Application Note TEP 160 Series TEP 160-Series 160W, Wide Input, 16.5-75 VDC, Single Output DC/DC Converters FEATURES ►INDUSTRY STANDARD HALF-BRICK FOOTPRINT 2.40Î2.28Î0.50 INCH ( 61.0Î57.9Î12.7 mm ) ►ROHS DIRECTIVE COMPLIANT ►SIX-SIDED CONTINUOUS SHIELD ►SOFT-START ►HIGH POWER DENSITY OF 71.6W / INCH3 ►2:1 WIDE INPUT VOLTAGE RANGE ►HIGH EFFICIENCY UP TO 93% ►INPUT TO OUTPUT BASIC INSULATION: 2250 VDC ►OUTPUT CURRENT UP TO 45A ►ADJUSTABLE OUTPUT VOLTAGE ►NO MINIMUM LOAD REQUIRED Applications ►Wireless Network ►Telecom/ Datacom ►Industry Control System ►Distributed Power Architectures ►Semiconductor Equipment OPTIONS ►HEAT-SINK AVAILABLE FOR EXTENDED OPERATION ►POSITIVE LOGIC REMOTE ON/OFF ►CASE PIN ►SYNCHRONOUS ►TERMINAL BLOCK General Description The TEP 160 series DC/DC converters provide up to 196 watts of output power in an industry standard half-brick package and footprint. All models feature a wide input range, adjustable output voltage. Table of contents Output Specification Input Specification General Specification Environmental Specification EMC characteristic Characteristic Curves Testing Configurations EMI Considerations EMS Considerations Output Voltage Adjustment Remote Sense Input Source Impedance Output Over Current Protection Short Circuitry Protection http://www.tracopower.com P2 P4 P5 P6 P6 P7 P51 P54 P56 P57 P59 P59 P60 P60 Output Over Voltage Protection Over Temperature Protection Thermal Considerations Heat-Sink Considerations Remote ON/OFF Control Synchronous Pin Mechanical Data Recommended Pad Layout Soldering Considerations Packaging Information Part Number Structure Safety and Installation Instruction MTBF and Reliability P60 P60 P61 P63 P64 P65 P66 P68 P69 P70 P71 P71 P71 Page 1 of 71 Application Note TEP 160 Series Output Specification Parameter Device Min Typ Max Unit TEP 160-xx12 TEP 160-xx15 TEP 160-xx24 TEP 160-xx28 TEP 160-xx48 TEP 160-48153 11.88 14.85 23.76 27.72 47.52 52.47 12 15 24 28 48 53 12.12 15.15 24.24 28.28 48.48 53.53 VDC Voltage Adjustability (see page 57) All -20 +10 % Output Regulation Line (Vin(min) to Vin(max) at Full Load) Load (0% to 100% of Full Load) All -0.1 -0.1 +0.1 +0.1 % Output Voltage (Vin = Vin(nom) , Full Load , Ta = 25°C) Output Ripple & Noise With a 1μF/25V X7R MLCC and a 22μF/25V POS-CAP With a 1μF/25V X7R MLCC and a 22μF/25V POS-CAP With a 4.7μF/50V X7R MLCC With a 4.7μF/50V X7R MLCC With a 2.2μF/100V X7R MLCC With a 2.2μF/100V X7R MLCC (Vin = Vin(nom) , Full Load, Ta = 25°C). Peak to Peak (5Hz to 20MHz bandwidth) TEP 160-xx12 TEP 160-xx15 TEP 160-xx24 TEP 160-xx28 TEP 160-xx48 TEP 160-48153 100 100 200 200 300 300 Temperature Coefficient All Output Voltage Overshoot (Vin = Vin(min) to Vin(max) , Full Load , Ta=25°C). All 0 TEP 160-xx12 TEP 160-xx15 TEP 160-xx24 TEP 160-xx28 TEP 160-xx48 TEP 160-48153 700 800 900 1000 1800 2000 All 250 Dynamic Load Response Peak Deviation (Vin = Vin(nom) , Ta=25°C) Load step change between 75% to 100% of Full Load Setting Time (Vout<10% peak deviation) http://www.tracopower.com -0.02 125 125 250 250 350 350 mVp-p +0.02 %/°C 5 % Vout mV μs Page 2 of 71 Application Note TEP 160 Series Output Specification (continued) Parameter Output Current Output Capacitor Load Output Over Voltage Protection (Hiccup Mode) Device Min TEP 160-2412 0 Typ Max 13 TEP 160-2413 0 10 TEP 160-2415 0 6.5 TEP 160-2416 0 5.5 TEP 160-2418 0 3.3 TEP 160-4812 0 16 TEP 160-4813 0 13 TEP 160-4815 0 8 TEP 160-4816 0 7 TEP 160-4818 0 4 TEP 160-48153 0 3.7 TEP 160-2412 10800 TEP 160-2413 6600 TEP 160-2415 2700 TEP 160-2416 1900 TEP 160-2418 680 TEP 160-4812 13300 TEP 160-4813 8600 TEP 160-4815 3300 TEP 160-4816 2500 TEP 160-4818 830 TEP 160-48153 690 TEP 160-xx12 13.80 15.6 TEP 160-xx15 17.25 19.5 TEP 160-xx24 27.60 31.2 TEP 160-xx28 32.20 36.4 TEP 160-xx48 55.20 62.4 TEP 160-48153 60.95 68.9 Output Over Current Protection (Hiccup Mode) All 120 150 Output Short Circuit Protection (Hiccup Mode) All http://www.tracopower.com Unit A μF VDC % FL Automatics recovery Page 3 of 71 Application Note TEP 160 Series Input Specification Parameter Operating Input Voltage Continuous Device Min Typ Max TEP 160-24xx TEP 160-48xx 16.5 33 24 48 36 75 Transient (1sec maximum) TEP 160-24xx TEP 160-48xx 50 100 Under Voltage Lockout Turn-on Threshold TEP 160-24xx 18 TEP 160-48xx 34 Under Voltage Lockout Turn-off Threshold Input Standby Current (Vin = Vin(nom) , No Load , Ta=25°C) TEP 160-24xx 15.5 16.3 TEP 160-48xx 31.6 32.5 TEP 160-2412 35 TEP 160-2413 35 TEP 160-2415 35 TEP 160-2416 50 TEP 160-2418 50 TEP 160-4812 25 TEP 160-4813 25 TEP 160-4815 25 TEP 160-4816 25 TEP 160-4818 25 TEP 160-48153 25 All 50 Start Up Time Power up Remote ON/OFF (Vin = Vin(nom) and constant resistive load) All 75 75 Remote ON/OFF (see page 65) Negative logic: Device code without Suffix or “-L” DC-DC ON (Short) DC-DC OFF (Open) Positive logic: Device code with Suffix “-P” or “-S” DC-DC ON (Open) DC-DC OFF (Short) (The CTRL pin voltage is referenced to -INPUT) All Input reflected ripple current (see page 51) (5 to 20MHz, 10μH source impedance) Remote Off state Input Current Input Current of Remote Control Pin SYNC pin output signal (see page 66) http://www.tracopower.com All 100 100 3 0 12 1.2 -0.3 VDC VDC mAp-p 1.2 12 3 VDC mA 0 3 -0.5 Unit ms VDC 1 mA 6 V Page 4 of 71 Application Note TEP 160 Series General Specification Parameter Efficiency (Vin = Vin(nom) , Full Load , Ta=25°C) Device Min Typ TEP 160-2412 92 TEP 160-2413 92 TEP 160-2415 93 TEP 160-2416 93 TEP 160-2418 91 TEP 160-4812 92 TEP 160-4813 93 TEP 160-4815 92 TEP 160-4816 92 TEP 160-4818 92 TEP 160-48153 92 Max Unit % Isolation Voltage (Basic Insulation) (1 minute) Input to Output All Input (Output) to Case VDC 1600 Isolation Resistance All Isolation Capacitance All Switching Frequency All Weight 2250 All 1 225 GΩ 250 2500 pF 275 kHz 105 (3.70) g (oz) MTBF BELLCORE TR-NWT-000332 Case 1: 50% Stress, Ta=40°C. 1.010×106 All MIL-HDBK-217F: hours 7.416×10 4 Ta=25°C, Full load (G/B, controlled environment) Dimensions All 2.40×2.28×0.50 (61.0×57.9×12.7) Case Material All Metal Base Material All FR4 PCB Potting Material All Silicon (UL94-V0) Design Meet Safety Standard All IEC60950-1, UL60950-1, EN60950-1 http://www.tracopower.com Inch (mm) Page 5 of 71 Application Note TEP 160 Series Environmental Specification Model Min Operating Case Temperature Parameter All -40 Over Temperature Protection (see page 60) All Storage Temperature Range All Typ Max Unit +115 °C 120 -55 °C +125 °C Thermal Impedance* Module without assembly option 6.1 Heat-sink type with 0.24” Height 5.1 Heat-sink type with 0.45” Height Terminal block type 4.6 All °C/Watt 4.4 Only mount on the iron base-plate 2.8 (Test condition with vertical direction by natural convection 20FLM) Relative Humidity All 5 95 Thermal Shock MIL-STD-810F Vibration MIL-STD-810F % RH EMC characteristic** EMI EN55022 ESD EN61000-4-2 Air ±8kV and Contact ±6kV Perf. Criteria A Radiated Immunity EN61000-4-3 20V/m Perf. Criteria A Fast Transient (see page 56) EN61000-4-4 ±2kV Perf. Criteria A Surge (see page 57) EN61000-4-5 EN55024 ±2kV Perf. Criteria A Conducted Immunity EN61000-4-6 10Vr.m.s Perf. Criteria A http://www.tracopower.com Class A Page 6 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25↑8C.The figures are identical for TEP 160-1210 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 9V Vin= 12V Vin= 22V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 10 100 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 9 10 12 14 16 18 INPUT VOLTAGE(V) 20 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow, Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 22 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 9V Vin= 12V Vin= 22V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 7 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1210 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 8 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1211 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 9V Vin= 12V Vin= 22V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 10 100 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 9 10 12 14 16 18 INPUT VOLTAGE(V) 20 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow, Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 22 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 9V Vin= 12V Vin= 22V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 9 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1211 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 10 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1212 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 8.5V Vin= 12V Vin= 22V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 10 12 14 16 18 INPUT VOLTAGE(V) 20 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 22 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 8.5V Vin= 12V Vin= 22V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 11 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°.The figures are identical for TEP 160-1212 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 12 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1213 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 8.5V Vin= 12V Vin= 22V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 10 12 14 16 18 INPUT VOLTAGE(V) 20 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current Versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 22 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 8.5V Vin= 12V Vin= 22V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 13 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1213 