Application Note

Application Note
TEP 200WIR Series
TEP 200WIR
8.5 to 36Vdc, 9 to 36 Vdc, 16.5 to 75 Vdc and 43 to 160Vdc input, 3.3 to 48 Vdc Single Output, 240W
Features
► Industry standard half-brick footprint
2.40 x 2.28 x 0.50 inch ( 61.0 x 57.9 x 12.7 mm )
► RoHS directive compliant
► Six-sided continuous shield for 24VIN and 48 VIN module
► Soft-start
► High power density of 87.7W / inch3
► 4:1 ultra wide input voltage range
► High efficiency up to 91%
► Input to output basic Insulation: 2250 VDC
► Output current up to 50A
► Adjustable output voltage
► No minimum load required
► Railway application
Applications
Options
► Wireless Network
► Heat-sink available for extended operation
► Telecom/ Datacom
► Positive logic remote ON/OFF
► Industry Control System
► Case pin
► Distributed Power Architectures
► Synchronous
► Semiconductor Equipment
► Terminal block
► Railway System
General Description
The TEP 200WIR series DC/DC converters provide up to 240 watts of output power in an industry standard halfbrick package and footprint. All models feature a wide input range, adjustable output voltage.
Table of contents
Output Specification
Input Specification
General Specification
Environmental Specification
EMC characteristic
Characteristic Curves
Testing Configurations
EMI Considerations
Output Voltage Adjustment
Remote Sense
Input Source Impedance
Output Over Current Protection
Short Circuitry Protection
http://www.tracopower.com
P2
P4
P5
P6
P6
P7
P49
P52
P56
P58
P58
P59
P59
Output Over Voltage Protection
Over Temperature Protection
Thermal Considerations
Heat-Sink Considerations
Remote ON/OFF Control
Synchronous Pin
Mechanical Data
Recommended Pad Layout
Soldering Considerations
Packaging Information
Part Number Structure
Safety and Installation Instruction
MTBF and Reliability
P59
P59
P60
P61
P62
P63
P64
P67
P68
P69
P70
P71
P71
Page 1 of 71
Application Note
TEP 200WIR Series
Output Specification
Parameter
Device
Min
Typ
Max
Unit
TEP 200-xx10WIR
TEP 200-xx11WIR
TEP 200-xx12WIR
TEP 200-xx13WIR
TEP 200-xx15WIR
TEP 200-xx16WIR
TEP 200-xx18WIR
3.267
4.95
11.88
14.85
23.76
27.72
47.52
3.3
5
12
15
24
28
48
3.333
5.05
12.12
15.15
24.24
28.28
48.48
VDC
VDC
VDC
VDC
VDC
VDC
VDC
Voltage Adjustability (see page 2)
All
-20
+10
%
Output Regulation
Line (Vin(min) to Vin(max) at Full Load)
Load (0% to 100% of Full Load)
All
All
±0.1
±0.1
±0.2
±0.2
%
%
TEP 200-xx10WIR
TEP 200-xx11WIR
TEP 200-xx12WIR
TEP 200-xx13WIR
TEP 200-xx15WIR
TEP 200-xx16WIR
TEP 200-xx18WIR
75
75
100
100
200
200
300
100
100
125
125
250
250
350
mVp-p
mVp-p
mVp-p
mVp-p
mVp-p
mVp-p
mVp-p
+0.02
%/C
5
% Vout
Output Voltage
(Vin = Vin(nom) , Full Load , TA = 25C)
Output Ripple & Noise
(Vin = Vin(nom) , Full Load , TA = 25C).
Peak to Peak (5Hz to 20MHz bandwidth)
Measured with a ripple &noise test board:
COUT, ext. = 1μF 25V 1206 X7R MLCC and
22μF 25V D-type POS-CAP
COUT, ext. = 4.7μF 50V 1812 X7R MLCC
COUT, ext. = 2.2μF 100V 1812 X7R MLCC
Temperature Coefficient
All
Output Voltage Overshoot
(Vin = Vin(min) to Vin(max) , Full Load , TA=25C).
