TEP 160-WIR Series Application Note DC/DC Converter 8.5 (9.0) to 36Vdc or 16.5 to 75 Vdc and 43 to 160Vdc Input 3.3 to 48Vdc Single Outputs, up to 182W Output Power Features • • • • • • • • • • • • • • pending Industry standard half-brick footprint 61.057.912.7 mm (2.402.280.50 inch) RoHS directive compliant Six-sided continuous shield for 24VIN, 48VIN and 72VIN module Soft-start 3 High power density of 66.5W / inch 4:1 ultra wide input voltage range High efficiency up to 91% Input to output basic Insulation: 2’250 VDC Output current up to 43A Adjustable output voltage No minimum load required Railway application Options • • • • Complete TEP 160-WIR datasheet can be downloaded at: http://www.tracopower.com/products/tep160wir.pdf Negative logic remote ON/OFF Case pin Synchronous Terminal block Applications General Description • • • • • • Wireless Network Telecom/ Datacom Industry Control System Distributed Power Architectures Semiconductor Equipment Railway System The TEP 160-WIR series offer up to 182 watts of output power from a 61.057.912.7mm industry standard half-brick package and footprint with a 4:1 ultra wide input voltage of 8.5 (9)~36Vdc, 16.5~75Vdc and 43~160Vdc and adjustable output voltage. The product features 2’250VDC of isolation for 60 seconds (basic insulation), short circuit and over voltage protection, as well as six sided shielding. Table of contents Output Specifications Input Specification General Specification Environmental Specification EMC characteristic Characteristic Curves Testing Configurations EMI Considerations Output Voltage Adjustment Remote Sense Input Source Impedance Output Over Current Protection Short Circuitry Protection Created by Traco Electronic AG P2 & P3 P4 & P5 P5 P6 P6 P7 – P48 P49 – P51 P52 – P56 P56 & P57 P58 P58 P58 P59 Output Over Voltage Protection Over Temperature Protection Thermal Considerations Heat-Sink Considerations Remote ON/OFF Control Synchronous Pin Mechanical Data Recommended Pad Layout Soldering Considerations Packaging Information Part Number Structure Safety and Installation Instruction MTBF and Reliability www.tracopower.com P59 P59 P59 P60 P61 P62 P63– P65 P66 P67 P68 P69 P70 P70 Date: June 27th, 2012 / Rev.: 1.2 / Page 1 / 70 Application Note 182W, Single Output Parameter Output Voltage (Vin = Vin nom, Full Load , TA = 25°C) Voltage Adjustability (see page 56 & 57) Output Regulation Line (Vin min to Vin max at Full Load) Load (0% to 100% of Full Load) Output Ripple & Noise (Vin = Vin nom, Full Load , TA = 25°C) Peak to Peak (5Hz to 20MHz bandwidth) Measured with a ripple &noise test board: COUT, ext. = 1μF 25V 1206 X7R MLCC and 22μF 25V D-type POS-CAP COUT, ext. = 4.7μF 50V 1812 X7R MLCC COUT, ext. = 2.2μF 100V 1812 X7R MLCC Temperature Coefficient Output Voltage Overshoot (Vin = Vin min to Vin max, Full Load , TA = 25°C). Dynamic Load Response (Vin = Vin nom, TA = 25°C) Load step change between 75% to 100% of Full Load Peak Deviation Setting Time (Vout < 10% peak deviation) Created by Traco Electronic AG Output Specification Device Min Typ Max Unit 3.3 5 12 15 24 28 48 3.333 5.05 12.12 15.15 24.24 28.28 48.48 +10 Vdc Vdc Vdc Vdc Vdc Vdc Vdc % All All ±0.1 ±0.1 ±0.2 ±0.2 % % TEP 160-xx10WIR TEP 160-xx11WIR TEP 160-xx12WIR TEP 160-xx13WIR TEP 160-xx15WIR TEP 160-xx16WIR TEP 160-xx18WIR All 75 75 100 100 200 200 300 100 100 125 125 250 250 350 +0.02 mV pk-pk mV pk-pk mV pk-pk mV pk-pk mV pk-pk mV pk-pk mV pk-pk %/°C All 0 5 % Vout TEP 160-xx10WIR TEP 160-xx11WIR TEP 160-xx12WIR TEP 160-xx13WIR TEP 160-xx15WIR TEP 160-xx16WIR TEP 160-xx18WIR All 300 600 900 900 900 1100 1200 250 TEP 160-xx10WIR TEP 160-xx11WIR TEP 160-xx12WIR TEP 160-xx13WIR TEP 160-xx15WIR TEP 160-xx16WIR TEP 160-xx18WIR All www.tracopower.com 3.267 4.95 11.88 14.85 23.76 27.72 47.52 -20 -0.02 mV mV mV mV mV mV mV μS Date: June 27th, 2012 / Rev.: 1.2 / Page 2 / 70 Application Note 182W, Single Output Parameter Output Specification (continued) Device Min Output Current Output Capacitor Load Output Over Voltage Protection (Hiccup Mode) Output Over Current Protection (Hiccup Mode) Output Short Circuit Protection (Hiccup Mode) Created by Traco Electronic AG TEP 160-2410WIR TEP 160-2411WIR TEP 160-2412WIR TEP 160-2413WIR TEP 160-2415WIR TEP 160-2416WIR TEP 160-2418WIR TEP 160-4810WIR TEP 160-4811WIR TEP 160-4812WIR TEP 160-4813WIR TEP 160-4815WIR TEP 160-4816WIR TEP 160-4818WIR TEP 160-7210WIR TEP 160-7211WIR TEP 160-7212WIR TEP 160-7213WIR TEP 160-7215WIR TEP 160-7216WIR TEP 160-7218WIR TEP 160-2410WIR TEP 160-2411WIR