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 14 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1215 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 8.5V Vin= 12V Vin= 22V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 10 12 14 16 18 INPUT VOLTAGE(V) 20 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 22 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 8.5V Vin= 12V Vin= 22V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 15 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1215 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 16 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1216 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 8.5V Vin= 12V Vin= 22V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 10 12 14 16 18 INPUT VOLTAGE(V) 20 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 22 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 8.5V Vin= 12V Vin= 22V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 17 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1216 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 18 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1218 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 8.5V Vin= 12V Vin= 22V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 10 12 14 16 18 INPUT VOLTAGE(V) 20 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 22 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 8.5V Vin= 12V Vin= 22V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 19 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-1218 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 20 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2410 90 25 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) 30 EFFICIENCY(%) 96 20 15 10 0 10 100 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 18 20 22 24 26 28 30 INPUT VOLTAGE(V) 32 34 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 36 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 16.5V Vin= 24V Vin= 36V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 21 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2410 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 22 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2411 90 25 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) 30 EFFICIENCY(%) 96 20 15 10 0 10 100 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 18 20 22 24 26 28 30 INPUT VOLTAGE(V) 32 34 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 36 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 16.5V Vin= 24V Vin= 36V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 23 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2411 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 24 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2412 90 25 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) 30 EFFICIENCY(%) 96 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 100 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 16.5V Vin= 24V Vin= 36V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 25 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2412 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 26 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2413 90 25 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) 30 EFFICIENCY(%) 96 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 18 20 22 24 26 28 30 INPUT VOLTAGE(V) 32 34 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 36 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 16.5V Vin= 24V Vin= 36V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 27 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2413 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 28 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2415 90 25 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) 30 EFFICIENCY(%) 96 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 18 20 22 24 26 28 30 INPUT VOLTAGE(V) 32 34 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 36 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 16.5V Vin= 24V Vin= 36V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 29 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2415 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 30 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2416 90 25 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) 30 EFFICIENCY(%) 96 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 18 20 22 24 26 28 30 INPUT VOLTAGE(V) 32 34 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 36 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 16.5V Vin= 24V Vin= 36V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 31 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2416 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 