All
0
TEP 200-xx10WIR
TEP 200-xx11WIR
TEP 200-xx12WIR
TEP 200-xx13WIR
TEP 200-xx15WIR
TEP 200-xx16WIR
TEP 200-xx18WIR
300
600
900
900
900
1100
1200
mV
mV
mV
mV
mV
mV
mV
All
250
μS
Dynamic Load Response
(Vin = Vin(nom) , TA=25C)
Load step change between 75% to 100% of Full Load
Peak Deviation
Setting Time (Vout < 10% peak deviation)
http://www.tracopower.com
-0.02
Page 2 of 71
Application Note
TEP 200WIR Series
Parameter
Output Current
Output Capacitor Load
Device
Min
TEP 200-2410WIR
TEP 200-2411WIR
TEP 200-2412WIR
TEP 200-2413WIR
TEP 200-2415WIR
TEP 200-2416WIR
TEP 200-2418WIR
TEP 200-4810WIR
TEP 200-4811WIR
TEP 200-4812WIR
TEP 200-4813WIR
TEP 200-4815WIR
TEP 200-4816WIR
TEP 200-4818WIR
TEP 200-7210WIR
TEP 200-7211WIR
TEP 200-7212WIR
TEP 200-7213WIR
TEP 200-7215WIR
TEP 200-7216WIR
TEP 200-7218WIR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Typ
TEP 200-2410WIR
TEP 200-2411WIR
TEP 200-2412WIR
TEP 200-2413WIR
TEP 200-2415WIR
TEP 200-2416WIR
TEP 200-2418WIR
TEP 200-4810WIR
TEP 200-4811WIR
TEP 200-4812WIR
TEP 200-4813WIR
TEP 200-4815WIR
TEP 200-4816WIR
TEP 200-4818WIR
TEP 200-7210WIR
TEP 200-7211WIR
TEP 200-7212WIR
TEP 200-7213WIR
TEP 200-7215WIR
TEP 200-7216WIR
TEP 200-7218WIR
Max
Unit
50.0
36.0
15.0
12.0
7.5
6.5
3.7
50.0
40.0
18.0
14.0
9.0
7.5
4.5
57.0
44.0
20.0
16.0
10.0
8.5
5.0
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
151000
72000
12500
8000
3100
2300
770
151000
80000
15000
9300
3700
2600
930
172000
88000
16600
10600
4100
3000
1000
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
TEP 200-xx10WIR
TEP 200-xx11WIR
TEP 200-xx12WIR
TEP 200-xx13WIR
TEP 200-xx15WIR
TEP 200-xx16WIR
TEP 200-xx18WIR
3.795
5.75
13.80
17.25
27.60
32.20
55.20
4.29
6.50
15.60
19.50
31.20
36.40
62.40
VDC
VDC
VDC
VDC
VDC
VDC
VDC
Output Over Current Protection (Hiccup Mode)
All
120
150
% FL
Output Short Circuit Protection (Hiccup Mode)
All
Output Over Voltage Protection (Hiccup Mode)
http://www.tracopower.com
Automatics recovery
Page 3 of 71
Application Note
TEP 200WIR Series
Input Specification
Parameter
Operating Input Voltage
Input Voltage
Continuous
Transient (1sec maximum)
Device
Min
Typ
Max
Unit
TEP 200-2410WIR
TEP 200-2411WIR
TEP 200-24xxWIR
TEP 200-48xxWIR
TEP 200-72xxWIR
9
9
8.5
16.5
43
24
24
24
48
110
36
36
36
75
160
VDC
VDC
VDC
VDC
VDC
40
80
165
50
100
185
VDC
VDC
VDC
VDC
VDC
VDC
TEP 200-24xxWIR
TEP 200-48xxWIR
TEP 200-72xxWIR
TEP 200-24xxWIR
TEP 200-48xxWIR
TEP 200-72xxWIR
TEP 200-2410WIR
TEP 200-2411WIR
TEP 200-2412WIR
TEP 200-2413WIR
TEP 200-2415WIR
TEP 200-2416WIR
TEP 200-2418WIR
TEP 200-4810WIR
TEP 200-4811WIR
TEP 200-4812WIR
TEP 200-4813WIR
TEP 200-4815WIR
TEP 200-4816WIR
TEP 200-4818WIR
TEP 200-7210WIR
TEP 200-7211WIR
TEP 200-7212WIR
TEP 200-7213WIR
TEP 200-7215WIR
TEP 200-7216WIR
TEP 200-7218WIR
25
30
30
30
35
40
45
20
20
20
20
20
25
25
10
10
10
10
10
15
15
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
Input reflected ripple current (see page 2)
(5 to 20MHz, 12μH source impedance)
All
50
mAp-p
Start Up Time
(Vin = Vin(nom) and constant resistive load)
Power up
Remote ON/OFF
All
Input Standby Current
(Vin = Vin(nom) , No Load , TA=25C)
Remote ON/OFF (see page 2)
(The CTRL pin voltage is referenced to -INPUT)
Negative logic (Standard) : Device code without Suffix
DC-DC ON
(Short)
DC-DC OFF (Open)