TEP 160-2412WIR TEP 160-2413WIR TEP 160-2415WIR TEP 160-2416WIR TEP 160-2418WIR TEP 160-4810WIR TEP 160-4811WIR TEP 160-4812WIR TEP 160-4813WIR TEP 160-4815WIR TEP 160-4816WIR TEP 160-4818WIR TEP 160-7210WIR TEP 160-7211WIR TEP 160-7212WIR TEP 160-7213WIR TEP 160-7215WIR TEP 160-7216WIR TEP 160-7218WIR TEP 160-xx10WIR TEP 160-xx11WIR TEP 160-xx12WIR TEP 160-xx13WIR TEP 160-xx15WIR TEP 160-xx16WIR TEP 160-xx18WIR All All www.tracopower.com Typ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.795 5.75 13.80 17.25 27.60 32.20 55.20 120 Max Unit 40.0 28.0 12.0 9.5 6.0 5.0 3.0 40.0 30.0 13.0 10.0 6.5 5.5 3.2 43.0 32.0 15.0 12.0 7.5 6.5 3.8 121’000 56’000 10’000 6’300 2’500 1’700 620 121’000 60’000 10’800 6’600 2’700 1’900 660 130’000 64’000 12’500 8’000 3’100 2’300 790 4.29 6.50 15.60 19.50 31.20 36.40 62.40 150 A A A A A A A A A A A A A A A A A A A A A μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF μF Vdc Vdc Vdc Vdc Vdc Vdc Vdc % FL Automatics recovery Date: June 27th, 2012 / Rev.: 1.2 / Page 3 / 70 Application Note 182W, Single Output Input Specification Device Parameter Operating Input Voltage TEP 160-2410WIR TEP 160-2411WIR TEP 160-24xxWIR TEP 160-48xxWIR TEP 160-72xxWIR TEP 160-24xxWIR TEP 160-48xxWIR TEP 160-72xxWIR TEP 160-24xxWIR TEP 160-48xxWIR TEP 160-72xxWIR TEP 160-2410WIR TEP 160-2411WIR TEP 160-2412WIR TEP 160-2413WIR TEP 160-2415WIR TEP 160-2416WIR TEP 160-2418WIR TEP 160-4810WIR TEP 160-4811WIR TEP 160-4812WIR TEP 160-4813WIR TEP 160-4815WIR TEP 160-4816WIR TEP 160-4818WIR TEP 160-7210WIR TEP 160-7211WIR TEP 160-7212WIR TEP 160-7213WIR TEP 160-7215WIR TEP 160-7216WIR TEP 160-7218WIR Input Voltage Continuous Input Voltage Transient (1sec maximum) Input Standby Current (Vin = Vin nom, No Load, TA = 25℃) Input reflected ripple current (see page 49) (5 to 20MHz, 12μH source impedance) Start Up Time (Vin = Vin nom and constant resistive load) Power up Remote ON/OFF Remote ON/OFF (see page 61) (The CTRL pin voltage is referenced to -INPUT) Positive logic (Standard) : Device code without Suffix DC-DC ON (Short) DC-DC OFF (Open) Positive logic (Option) : Device code with Suffix “-N” DC-DC ON (Open) DC-DC OFF (Short) Remote Off state Input Current Input Current of Remote Control Pin SYNC pin output signal (see page 62) Optional Created by Traco Electronic AG Min Typ Max Unit 9 9 8.5 16.5 43 24 24 24 48 110 36 36 36 75 160 40 80 165 50 100 185 20 25 25 25 25 25 25 15 15 20 20 20 20 25 10 10 10 10 10 10 10 Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA 50 mA pk-pk All All 75 75 100 100 mS mS 3 0 12 1.2 Vdc Vdc 0 3 1.2 12 Vdc Vdc mA mA V All 3 All www.tracopower.com -0.5 -0.3 1 6 Date: June 27th, 2012 / Rev.: 1.2 / Page 4 / 70 Application Note 182W, Single Output Parameter Input Specification (continued) Device Min Under Voltage Lockout Turn-on Threshold Under Voltage Lockout Turn-off Threshold Parameter Efficiency (Vin = Vin(nom) , Full Load , TA = 25℃) Isolation voltage for 1 minute (Basic Insulation) Input to Output Input (Output) to Case Isolation resistance Isolation capacitance Switching Frequency Weight MTBF Bellcore TR-NWT-000332, TC = 40°C, MIL-HDBK-217F Over Temperature Protection (see page 59) Case material Base material Potting material Dimensions Created by Traco Electronic AG TEP 160-24xxWIR TEP 160-48xxWIR TEP 160-72xxWIR TEP 160-24xxWIR TEP 160-48xxWIR TEP 160-72xxWIR 7.3 15.5 33.0 General Specification Device Min TEP 160-2410WIR TEP 160-2411WIR TEP 160-2412WIR TEP 160-2413WIR TEP 160-2415WIR TEP 160-2416WIR TEP 160-2418WIR TEP 160-4810WIR TEP 160-4811WIR TEP 160-4812WIR TEP 160-4813WIR TEP 160-4815WIR TEP 160-4816WIR TEP 160-4818WIR TEP 160-7210WIR TEP 160-7211WIR TEP 160-7212WIR TEP 160-7213WIR TEP 160-7215WIR TEP 160-7216WIR TEP 160-7218WIR All All All All All All Typ Typ Max Unit 9 18 43 8.1 16.3 36.0 Vdc Vdc Vdc Vdc Vdc Vdc Max Unit 88 90 90 91 90 90 90 89 91 91 91 91 91 91 88 90 90 90 90 90 90 % % % % % % % % % % % % % % % % % % % % % 250 105 Vdc Vdc GΩ PF KHz G 2250 1600 1 225 2500 275 6 All TEP 160-24xxWIR TEP 160-48xxWIR TEP 160-72xxWIR TEP 160-24xxWIR TEP 160-48xxWIR TEP 160-72xxWIR All All www.tracopower.com 1.010×10 4 7.416×10 120 hours hours °C Metal Metal Aluminum base-plate with plastic case FR4 PCB FR4 PCB FR4 PCB Silicon (UL94-V0) 2.40 x 2.28 x 0.50 (61.0 x 57.9 x 12.7) Inch (mm) Date: June 27th, 2012 / Rev.: 1.2 / Page 5 / 70 Application Note 182W, Single Output Parameter Environmental Specification Model Min Operating case temperature Storage temperature Over temperature protection (see