 18AWG 8AWG to 9AWG 4AWG to 5AWG 14AWG to 18AWG 14AWG to 18AWG 14AWG to 18AWG 4AWG to 5AWG Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be screwed into 2.8mm maximum. Customer shall take care as select the screw to avoid damaging the converter. 3. Terminal Block with Din Rail Clip (Ordercode: TEP-MK1) http://www.tracopower.com Page 66 of 71 Application Note TEP 200WIR Series Recommended Pad Layout All dimensions in inch (mm) Tolerances : x.xxx ± 0.010 (x.xx ± 0.25 ) PAD SIZE (LEAD FREE RECOMMENDED) +/- OUTPUT : THROUGH HOLE : Ø 2.3mm TOP VIEW PAD : Ø 2.9mm BOTTOM VIEW PAD : Ø 3.6mm OTHERS : THROUGH HOLE : Ø 1.3mm TOP VIEW PAD : Ø 1.9mm BOTTOM VIEW PAD : Ø 2.6mm http://www.tracopower.com Page 67 of 71 Application Note TEP 200WIR Series Soldering Considerations Lead free wave solder profile for TEP 200WIR series Zone Reference Parameter Preheat zone Rise temp. speed : 3C/sec max. Preheat temp. : 100~130C Actual heating Peak temp. : 250~260C Peak time (T1+T2 time) : 4~6 sec Reference Solder : Sn-Ag-Cu , Sn-Cu Hand Welding : Soldering iron : Power 90W Welding Time : 2~4 sec Temp. : 380~400C http://www.tracopower.com Page 68 of 71 Application Note TEP 200WIR Series Packaging Information http://www.tracopower.com Page 69 of 71 Application Note TEP 200WIR Series Part Number Structure TEP 200 7213WIRCMF Max. Output Power 200W Model Number Input Voltage 24: 24V 48: 48V 72: 72V Output Mode 1: Single 2: Dual (±) Output Voltage 0: 3.3V 1: 5V 2: 12V 3: 15V 5: 24V 6: 28V 8: 48V Input Range Output Voltage Output Current Input Current Max. Load No Load(1) Eff (2) (%) TEP 200-2410WIR 9 ~ 36 VDC 3.3VDC 50 A 25mA 87 TEP 200-2411WIR 9 ~ 36 VDC 5VDC 36 A 30mA 90 TEP 200-2412WIR 8.5 ~ 36 VDC 12VDC 15 A 30mA 89 TEP 200-2413WIR 8.5 ~ 36 VDC 15VDC 12 A 30mA 90 TEP 200-2415WIR 8.5 ~ 36 VDC 24VDC 7.5 A 35mA 90 TEP 200-2416WIR 8.5 ~ 36 VDC 28VDC 6.5 A 40mA 90 TEP 200-2418WIR 8.5 ~ 36 VDC 48VDC 3.7 A 45mA 89 TEP 200-4810WIR 16.5 ~ 75 VDC 3.3VDC 50 A 20mA 88 TEP 200-4811WIR 16.5 ~ 75 VDC 5VDC 40 A 20mA 91 TEP 200-4812WIR 16.5 ~ 75 VDC 12VDC 18 A 20mA 90 TEP 200-4813WIR 16.5 ~ 75 VDC 15VDC 14 A 20mA 91 TEP 200-4815WIR 16.5 ~ 75 VDC 24VDC 9A 20mA 90 TEP 200-4816WIR 16.5 ~ 75 VDC 28VDC 7.5 A 25mA 91 TEP 200-4818WIR 16.5 ~ 75 VDC 48VDC 4.5 A 25mA 90 TEP 200-7210WIR 43 ~ 160 VDC 3.3VDC 57 A 10mA 87 TEP 200-7211WIR 43 ~ 160 VDC 5VDC 44 A 10mA 89 TEP 200-7212WIR 43 ~ 160 VDC 12VDC 20 A 10mA 89 TEP 200-7213WIR 43 ~ 160 VDC 15VDC 16 A 10mA 90 TEP 200-7215WIR 43 ~ 160 VDC 24VDC 10 A 10mA 89 TEP 200-7216WIR 43 ~ 160 VDC 28VDC 8.5 A 15mA 90 TEP 200-7218WIR 43 ~ 160 VDC 48VDC 5A 15mA 89 Note 1. Typical value at nominal input and no load. Note 2. Typical value at nominal input and full load. http://www.tracopower.com Page 70 of 71 Application Note TEP 200WIR Series Safety and Installation Instruction Fusing Consideration Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast blow fuse with maximum rating of 32A for TEP 200-24xxWIR, 20A for TEP 200-48xxWIR and 10A for TEP 200-72xxWIR. Based on the information provided in this data sheet on Inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the fuse manufacturer’s data for further information. MTBF and Reliability The MTBF of TEP 200WIR series DC/DC converters has been calculated using Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40C (Ground fixed and controlled environment ). The resulting figure for MTBF is 1.010×106 hours. MIL-HDBK 217F NOTICE2 FULL LOAD, Operating Temperature at 25C. The resulting figure for MTBF is 7.416×104 hours. Rev. 06/14 Sihlbruggstrasse 111 · CH-6340 Baar · Switzerland Phone +41 43 311 45 11 · Fax +41 43 311 45 45 · [email protected] · www.tracopower.com Page 71 of 71