Positive logic (Option) : Device code with Suffix “-P”
DC-DC ON
(Open)
DC-DC OFF (Short)
Remote Off state Input Current
Input Current of Remote Control Pin
All
SYNC pin output signal (see page 2)
All
http://www.tracopower.com
75
75
100
100
mS
mS
0
3
1.2
12
VDC
VDC
3
0
12
1.2
1
VDC
VDC
mA
mA
6
V
-0.5
-0.3
3
Page 4 of 71
Application Note
TEP 200WIR Series
Parameter
Device
Under Voltage Lockout Turn-on Threshold
TEP 200-24xxWIR
TEP 200-48xxWIR
TEP 200-72xxWIR
Under Voltage Lockout Turn-off Threshold
TEP 200-24xxWIR
TEP 200-48xxWIR
TEP 200-72xxWIR
Min
Typ
7.3
15.5
33.0
Max
Unit
9
18
43
VDC
VDC
VDC
8.1
16.3
36.0
VDC
VDC
VDC
Max
Unit
General Specification
Parameter
Efficiency
(Vin = Vin(nom) , Full Load , TA = 25C)
Device
Min
Typ
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
87
90
89
90
90
90
89
88
91
90
91
90
91
90
87
89
89
90
89
90
89
TEP 200-2410WIR
TEP 200-2411WIR
TEP 200-2412WIR
TEP 200-2413WIR
TEP 200-2415WIR
TEP 200-2416WIR
TEP 200-2418WIR
TEP 200-4810WIR
TEP 200-4811WIR
TEP 200-4812WIR
TEP 200-4813WIR
TEP 200-4815WIR
TEP 200-4816WIR
TEP 200-4818WIR
TEP 200-7210WIR
TEP 200-7211WIR
TEP 200-7212WIR
TEP 200-7213WIR
TEP 200-7215WIR
TEP 200-7216WIR
TEP 200-7218WIR
Isolation voltage (Basic Insulation) (1 minute)
Input to Output
Input (Output) to Case
All
2250
1600
VDC
VDC
Isolation resistance
All
1
GΩ
Isolation capacitance
All
Switching Frequency
All
Weight
All
105
g
MTBF
Bellcore TR-NWT-000332, TC = 40,
MIL-HDBK-217F
All
1.010×106
7.416×104
hours
hours
Over Temperature Protection (see page 2)
All
120
C
225
250
2500
pF
275
KHz
Case material
TEP 200-24xxWIR
TEP 200-48xxWIR
TEP 200-72xxWIR
Metal
Metal
Aluminum base-plate with plastic
case
Base material
TEP 200-24xxWIR
TEP 200-48xxWIR
FR4 PCB
FR4 PCB
Potting material
All
Silicon (UL94-V0)
Dimensions
All
2.40 X 2.28 X 0.50
(61.0×57.9×12.7)
http://www.tracopower.com
Inch
(mm)
Page 5 of 71
Application Note
TEP 200WIR Series
Environmental Specification
Model
Min
Max
Unit
Operating case temperature
Parameter
All
-40
Typ
115
C
Storage temperature
All
-55
125
C
Over temperature protection (see page 2)
All
120
C
Thermal impedance* without Heat-sink
With 0.24” Height Heat-sink
With 0.45” Height Heat-sink
Terminal block
Only mount on the iron base-plate
All
6.1
5.1
4.6
4.4
2.8
K / Watt
K / Watt
K / Watt
K / Watt
K / Watt
Relative humidity
All
5
95
Thermal shock
EN61373,MIL-STD-810F
Vibration
EN61373,MIL-STD-810F
% RH
* Test condition with vertical direction by natural convection 20FLM
EMC characteristic**
EMI (see page 2)
EN55011,EN55022
Class A
±8KV
±6KV
Perf. Criteria A
EN61000-4-3
20V/m
Perf. Criteria A
EN61000-4-4
±2KV
Perf. Criteria A
Surge
EN61000-4-5
±2KV
Perf. Criteria A
Conducted immunity
EN61000-4-6
10Vr.m.s
Perf. Criteria A
ESD
EN61000-4-2
Radiated immunity
Fast transient
Air
Contact
** The TEP 200WIR series meets EMC characteristics only with external components connected before the input pin to the converter.
If customer only need to meet EN61000-4-4, EN61000-4-5, an external input filter capacitor is required. The TEP 200-24xxWIRCMF and TEP
200-48xxWIRCMF recommended 2 pcs of aluminum electrolytic capacitor (Nippon chemi-con KY series, 220μF/100V, ESR 48mΩ) to connect in
parallel. The TEP 200-72xxWIRCMF recommended 3 pcs of aluminum electrolytic capacitor (Ruby-con BXF series, 100μF/250V) to connect in
parallel.