page 59) Thermal impedance* without Heat-sink with Heat-sink with Terminal block Only mount on the iron base-plate Relative humidity Thermal shock Vibration All All All All All Typ -40 -55 Max Unit 115 125 °C °C °C °C/ Watt °C/ Watt °C/ Watt °C/ Watt % RH 120 6.1 4.6 4.4 2.8 5 95 EN 61373,MIL-STD-810F EN 61373,MIL-STD-810F * Test condition with vertical direction by natural convection 20FLM EMC characteristic** EMI (see page 52 - 56) EN 55011, EN 55022 ESD EN 61000-4-2 Radiated immunity Fast transient Surge Conducted immunity EN 61000-4-3 EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 Class A Air: ±8KV Contact: ±6KV 20V/m ±2KV ±2KV 10Vr.m.s Performance Criteria A Performance Criteria A Performance Criteria A Performance Criteria A Performance Criteria A ** The TEP 160WIR series meets EMC characteristics only with external components connected before the input pin to the converter. If customer need to comply with EN 61000-4-4, EN 61000-4-5 only, an external input filter capacitor is required. For the TEP 160-24xxWIR and TEP 160-48-xxWIR we recommend to use 2 pcs of aluminum electrolytic capacitors (Nippon Chemi-Con KY series, 220μF/100V, ESR 48mΩ) connected in parallel. For the TEP 160-72-xxWIR we recommend to use 3 pcs of aluminum electrolytic capacitors (Ruby-con BXF series, 100μF/250V) connected in parallel. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 6 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-2410WIR (order on demand) Vin= 9V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 9V Vin= 12V Vin= 24V Vin= 36V 80 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 9 12 15 21 24 27 18 INPUT VOLTAGE(V) 30 33 36 Efficiency versus Input Voltage. Full Load -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 7 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-2410WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 8 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-2411WIR (order on demand) Vin= 9V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 9V Vin= 12V Vin= 24V Vin= 36V 80 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 9 12 15 18 21 24 27 INPUT VOLTAGE(V) 30 33 36 Efficiency versus Input Voltage. Full Load -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 9 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-2411WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 10 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-2412WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 12 15 27 21 24 18 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 36 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 11 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-2412WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 12 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-2413WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 12 15 27 21 24 18 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 36 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 13 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-2413WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 14 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-2415WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 12 15 27 21 24 18 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 36 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 15 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-2415WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 16 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-2416WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 12 15 27 21 24 18 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 36 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 17 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-2416WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 18 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-2418WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 8.5 12 15 27 21 24 18 INPUT VOLTAGE(V) 30 33 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 8.5V Vin= 12V Vin= 24V Vin= 36V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 36 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 19 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-2418WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 20 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-4810WIR (order on demand) 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 80 Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 16.5 24 30 36 60 42 48 54 INPUT VOLTAGE(V) 