32 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2418 90 25 84 78 72 Vin= 16.5V Vin= 24V Vin= 36V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) 30 EFFICIENCY(%) 96 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 18 20 22 24 26 28 30 INPUT VOLTAGE(V) 32 34 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 36 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 16.5V Vin= 24V Vin= 36V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 33 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-2418 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 34 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4810 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 10 100 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 75 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 35 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4810 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 36 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4811 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 20 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 40 30 80 75 Efficiency versus Input Voltage 60 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 37 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4811 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 38 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4812 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 75 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 39 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4812 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 40 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4813 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 75 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 41 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4813 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 42 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4815 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 75 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 43 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4815 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 44 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4816 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 75 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 45 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4816 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 46 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4818 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 75 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 47 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4818 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 48 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-4812 30 90 25 EFFICIENCY(%) Power Dissipation(W) 96 84 78 72 Vin= 33V Vin= 48V Vin= 75V 66 60 10 20 30 40 50 60 70 % of FULL LOAD 80 90 20 15 10 0 100 10 Efficiency versus Output Current 100 84 78 72 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 33 36 40 44 48 52 56 60 INPUT VOLTAGE(V) 64 68 72 OUTPUT POWER(%) 90 EFFICIENCY(%) 120 60 40 20 0 -40 OUTPUT POWER(%) 100 OUTPUT POWER(%) 100 80 60 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 80 90 100 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 100 120 Derating Output Current Versus Ambient Temperature With 0.24” Heat-Sink and Airflow , Vin = Vin(nom) http://www.tracopower.com 50 60 70 % of FULL LOAD Derating Output Current versus Ambient Temperature With Airflow , Vin = Vin(nom) 120 0 40 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 120 20 30 80 75 Efficiency versus Input Voltage 40 20 Power Dissipation versus Output Current 96 66 Vin= 33V Vin= 48V Vin= 75V 5 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature With 0.45” Heat-Sink and Airflow , Vin = Vin(nom) Page 49 of 71 Application Note TEP 160 Series Characteristic Curves All test conditions are at 25°C.The figures are identical for TEP 160-48153 (Continued) Typical Output Ripple and Noise. Vin = Vin(nom), Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load ; Vin = Vin(nom) Typical Input Start-Up and Output Rise Characteristic Vin = Vin(nom), Full Load Using ON/OFF Voltage Start-Up and Vo Rise Characteristic Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class A Vin = Vin(nom), Full Load Conduction Emission of EN55022 Class B Vin = Vin(nom), Full Load http://www.tracopower.com Page 50 of 71 Application Note TEP 160 Series Testing Configurations Input reflected-ripple current measurement test up TEP 160-121x, TEP 160-241x Component Value Voltage L1 10μH ---- Reference C1, C2 330μF 50V NipponKY-500E00331MJ25S Component Value Voltage Reference L1 10μH ---- C1, C2 220μF 100V TEP 160-481x Nippon