The TEP 200WIR-CMF meets EMC characteristic: Surge meet EN55024 ±1KV and EN50155 ±2KV Perf. Criteria A
http://www.tracopower.com
Page 6 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-2410WIR
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
10
100
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
100
9
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
36
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 7 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-2410WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 8 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-2411WIR
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
10
100
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
100
9
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
36
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 9 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-2411WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 10 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25c.The figures are identical for TEP 200-2412WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
100
8.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
36
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 11 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-2412WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 12 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-2413WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
100
8.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
36
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 13 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-2413WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 14 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-2415WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
100
8.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
36
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 15 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-2415WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 16 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-2416WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
100
8.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
36
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 17 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-2416WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 18 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-2418WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
100
8.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
36
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 19 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-2418WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 20 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-4810WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
24
30
36
42
48
54
60
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
100
16.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
75
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 21 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-4810WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 22 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-4811WIR
100
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
24
30
36
42
48
54
60
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
100
16.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
75
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 23 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-4811WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 24 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-4812WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
24
30
36
42
48
54
60
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
100
16.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
75
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 25 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-4812WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 26 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-4813WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
24
30
36
42
48
54
60
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
100
16.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
75
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 27 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-4813WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 28 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-4815WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
24
30
36
42
48
54
60
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
100
16.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
75
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 29 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-4815WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 30 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-4816WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
24
30
36
42
48
54
60
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
100
16.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
75
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 31 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25℃.The figures are identical for TEP 200-4816WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 32 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25℃.The figures are identical for TEP 200-4818WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
24
30
36
42
48
54
60
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
100
16.5
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
75
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 33 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-4818WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 34 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-7210WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
100
43
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 35 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-7210WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 36 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-7211WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
100
43
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 37 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-7211WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 38 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-7212WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
100
43
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 39 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-7212WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 40 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-7213WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
100
43
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 41 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-7213WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 42 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-7215WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
100
43
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 43 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-7215WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 44 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-7216WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
100
43
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 45 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-7216WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 46 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
EFFICIENCY(%)
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
All test conditions are at 25C.The figures are identical for TEP 200-7218WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
100
43
80
40
20
0
-40
100
100
OUTPUT POWER(%)
120
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
120
Derating Output Current Versus Ambient Temperature with
0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
-20
Derating Output Current versus Ambient Temperature with
Airflow , Vin = Vin(nom)
120
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
OUTPUT POWER(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 47 of 71
Application Note
TEP 200WIR Series
Characteristic Curves
All test conditions are at 25C.The figures are identical for TEP 200-7218WIR (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load , Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 48 of 71
Application Note
TEP 200WIR Series
Testing Configurations
Input reflected-ripple current measurement test up
TEP 200-24xxWIR
Component
Value
Voltage
Reference
L1
12μH
----
C1, C2
330μF
50V
NIPPON CHEMI-CON : KY series
Component
Value
Voltage
Reference
L1
12μH
----
C1, C2
220μF
100V
NIPPON CHEMI-CON : KY series
Component
Value
Voltage
Reference
L1
12μH
----
C1, C2
68μF
200V
TEP 200-48xxWIR
TEP 200-72xxWIR
Ruby-con : BXF series
Peak to peak output ripple & noise measurement test up
TEP 20-xx10WIR, TEP 200-xx11WIR, TEP 200-xx12WIR, TEP 200-xx13WIR
Component
Value
Voltage
C1
1μF
25V
SANYO:25TQC22MV
C2
22µF
25V
TDK : C3216X7R1E105
http://www.tracopower.com
Reference
Page 49 of 71
Application Note
TEP 200WIR Series
Testing Configurations
Peak to peak output ripple & noise measurement test up
TEP 200-xx15WIR, TEP 200-xx16WIR
Component
Value
Voltage
Reference
C2
4.7μF
50V
TDK : C4532X7R1H475M
Component
Value
Voltage
Reference
C2
2.2μF
100V
TDK : C4532X7R2A225M
TEP 200-xx18WIR
Output voltage and efficiency measurement test up
Note: All measurements are taken at the module terminals.
V
×I
Efficiency =  OUT OUT
V
× I IN
I
N

http://www.tracopower.com

 × 100%


Page 50 of 71
Application Note
TEP 200WIR Series
Testing Configurations
Output voltage and efficiency measurement test up
http://www.tracopower.com
Page 51 of 71
Application Note
TEP 200WIR Series
EMI considerations
Suggested schematic for EN55011,EN55022 conducted emission Class A limits
Recommended Layout with Input Filter
http://www.tracopower.com
Page 52 of 71
Application Note
TEP 200WIR Series
EMI considerations
To meet conducted emissions EN55011,EN55022 CLASS A needed the following components:
TEP 200-24xxWIR
Component
Value
Voltage
Reference
C1,C2,C4
330 μF
50 V
Nippon chemicon KY series
C3,C6,C7
4.7 μF
50 V
1812 MLCC
C8,C9,C10,
C11,C13
1000 pF
3 KV
1808 MLCC
C12
3300 pF
3 KV
1808 MLCC
L1
45μH±35%
---
Common
Choke,P/
N,TCK-092
Component
Value
Voltage
Reference
TEP 200-48xxWIR
C1,C2,C4
100 μF
100 V
Nippon chemicon KY series
C3,C6,C7
2.2 μF
100 V
1812 MLCC
C8,C9,C10,
C11,C13,C12
1000 pF
3 KV
1808 MLCC
L1
224μH±35%
---
Common
Choke,P/
N,TCK-087
Component
Value
Voltage
TEP 200-72xxWIR
Note
C1,C2,C4
100uF
250V
Reference
Rubycon BXF
series
C3,C6,C7
1 μF
250 V
1812 MLCC
C8,C9,C10,
C11,C13
1000 pF
3 KV
1808 MLCC
L1
521μH±35%
----
Common
Choke,P/
N,TCK-088
2.