66 72 75 Efficiency versus Input Voltage. Full Load -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 21 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-4810WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 22 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-4811WIR (order on demand) 100 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 24 30 36 54 60 42 48 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 75 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 23 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-4811WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 24 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-4812WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 24 30 36 54 60 42 48 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 75 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 25 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-4812WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 26 / 70 Application Note 182W, Single Output Characteristic Curve 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-4813WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 24 30 36 54 60 42 48 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 75 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 27 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-4813WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 28 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-4815WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 24 30 36 54 60 42 48 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 75 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 29 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-4815WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 30 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-4816WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 24 30 36 54 60 42 48 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 75 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 31 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-4816WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 32 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-4818WIR 22.5 21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 16.5 24 30 36 54 60 42 48 INPUT VOLTAGE(V) 66 72 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 16.5V Vin= 24V Vin= 48V Vin= 75V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 75 Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 33 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-4818WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 34 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-7210WIR (order on demand) 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 43 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 35 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-7210WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 36 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-7211WIR (order on demand) 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 43 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 37 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-7211WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 38 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-7212WIR 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 43 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 39 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-7212WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 40 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-7213WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 43 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 41 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-7213WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 42 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-7215WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 Efficiency versus Output Current 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 43 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) Vin= 43V Vin= 72V Vin= 110V Vin= 160V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load 80 -40 -20 40 60 80 0 20 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 43 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-7215WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 44 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-7216WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 43 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 