KY-101E00221MK25S Peak to peak output ripple & noise measurement test up C1 C2 DC-DC CONVERTER -OUTPUT +OUTPUT C1 C2 DC-DC CONVERTER LOAD DC-DC CONVERTER TO SCOPE LOAD +OUTPUT LOAD +OUTPUT C1 C2 -OUTOUT -OUTOUT TO SCOPE TO SCOPE Right method Probe contacts to the pins directly. Wrong method Ground ring is connected to the pin by a wire that induces noise. TEP 160-xx10, TEP 160-xx11, TEP 160-xx12, TEP 160-xx13 Component Value Voltage Reference C1 1μF 25V TDK : C3216X7R1E105 C2 22µF 25V SANYO:25TQC22MV Component Value Voltage Reference C2 4.7μF 50V Component Value Voltage C2 2.2μF 100V TEP 160-xx15, TEP 160-xx16 TDK : C4532X7R1H475M TEP 160-xx18, TEP 160-xx153 http://www.tracopower.com Reference TDK : C4532X7R2A225M Page 51 of 71 Application Note TEP 160 Series Testing Configurations Output voltage and efficiency measurement setup Voltage meters should connect to input or output terminals directly or voltage drop of contact and distribution losses causes the measurement is not correct. DC-DC CONVERTER IIN +INPUT A IOUT +OUTPUT A +SENSE DC SOURCE VIN V V VOUT LOAD -SENSE -INPUT -OUTPUT CONRACT AND DISTRIBUTION LOSSES CONRACT AND DISTRIBUTION LOSSES Note: All measurements are taken at the module terminals. Input Voltage Output Voltage Volt. meter Volt. meter DC-DC CONVERTER Input Current + INPUT - Amp. meter Output Current + OUTPUT - Amp. meter INPUT SOURCE Output Voltage Accuracy = DC-DC CONVERTER LOAD Vout − Vout,typ. × 100% Vout,typ. Vout(Low −Line ) − Vout(Nom.−Line ) Vout(High−Line ) − Vout(Nom.−Line ) × 100% × 100% , Line Regulation = Max. Vout(Nom.−Line ) Vout(Nom.−Line ) Load Regulation = Vout(Min.Load) − Vout(FullLoad) Vout(FullLoad) × 100% Efficiency = Vout × Iout × 100% Vin × Iin http://www.tracopower.com Page 52 of 71 Application Note TEP 160 Series Testing Configurations Output voltage and efficiency measurement test up http://www.tracopower.com Page 53 of 71 Application Note TEP 160 Series EMI considerations Suggested schematic for EN55011 and EN55022 conducted emission Class A limits Recommended layout with input filter; Top layer Recommended layout with input filter; Bottom layer To meet conducted emissions EN55022 CLASS A needed the following components: TEP 160-12xx, TEP 160-24xx Component Value Voltage Reference C1,C2,C4 470 μF 50 V Nippon Chemi-con: EKY-500E00471MK20S C3,C6,C7 4.7 μF 50 V TDK : C4532X7R1H475M C8,C9,C10, C11,C13 1000 pF 3 kV 1808 MLCC C12 3300 pF 3 kV 1808 MLCC L1 156μH±35% --- Common Choke, P/N:TCK-086 Component Value Voltage Reference C1,C2,C4 220μF 100V Nippon Chemi-con: EKY-101E00221MK25S TEP 160-48xx C3,C6,C7 2.2 μF 100 V TDK : C4532X7R2A225M C8,C9,C10, C11,C13,C12 1000 pF 3 kV 1808 MLCC L1 224μH±35% --- Common Choke, P/N:TCK-087 Note:1. Common mode choke have been define and show on page 56. 2. While testing, connect four screw bolts to shield plane, the EMI could be reduced. http://www.tracopower.com Page 54 of 71 Application Note TEP 160 Series EMI considerations Suggested schematic for EN55022 conducted emission Class B limits Recommended layout with input filter; Top layer Recommended layout with input filter; Bottom layer To meet conducted emissions EN55022 CLASS B needed the following components: TEP 160-12xx, TEP 160-24xx Component C1,C3,C6 C2,C4,C5,C7,C8 C9,C10,C13,C14 C11 C12 L1,L2 Value 470 μF 4.7 μF 10 nF 1000 pF 4700 pF 156μH±35% Voltage 50 V 50V 2kV 3kV 3kV --- Value 220μF 2.2 μF 10 nF 2200pF 4700pF 1000pF 224μH±35% Voltage 100V 100V 2kV 3kV 3kV 2kV ---- Reference Nippon Chemi-con: EKY-500E00471MK20S TDK : C4532X7R1H475M 1812 MLCC 1808 MLCC 1812 MLCC Common Choke, P/N: TCK-086 TEP 160-48xx Component C1,C3,C6 C2,C4,C5,C7,C8 C9,C10,C13,C14 C11 C12 C15 L1,L2 Reference Nippon Chemi-con: EKY-101E00221MK25S TDK : C4532X7R2A225M 1812 MLCC 1808 MLCC 1812 MLCC 1808 MLCC Common Choke, P/N: TCK-087 Note:1. Common mode choke have been define and show on the next page. 2. While testing, connect four screw bolts to shield plane, the EMI could be reduced. http://www.tracopower.com Page 55 of 71 Application Note TEP 160 Series EMI considerations The common mode choke and inductors have been defined as following. TCK-086 TCK-087 Inductance: Pin 1-2: 156μH±35% Pin 3-4: 156μH±35% 2.5mΩ 25A Φ2.0mm Impedance: Rated Current: Recommended Through Hole: Inductance: Impedance: Rated Current: Recommended Through Hole: TOP VIEW SIDE VIEW Pin 1-2: 224μH±35% Pin 3-4: 224μH±35% 4.16mΩ 15.4A Φ1.8mm TOP VIEW SIDE VIEW A A G G 3 B F 2 1 E 3 1 2 FRONT VIEW A B C 16.6±0.4 16.4±0.4 12.5 max. F 6.1±0.5 E FRONT VIEW D 5.0±1.0 C 4 D 2 C 1 PIN 1 MARK D 3 2 1 PIN 1 MARK 4 3 4 B F 4 E A B C 13.9±0.5 16.6±0.4 16.4±0.4 12.5 max. G F Φ1.8 max 6.1±0.5 D 5.0±1.0 E 13.9±0.5 G Φ1.6 max All dimensions in mm All dimensions in mm EMS Considerations The TEP 160 series can meet Fast Transient EN61000-4-4 and Surge EN61000-4-5 performance