2. While testing, connect four screw bolts to shield plane, the EMI could be reduced.
http://www.tracopower.com
Page 53 of 71
Application Note
TEP 200WIR Series
EMI considerations
Suggested schematic for EN55011,EN55022 conducted emission Class B limits
Recommended Layout with Input Filter
http://www.tracopower.com
Page 54 of 71
Application Note
TEP 200WIR Series
EMI considerations
To meet conducted emissions EN55011,EN55022 CLASS B needed the following components:
TEP 200-24xxWIR
Component
Value
Voltage
Reference
C1,C3,C6
330 μF
50 V
Nippon chemicon KY series
C2,C4,C5,C7,C8
4.7 μF
50 V
1812 MLCC
C9,C10,C13,C14
10 nF
2 KV
1812 MLCC
C11
1000 pF
3 KV
1808 MLCC
C12
4700 pF
3 KV
1812 MLCC
L1,L2
45μH±35%
----
Common
Choke,P/
N,TCK-092
Component
Value
Voltage
Reference
C1,C3,C6
100 μF
100 V
Nippon chemicon KY series
C2,C4,C5,C7,C8
2.2 μF
100 V
1812 MLCC
C9,C10,C13,C14
10 nF
2 KV
1812 MLCC
C11
2200 pF
3 KV
1808 MLCC
C12
4700 pF
3 KV
1812 MLCC
C15
1000pF
2 KV
1808 MLCC
L1,L2
224μH±35%
----
Common
Choke,P/
N,TCK-087
Component
Value
Voltage
Reference
C1,C3,C6
100 μF
250 V
Rubycon BXF
series
C2,C4,C5,C7,C8
1 μF
250 V
1812 MLCC
TEP 200-48xxWIR
TEP 200-72WIR
Note
C9,C10
2200pF
2 KV
1808 MLCC
C13,C14,C15
1000pF
2 KV
1808 MLCC
C11,C12
2200pF
3 KV
1808 MLCC
L1,L2
521μH±35%
----
Common
Choke,P/
N,TCK-088
2.
2. While testing, connect four screw bolts to shield plane, the EMI could be reduced.
http://www.tracopower.com
Page 55 of 71
Application Note
TEP 200WIR Series
EMI considerations
These common mode choke have been define as follow:
■TCK-092 Inductance:45μH±35%
Impedance:1.4mΩ, max
Rated current:31.4A, max.
Recommended through hole:ψ2.4 mm
■TCK-087 Inductance:224μH±35%
Impedance:4.16mΩ, max
Rated current:15.4A, max.
Recommended through hole:ψ1.8 mm
■TCK-088 Inductance:521μH±35%
Impedance:14.25mΩ, max.
Rated current:7.7A, max.
Recommended through hole:ψ1.0 mm
Measurement Instrument (Test condition):
■ L: HP 4263B LCR Meter (100KHz / 100mV)
■ DCR: HIOKI 3540 mΩ HITESTER
■ IDC: Agilent 34401A Meter
All dimensions in millimeters
Output Voltage Adjustment
Output voltage is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external
resistor between the TRIM pin and either the +SENSE or -SENSE pins. With an external resistor between the TRIM
and -SENSE pin, the output voltage set point decreases. With an external resistor between the TRIM and +SENSE pin,
the output voltage set point increases. Maximum output deviation is +10% inclusive of remote sense. (Please refer to
page 2, remote sense) The value of external resistor can be obtained by equation or trim table shown in next page. The
external TRIM resistor needs to be at least 1/8W resistors.
TRIM UP
http://www.tracopower.com
TRIM DOWN
Page 56 of 71
Application Note
TEP 200WIR Series
Output Voltage Adjustment (continued)
TRIM EQUATION
(100 + ∆%
)
100 + 2∆% 
V
RU =  OUT
−
 KΩ
∆%
∆
1
.
225
%



 100
RD = 
− 2  KΩ

 ∆%
TRIM TABLE
Trim up (%)
VOUT (Volts)=
RU (K Ohms)=
TEP 200-xx10WIR
1
2
3
4
5
6
7
8
9
10
3.333
3.366
3.399
3.432
3.465
3.498
3.531
3.564
3.597
3.630
170.082
85.388
57.156
43.041
34.571
28.925
24.892
21.867
19.515
17.633
TEP 200-xx11WIR
Trim up (%)
VOUT (Volts)=
RU (K Ohms)=
1
2
3
4
5
6
7
8
9
10
5.05
5.10
5.15
5.20
5.25
5.30
5.35
5.40
5.45
5.50
310.245
156.163
104.803
79.122
63.714
53.442
46.105
40.602
36.322
32.898
TEP 200-xx12WIR
Trim up (%)
VOUT (Volts)=
RU (K Ohms)=
1
2
3
4
5
6
7
8
9
10
12.12
12.24
12.36
12.48
12.60
12.72
12.84
12.96
13.08
13.20
887.388
447.592
300.993
227.694
183.714
154.395
133.452
117.745
105.528
95.755
TEP 200-xx13WIR
Trim up (%)
VOUT (Volts)=
RU (K Ohms)=
1
2
3
4
5
6
7
8
9
10
15.15
15.30
15.45
15.60
15.75
15.90
16.05
16.20
16.35
16.50
1134.735
572.490
385.075
291.367
235.143
197.660
170.886
150.806
135.188
122.694
TEP 200-xx15WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts)=
24.24
24.48
24.72
24.96
25.20
25.44
25.68
25.92
26.16
26.40
RU (K Ohms)=
1876.776
947.184
637.320
482.388
389.429
327.456
283.190
249.990
224.168
203.510
TEP 200-xx16WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts)=
28.28
28.56
28.84
29.12
29.40
29.68
29.96
30.24
30.52
30.80
RU (K Ohms)=
2206.571
1113.714
749.429
567.286
458.000
385.143
333.102
294.071
263.714
239.429
TEP 200-xx18WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts)=
48.48
48.96
49.44
49.92
50.40
50.88
51.36
51.84
52.32
52.80
RU (K Ohms)=
3855.551
1946.367
1309.973
991.776
800.857
673.578
582.665
514.480
461.447
419.020
All
Trim down (%)
1
2
3
4
5
6
7
8
9
10
RD (K Ohms)=
98.000
48.000
31.333
23.000
18.000
14.667
12.286
10.500
9.111
8.000
Trim down (%)
11
12
13
14
15
16
17
18
19
20
RD (K Ohms)=
7.091
6.333
5.692
5.143
4.667
4.250
3.882
3.556
3.263
3.000
http://www.tracopower.com
Page 57 of 71
Application Note
TEP 200WIR Series
Remote Sense
To minimum the effects of distribution losses by regulating the voltage at the Remote Sense pin. The voltage between the SENSE
pin and OUTPUT pin must not exceed 10% of Vout, i.e.
[ +OUTPUT to –OUTPUT ] – [ +SENSE to –SENSE ] ≦ 10% Vout
The voltage between +OUTPUT and –OUTPUT terminals must not exceed the minimum output overvoltage protection threshold.
This limit includes any increase in voltage due to remote sense compensation and trim function.
If not using the remote sense feature to regulate the output at the point of load, then connect +SENSE to +OUTPUT and –SENSE
to –OUTPUT.
Remote Sense circuit configuration
Input Source Impedance
The power modules will operate as specifications without external components, assuming that the source voltage has a very
low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power
module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor
The TEP 200-24xxWIR and TEP 200-48xxWIR recommended Nippon Chemi-con KY series, 100μF/100V, ESR 110mΩ.
The TEP 200-72xxWIR recommended Ruby-con BXF series, 68μF/200V.
http://www.tracopower.com
Page 58 of 71
Application Note
TEP 200WIR Series
Output Over Current Protection
When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current
is maintained at approximately 120~150 percent of rated current for TEP 200 series.
Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged
during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways
of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods.
One of the problems resulting from over current is that excessive heat may be generated in power devices, especially MOSFET
and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be
used to prevent those power devices from being damaged.
The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power
supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power
supply will start up and operate normally, otherwise, the controller will see another over-current event and shut off the power
supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods,
although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short
duration in the hiccup cycle, hence the junction temperature of the power devices is much lower.
The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is
detected, or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an overcurrent event is detected, or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the
latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the
current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If
the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will
give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low
level, so reducing power dissipation and case temperature in the power devices.
Short Circuitry Protection
Continuous, hiccup and auto-recovery mode.
During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety
in this condition.
Output Over Voltage Protection
The output over-voltage protection consists of circuitry that monitors the voltage on the output terminals. If the voltage on the output
terminals exceeds the over-voltage protection threshold, then the module enter the non-latch hiccup mode.
Over Temperature Protection
Sufficient cooling is needed for the power module and provides more reliable operation of the unit. If a fault condition occurs, the
temperature of the unit will be higher. And will damage the unit. For protecting the power module, the unit includes over-temperature
protection circuit. When the temperature of the case is to the protection threshold, the unit enters “Hiccup” mode. And it will auto
restart when the temperature is down.
http://www.tracopower.com
Page 59 of 71
Application Note
TEP 200WIR Series
Thermal Consideration
TEP 200WIR is a high power density product, it operates in a variety of thermal environments. However, sufficient cooling should
be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding
environment.
Proper cooling can be verified by measuring the point as the figure below. The case temperature at this location is -40 ~115C. When
operating, although the maximum point temperature of the power modules is 115C, we suggest to keep the test point temperature at
or below 80C for extremely high reliability, so the module can be in stable operation and get better lifecycle.
TOP VIEW
Measurement shown in inches (mm)
The suggested heat dissipation modes as below:
1. Add the heat-sink
The main function of heat-sink is to add the touch surface of heat source for air. Under the suitable air convection condition
(including natural convection), that can reduce the heat resistance θca apparently.
After combination of the heat resistance θca, it’s the sub-total of θcp, θph and θha. Because the air gets big heat resistance
under no air convection, the θha which touch the air is the main heat resistance.
Suggestions as below:
(1) θca=θcp+θph+θha. In order to let the heat-sink reducing the θha in big range, we suggest to use the thermal pad with good
heat conduction and flushing performance.
(2) The best layout for heat sink is to put the fin of the heat-sink vertical to the air, and this will cause a good “stack effect”. So, we
can have the best natural air convection condition. When there’s no force air to help the heat dissipation, this point is critical.
http://www.tracopower.com
Page 60 of 71
Application Note
TEP 200WIR Series
Heat Sink
Heat-sink for lower temperature and higher reliability of the module. Order Code: TEP-HS1
Order code: TEP-HS1
Includes heatsink with thermal pad and mounting screws.