criteria A with external components connected to the input terminals of the module. Please see the following schematics as below. Fast Transient EFT +INPUT DC SOURCE C2 C1 DC-DC CONVERTER -INPUT TEP 160 series Component Value Voltage Reference C1,C2 220μF 100V Nippon Chemi-con: EKY-101E00221MK25S http://www.tracopower.com Page 56 of 71 Application Note TEP 160 Series EMC Considerations SURGE SURGE +INPUT DC SOURCE C2 C1 DC-DC CONVERTER -INPUT TEP 160 series Component Value Voltage Reference C1,C2 220μF 100V Nippon Chemi-con: EKY-101E00221MK25S Output Voltage Adjustment Output voltage is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external resistor between the TRIM pin and either the +SENSE or -SENSE pins. With an external resistor between the TRIM and -SENSE pin, the output voltage set point decreases. With an external resistor between the TRIM and +SENSE pin, the output voltage set point increases. Maximum output deviation is +10% inclusive of remote sense. (Please refer to page 59, remote sense) The value of external resistor can be obtained by equation or trim table shown on next page. The external TRIM resistor needs to be at least 1/8W resistors. +OUTPUT +SENSE TRIM RU +SENSE TRIM -SENSE -SENSE -OUTPUT -OUTPUT TRIM UP http://www.tracopower.com +OUTPUT RD TRIM DOWN Page 57 of 71 Application Note TEP 160 Series Output Voltage Adjustment (continued) TRIM EQUATION (100 + ∆% ) 100 + 2∆% V RU = OUT − KΩ 1 . 225 ∆ % ∆% 100 RD = − 2 KΩ ∆% TRIM TABLE TEP 160-xx10 Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts)= RU (kΩ)= 3.333 170.082 3.366 85.388 3.399 57.156 3.432 43.041 3.465 34.571 3.498 28.925 3.531 24.892 3.564 21.867 3.597 19.515 3.630 17.633 Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts)= RU (kΩ)= 5.05 310.245 5.10 156.163 5.15 104.803 5.20 79.122 5.25 63.714 5.30 53.442 5.35 46.105 5.40 40.602 5.45 36.322 5.50 32.898 Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts)= RU (kΩ)= 12.12 887.388 12.24 447.592 12.36 300.993 12.48 227.694 12.60 183.714 12.72 154.395 12.84 133.452 12.96 117.745 13.08 105.528 13.20 95.755 Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts)= RU (kΩ)= 15.15 15.30 1134.735 572.490 15.45 385.075 15.60 291.367 15.75 235.143 15.90 197.660 16.05 170.886 16.20 150.806 16.35 135.188 16.50 122.694 3 4 5 6 7 8 9 10 24.72 637.320 24.96 482.388 25.20 389.429 25.44 327.456 25.68 283.190 25.92 249.990 26.16 224.168 26.40 203.510 TEP 160-xx11 TEP 160-xx12 TEP 160-xx13 TEP 160-xx15 Trim up (%) 1 VOUT (Volts)= RU (kΩ)= 24.24 24.48 1876.776 947.184 2 TEP 160-xx16 Trim up (%) 1 2 VOUT (Volts)= 28.28 28.56 RU (kΩ)= 2206.571 1113.714 3 4 5 6 7 8 9 10 28.84 749.429 29.12 567.286 29.40 458.000 29.68 385.143 29.96 333.102 30.24 294.071 30.52 263.714 30.80 239.429 3 4 5 6 7 8 9 10 50.40 800.857 50.88 673.578 51.36 582.665 51.84 514.480 52.32 461.447 52.80 419.020 TEP 160-xx18 Trim up (%) 1 2 VOUT (Volts)= 48.48 RU (kΩ)= 3855.55 48.96 49.44 49.92 1946.367 1309.973 991.776 TEP 160-48153 Trim up (%) 1 2 VOUT (Volts)= 53.53 54.06 RU (kΩ)= 4267.796 2154.53 3 4 6 7 8 9 10 54.59 1450.11 55.12 55.65 1097.898 886.57 5 56.18 745.687 56.71 645.055 57.24 569.582 57.77 510.88 58.3 463.918 All Trim down (%) 1 2 3 4 5 6 7 8 9 10 RD (kΩ)= 48.000 31.333 23.000 18.000 14.667 12.286 10.500 9.111 8.000 Trim down (%) 11 12 13 14 15 16 17 18 19 20 RD (kΩ)= 6.333 5.692 5.143 4.667 4.250 3.882 3.556 3.263 3.000 98.000 7.091 http://www.tracopower.com Page 58 of 71 Application Note TEP 160 Series Remote Sense To minimum the effects of distribution losses by regulating the voltage at the Remote Sense pin. The voltage between the SENSE pin and OUTPUT pin must not exceed 10% of Vout, i.e. [ +OUTPUT to –OUTPUT ] – [ +SENSE to –SENSE ] = 10% Vout The voltage between +OUTPUT and –OUTPUT terminals must not exceed the minimum output overvoltage protection threshold. This limit includes any increase in voltage due to remote sense compensation and trim function. If not using the remote sense feature to regulate the output at the point of load, then connect +SENSE to +OUTPUT and –SENSE to –OUTPUT. DC-DC CONVERTER +OUTPUT LOAD +SENSE -SENSE -OUTPUT Remote Sense circuit configuration Input Source Impedance The power modules will operate as specifications without external components, assuming that the source voltage has a very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor The TEP 160-24xx and TEP 160-48xx recommended Nippon Chemi-con: EKY-101E00101MK16S http://www.tracopower.com Page 59 of 71 Application Note TEP 160 Series Output Over Current Protection When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 120~150 percent of rated current for TEP 160 series. Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods. One of the problems resulting from over current is that excessive heat may be generated in power devices, especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged. The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power supply will start up and operate normally, otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower. The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected, or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an overcurrent event is detected, or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices. Short Circuitry Protection Continuous, hiccup and auto-recovery mode. During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety in this condition. Output Over Voltage Protection The output over-voltage protection consists of circuitry that monitors the voltage on the output terminals. If the voltage on the output terminals exceeds the over-voltage protection threshold, then the module enter the non-latch hiccup mode. Over Temperature Protection Sufficient cooling is needed for the power module and provides more reliable operation of the unit. If a fault condition occurs, the temperature of the unit will be higher. And will damage the unit. For protecting the power module, the unit includes over-temperature protection circuit. When the temperature of the case is to the protection threshold, the unit enters “Hiccup” mode. And it will auto restart when the temperature is down. http://www.tracopower.com Page 60 of 71 Application Note TEP 160 Series Thermal Consideration The TEP 160 series is a high power density product, it operates in a variety of thermal environments. However, sufficient cooling should be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling can be verified by measuring the point as the figure below. The case temperature at this location is -40 ~115°C. When operating, although the maximum point temperature of the power modules is 115°C, we suggest to keep the test point temperature at or below 80°C for extremely high reliability, so the module can be in stable operation and get better lifecycle. Temp. Test Point Measurement shown in inch (mm) TOP VIEW The suggested heat dissipation modes as below: 1. Add the heat-sink The main function of heat-sink is to add the touch surface of heat source for air. Under the suitable air convection condition (including natural convection), that can reduce the heat resistance θca apparently. After combination of the heat resistance θca, it’s the sub-total of θcp, θph and θha. Because the air gets big heat resistance under no air convection, the θha which touch the air is the main heat resistance. Suggestions as below: (1) θca=θcp+θph+θha. In order to let the heat-sink reducing the θha in big range, we suggest to use the thermal pad with good heat conduction and flushing performance. (2) The best layout for heat sink is to put the fin of the heat-sink vertical to the air, and this will cause a good “stack effect”. So, we can have the best natural air convection condition. When there’s no force air to help the heat dissipation, this point is critical. http://www.tracopower.com Page 61 of 71 Application Note TEP 160 Series Thermal Consideration 2. Force Air Normally, we use the fan for the force air. By the air movement rapidly, it can bring the heat energy from the case surface. This is a good solution to reduce the heat resistance θca of the module. When the air speed is bigger, the heat resistance is smaller, and the heat dissipation performance is better. We need to note, the air direction not to be in vertical with the module’s frame. Or, the heat dissipation performance will be worse. If there’s heat-sink and force air in the same system, the direction for heat-sink and force air should be followed as illustrate in below left chart. So we can get the best performance of heat dissipation. In below right chart, it’s wrong direction. The air can’t go through, the performance is not good. Vertical type heat-sink http://www.tracopower.com Horizontal type heat-sink Page 62 of 71 Application Note TEP 160 Series Heat-Sink Considerations 0.95 (11.4) (24.2) 0.45 Equip heat-sink for lower temperature and higher reliability of the module. 