To order modules with mounted heatsink, please ask
factory.
http://www.tracopower.com
Page 61 of 71
Application Note
TEP 200WIR Series
Remote ON/OFF Control
The CTRL Pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high
or low level of the pin referenced to -INPUT. The switch can be open collector transistor, FET and Photo-Couple. The switch must
be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the CTRL pin signal maximum voltage is allowable
leakage current of the switch at 12V is 0.5 mA.
Remote ON/OFF Implementation Circuits
Isolated-Closure Remote ON/OFF
Level Control Using TTL Output
Level Control Using Line Voltage
There are two remote control options available, positive logic and negative logic.
a. The Positive logic structure turned on of the DC/DC module when the CTRL pin is at high-level logic and low-level logic is turned
off it.
When TEP 200WIR module is turned off
at Low-level logic
When TEP 200WIR module is turned on at High-level logic
b. The Negative logic structure turned on of the DC/DC module when the CTRL pin is at low-level logic and turned off when at highlevel logic.
When TEP 200WIR module is turned on
at Low-level logic
When TEP 200WIR module is turned off at High-level logic
http://www.tracopower.com
Page 62 of 71
Application Note
TEP 200WIR Series
Synchronous Pin
1. Multiple TEP 200WIR series module can be synchronized together simply by connecting the module SYNC pins together.
Synchronous Circuits
Recommended Layout
NOTE:
(1) Care should be taken to ensure the ground potential differences between modules are minimized.
(2) In this configuration all of the modules will be synchronized to the highest frequency module.
(3) Up to three modules can be synchronized using this technique.
http://www.tracopower.com
Page 63 of 71
Application Note
TEP 200WIR Series
Mechanical Data Of The Standard Product
Metal Case Mechanical Drawing
Plastic Case Mechanical Drawing
1. All dimensions in inch (mm)
2. Tolerance :x.xx±0.02 (x.x±0.5)
x.xxx±0.01 (x.xx±0.25)
3. Pin pitch tolerance ±0.01 (0.25)
4. Pin dimension tolerance ±0.004(0.1)
PIN CONNECTION
PIN
1
2
3
4
5
6
7
8
9
10
Define
-INPUT
CASE(Option)
CTRL
+INPUT
-OUTPUT
-SENSE
TRIM
+SENSE
+OUTPUT
SYNC(option)
Diameter
0.04 inch
0.04 inch
0.04 inch
0.04 inch
0.08 inch
0.04 inch
0.04 inch
0.04 inch
0.08 inch
0.04 inch
EXTERNAL OUTPUT TRIMMING
Output can be externally trimmed by
using the method shown below.
7
6
RU
8
1
TRIM DOWN
TRIM UP
PIN
2
RD
7
3
4
5
http://www.tracopower.com
CA
Page 64 of 71
-
Application Note
TEP 200WIR Series
Mechanical Data Of The Terminal Block Type
1. Terminal Block without EMC Filter, Suffix: -CM
Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be screwed
into 2.8mm maximum. Customer shall take care as select the screw to avoid damaging the converter.
TRMINAL CONNECTION
PIN
1
2
3
4
5
6
7
8
9
http://www.tracopower.com
Define
-INPUT
NC
CTRL
+INPUT
-OUTPUT
-SENSE
TRIM
+SENSE
+OUTPUT
Wire range
8AWG to 9AWG
NA
14AWG to 18AWG
8AWG to 9AWG
4AWG to 5AWG
14AWG to 18AWG
14AWG to 18AWG
14AWG to 18AWG
4AWG to 5AWG
EXTERNAL OUTPUT TRIMMING
Output can be externally trimmed by
using the method shown below.
TRIM DOWN
TRIM UP
7
6
RU
8
RD
7
PIN CONNECTION
PIN
Define
Diamet
1
-INPUT
0.04 inc
2
CASE(Option)
0.04 inc
3
CTRL
0.04 inc
4
+INPUT
0.04 inc
5
-OUTPUT
0.08 inc
Page 65 of 71
Application Note
TEP 200WIR Series
Mechanical Data Of The Terminal Block Type
2. Terminal Block with EMC Filter (EN55011, EN55022 Class A), Suffix: -CMF
TRMINAL CONNECTION
PIN
1
2
3
4
5
6
7
8
9
Define
-INPUT
NC
CTRL
+INPUT
-OUTPUT
-SENSE
TRIM
+SENSE
+OUTPUT
Wire range
8AWG to 9AWG
NA
14AWG to 18AWG
8AWG to 9AWG
4AWG to 5AWG
14AWG to 18AWG
14AWG to 18AWG
14AWG to 18AWG
4AWG to 5AWG
Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be screwed
into 2.8mm maximum. Customer shall take care as select the screw to avoid damaging the converter.