2.28 (57.9) 2.40 (61.0) Order code: TEP-HS1 Includes heatsink with termal pad and mounting screws To order modules with mounted heatsink ask factory. Top view Weight: 142g (5.01oz) (Heatsink + Converter) http://www.tracopower.com Dimensions in Inch, () = mm Tolerances ±0.02 (±0.5) Pin pich tolerances ±0.01 (±0.25) Mounting hole pich tolerances ±0.01 (±0.25) Page 63 of 71 Application Note TEP 160 Series Remote ON/OFF Control The CTRL pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high or low level of the pin referenced to -INPUT. The switch can be open collector transistor, FET and Photo-Couple. The switch must be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the CTRL pin signal maximum voltage is allowable leakage current of the switch at 12V is 0.5 mA. Standard remote control is, positive logic. a. The Positive logic structure turned on of the DC/DC module when the CTRL pin is at high-level logic and turned off when at low-level logic. DC-DC CONVERTER DC-DC CONVERTER +INPUT +INPUT CTRL CTRL SW SW -INPUT -INPUT On Off Negative logic rmote control available on demand b. The Negative logic structure turned on of the DC/DC module when the CTRL pin is at low-level logic and turned off when at high-level logic. DC-DC CONVERTER DC-DC CONVERTER +INPUT +INPUT CTRL CTRL SW SW -INPUT -INPUT On Off Remote ON/OFF Implementation Circuits DC-DC CONVERTER +INPUT SIGNAL ISOLATION IO CTRL VCTRL -INPUT Isolated-Closure Remote ON/OFF DC-DC CONVERTER +INPUT TTL VCC IO SIGNAL CTRL VCTRL -INPUT Level Control Using TTL Output DC-DC CONVERTER +INPUT IO CTRL VCTRL -INPUT Level Control Using Line Voltage http://www.tracopower.com Page 64 of 71 Application Note TEP 160 Series Synchronous Pin 1. Multiple TEP 160 series module can be synchronized together simply by connecting the module SYNC pins together. Synchronous Circuits Recommended Layout NOTE: (1) Care should be taken to ensure the ground potential differences between modules are minimized. (2) In this configuration all of the modules will be synchronized to the highest frequency module. (3) Up to three modules can be synchronized using this technique. http://www.tracopower.com Page 65 of 71 Application Note TEP 160 Series Mechanical Data Of The Standard Product Metal Case Mechanical Drawing PIN CONNECTION PIN Define Diameter 1 -INPUT 0.04 inch 2 CASE(Option) 0.04 inch 3 CTRL 0.04 inch 4 +INPUT 0.04 inch 5 -OUTPUT 0.08 inch 6 -SENSE 0.04 inch 7 TRIM 0.04 inch 8 +SENSE 0.04 inch 9 +OUTPUT 0.08 inch 10 SYNC(option) 0.04 inch 1. All dimensions in inch (mm) 2. Tolerance :x.xx±0.02 (x.x±0.5) x.xxx±0.01 (x.xx±0.25) 3. Pin pitch tolerance ±0.01 (0.25) 4. Pin dimension tolerance ±0.004(0.1) http://www.tracopower.com Page 66 of 71 Application Note TEP 160 Series Mechanical Data Of The Standard Product 1. Terminal Block without EMC Filter, Suffix: -CM 1. All dimensions in inch (mm) 2. Tolerance :x.xx±0.02 (x.x±0.5) x.xxx±0.01 (x.xx±0.25) TRMINAL CONNECTION 2. Terminal Block with EMC Filter (EN55022 Class A), Suffix: -CMF http://www.tracopower.com PIN Define Wire range 1 -INPUT 8AWG to 9AWG 2 NC NA 3 CTRL 14AWG to 18AWG 4 +INPUT 8AWG to 9AWG 5 -OUTPUT 4AWG to 5AWG 6 -SENSE 14AWG to 18AWG 7 TRIM 14AWG to 18AWG 8 +SENSE 14AWG to 18AWG 9 +OUTPUT 4AWG to 5AWG EXTERNAL OUTPUT TRIMMING Output can be externally trimmed by using the method shown below. Page 67 of 71 Application Note TEP 160 Series Recommended Pad Layout All dimensions in inch (mm) Tolerances : x.xxx ± 0.010 (x.xx ± 0.25 ) PAD SIZE (LEAD FREE RECOMMENDED) +/- OUTPUT : THROUGH HOLE : Ø 2.3mm TOP VIEW PAD : Ø 2.9mm BOTTOM VIEW PAD : Ø 3.6mm OTHERS : THROUGH HOLE : Ø 1.3mm TOP VIEW PAD : Ø 1.9mm BOTTOM VIEW PAD : Ø 2.6mm http://www.tracopower.com Page 68 of 71 Application Note TEP 160 Series Soldering Considerations Lead free wave solder profile for TEP 160 series TEMPERATURE (¢ J) 50 100 150 200 250 300 T1+T2 First wave 260¢ JMax. Second wave 0 Preheat zone 0 100 Zone Preheat zone 200 Reference Parameter Rise temp. speed : 3C°/sec max. Preheat temp. : 100~130C° Actual heating Peak temp. : 250~260C° Peak time (T1+T2 time) : 4~6 sec Reference Solder : Sn-Ag-Cu , Sn-Cu Hand Welding : Soldering iron : Power 90W Welding Time : 2~4 sec Temp. : 380~400C° http://www.tracopower.com Page 69 of 71 Application Note TEP 160 Series Packaging Information Dimensions shown in millimeters http://www.tracopower.com Page 70 of 71 Application Note TEP 160 Series Part Number Structure TEP 160-2412 Max. Output Power 196W Input Voltage 24: 24V 48: 48V Output Mode 1: Single 2: Dual (±) Output Voltage 2: 12V 3: 15V 5: 24V 6: 28V 8: 48V Safety and Installation Instruction Fusing Consideration Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast blow fuse with maximum rating of 20A for TEP 160–12xx, 12A for TEP 160–24xx and 8A for TEP 160–48xx. Based on the information provided in this data sheet on Inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the fuse manufacturer’s data for further information. MTBF and Reliability The MTBF of TEP 160 series DC/DC converters has been calculated using Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40° (Ground fixed and controlled environment). The resulting figure for MTBF is 1.010×106 hours. MIL-HDBK 217F NOTICE2 FULL LOAD, Operating Temperature at 25C°. The resulting figure for MTBF is 7.416×104 hours. Specifications can be changed without notice Rev. 01/13 Jenatschstrasse 1 · CH-8002 Zurich · Switzerland Tel. +41 43 311 45 11 · Fax +41 43 311 45 45 · [email protected] · www.tracopower.com Page 71 of 71