3. Terminal Block with Din Rail Clip (Ordercode: TEP-MK1)
http://www.tracopower.com
Page 66 of 71
Application Note
TEP 200WIR Series
Recommended Pad Layout
All dimensions in inch (mm)
Tolerances : x.xxx ± 0.010 (x.xx ± 0.25 )
PAD SIZE (LEAD FREE RECOMMENDED)
+/- OUTPUT :
THROUGH HOLE : Ø 2.3mm
TOP VIEW PAD : Ø 2.9mm
BOTTOM VIEW PAD : Ø 3.6mm
OTHERS :
THROUGH HOLE : Ø 1.3mm
TOP VIEW PAD : Ø 1.9mm
BOTTOM VIEW PAD : Ø 2.6mm
http://www.tracopower.com
Page 67 of 71
Application Note
TEP 200WIR Series
Soldering Considerations
Lead free wave solder profile for TEP 200WIR series
Zone
Reference Parameter
Preheat zone
Rise temp. speed : 3C/sec max.
Preheat temp. : 100~130C
Actual heating
Peak temp. : 250~260C
Peak time (T1+T2 time) : 4~6 sec
Reference Solder : Sn-Ag-Cu , Sn-Cu
Hand Welding :
Soldering iron : Power 90W
Welding Time : 2~4 sec
Temp. : 380~400C
http://www.tracopower.com
Page 68 of 71
Application Note
TEP 200WIR Series
Packaging Information
http://www.tracopower.com
Page 69 of 71
Application Note
TEP 200WIR Series
Part Number Structure
TEP 200 7213WIRCMF
Max. Output Power
200W
Model Number
Input Voltage
24: 24V
48: 48V
72: 72V
Output Mode
1: Single
2: Dual (±)
Output Voltage
0: 3.3V
1: 5V
2: 12V
3: 15V
5: 24V
6: 28V
8: 48V
Input Range Output Voltage
Output Current Input Current
Max. Load
No Load(1)
Eff (2)
(%)
TEP 200-2410WIR
9 ~ 36 VDC
3.3VDC
50 A
25mA
87
TEP 200-2411WIR
9 ~ 36 VDC
5VDC
36 A
30mA
90
TEP 200-2412WIR
8.5 ~ 36 VDC
12VDC
15 A
30mA
89
TEP 200-2413WIR
8.5 ~ 36 VDC
15VDC
12 A
30mA
90
TEP 200-2415WIR
8.5 ~ 36 VDC
24VDC
7.5 A
35mA
90
TEP 200-2416WIR
8.5 ~ 36 VDC
28VDC
6.5 A
40mA
90
TEP 200-2418WIR
8.5 ~ 36 VDC
48VDC
3.7 A
45mA
89
TEP 200-4810WIR
16.5 ~ 75 VDC
3.3VDC
50 A
20mA
88
TEP 200-4811WIR
16.5 ~ 75 VDC
5VDC
40 A
20mA
91
TEP 200-4812WIR
16.5 ~ 75 VDC
12VDC
18 A
20mA
90
TEP 200-4813WIR
16.5 ~ 75 VDC
15VDC
14 A
20mA
91
TEP 200-4815WIR
16.5 ~ 75 VDC
24VDC
9A
20mA
90
TEP 200-4816WIR
16.5 ~ 75 VDC
28VDC
7.5 A
25mA
91
TEP 200-4818WIR
16.5 ~ 75 VDC
48VDC
4.5 A
25mA
90
TEP 200-7210WIR
43 ~ 160 VDC
3.3VDC
57 A
10mA
87
TEP 200-7211WIR
43 ~ 160 VDC
5VDC
44 A
10mA
89
TEP 200-7212WIR
43 ~ 160 VDC
12VDC
20 A
10mA
89
TEP 200-7213WIR
43 ~ 160 VDC
15VDC
16 A
10mA
90
TEP 200-7215WIR
43 ~ 160 VDC
24VDC
10 A
10mA
89
TEP 200-7216WIR
43 ~ 160 VDC
28VDC
8.5 A
15mA
90
TEP 200-7218WIR
43 ~ 160 VDC
48VDC
5A
15mA
89
Note 1. Typical value at nominal input and no load.
Note 2. Typical value at nominal input and full load.
http://www.tracopower.com
Page 70 of 71
Application Note
TEP 200WIR Series
Safety and Installation Instruction
Fusing Consideration
Caution: This power module is not internally fused. An input line fuse must always be used.
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an
integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included, however, to achieve
maximum safety and system protection, always use an input line fuse. The safety agencies require a fast blow fuse with maximum
rating of 32A for TEP 200-24xxWIR, 20A for TEP 200-48xxWIR and 10A for TEP 200-72xxWIR. Based on the information provided
in this data sheet on Inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the
fuse manufacturer’s data for further information.
MTBF and Reliability
The MTBF of TEP 200WIR series DC/DC converters has been calculated using
Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40C (Ground fixed and controlled environment ). The
resulting figure for MTBF is 1.010×106 hours.
MIL-HDBK 217F NOTICE2 FULL LOAD, Operating Temperature at 25C. The resulting figure for MTBF is 7.416×104 hours.
Rev. 06/14
Sihlbruggstrasse 111 · CH-6340 Baar · Switzerland
Phone +41 43 311 45 11 · Fax +41 43 311 45 45 · [email protected] · www.tracopower.com
Page 71 of 71