45 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-7216WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 46 / 70 Application Note 182W, Single Output Characteristic Curves 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V 10 20 30 40 50 60 70 % of FULL LOAD 80 90 Power Dissipation(W) EFFICIENCY(%) All test conditions are at 25°C. The figures are identical for TEP 160-7218WIR 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 100 10 20 30 40 50 60 70 % of FULL LOAD 80 90 100 Power Dissipation versus Output Current 120 100 Iout= 100% F.L Iout= 50% F.L Iout= 25% F.L 43 50 60 70 OUTPUT POWER(%) EFFICIENCY(%) Efficiency versus Output Current 95.0 92.5 90.0 87.5 85.0 82.5 80.0 77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 Vin= 43V Vin= 72V Vin= 110V Vin= 160V Mount on 2U iron base-plate (dimension 19” X 3.5” X 0.063”) 20LFM (natural convection) Terminal block 20LFM (natural convection) DC/DC module only 100LFM 200LFM 300LFM 400LFM 500LFM 60 40 20 0 80 90 100 110 120 130 140 150 160 INPUT VOLTAGE(V) Efficiency versus Input Voltage. Full Load 80 -40 -20 20 0 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current versus Ambient Temperature with Airflow, Vin = Vin nom 120 OUTPUT POWER(%) 100 80 60 40 20LFM (natural convection) 100LFM 200LFM 300LFM 400LFM 500LFM 20 0 -40 -20 0 20 40 60 80 AMBIENT TEMPERATURE,TA(℃) 100 120 Derating Output Current Versus Ambient Temperature with Heat-Sink and Airflow, Vin = Vin nom Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 47 / 70 Application Note 182W, Single Output Characteristic Curves All test conditions are at 25°C. The figures are identical for TEP 160-7218WIR (continued) Typical Output Ripple and Noise. Vin = Vin nom, Full Load Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin = Vin nom Typical Input Start-Up and Output Rise Characteristic Vin = Vin nom, Full Load Using ON/OFF Voltage Start-Up and Vout Rise Characteristic Vin = Vin nom, Full Load Conduction Emission of EN55022 Class A Vin = Vin nom, Full Load Conduction Emission of EN55022 Class B Vin = Vin nom, Full Load Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 48 / 70 Application Note 182W, Single Output Testing Configurations Input reflected-ripple current measurement test up TEP 160-24xxWIR Component L1 C1 & C2 Value 12μH 330μF Voltage ---50V TEP 160-48xxWIR Component L1 C1 & C2 Value 12μH 220μF Voltage ---100V TEP 160-72xxWIR Component L1 C1 & C2 Value 12μH 68μF Voltage ---200V Reference NIPPON CHEMI-CON : KY series Reference NIPPON CHEMI-CON : KY series Reference Ruby-con : BXF series Peak to peak output ripple & noise measurement test up TEP 160-xx10WIR, TEP 160-xx11WIR, TEP 160-xx12WIR & TEP 160-xx13WIR Component Value Voltage Reference C1 1μF 25V TDK: C3216X7R1E105 C2 22μF 25V SANYO: 25TQC22MV Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 49 / 70 Application Note 182W, Single Output Testing Configurations Peak to peak output ripple & noise measurement test up TEP 160-xx15WIR & TEP 160-xx16WIR Component Value C2 4.7μF Voltage 50V Reference TDK: C4532X7R1H475M TEP 160-xx18WIR Component C2 Voltage 100V Reference TDK: C4532X7R2A225M Value 2.2μF Output voltage and efficiency measurement test up Note: All measurements are taken at the module terminals. V ×I Efficiency = OUT OUT VIN × I IN Created by Traco Electronic AG × 100% www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 50 / 70 Application Note 182W, Single Output Testing Configurations Output voltage and efficiency measurement test up Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 51 / 70 Application Note 182W, Single Output EMI considerations Suggested schematic for EN55011,EN55022 conducted emission Class A limits Recommended Layout With Input Filter Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 52 / 70 Application Note 182W, Single Output EMI considerations To meet conducted emissions EN55011, EN55022 CLASS A needed the following components: TEP 160-24xxWIR Component C1, C2, C4 C3, C6, C7 C8, C9, C10, C11, C13 C12 L1 TEP 160-48xxWIR Component C1, C2, C4 C3, C6, C7 C8, C9, C10, C11, C13, C12 L1 TEP 160-72xxWIR Component C1, C2, C4 C3, C6, C7 C8, C9, C10, C11, C13, C12 L1 Value 330μF 4.7μF 1000pF 3300pF 156μH ±35% Voltage 50 V 50 V 3 KV 3 KV --- Reference Nippon Chemi-Con KY series 1812 MLCC 1808 MLCC 1808 MLCC Common Choke, P/N: TCK-086 Value 100μF 2.2μF 1000pF 224μH ±35% Voltage 100 V 100 V 3 KV --- Reference Nippon Chemi-Con KY series 1812 MLCC 1808 MLCC Common Choke, P/N: TCK-087 Value 100uF 1μF 1000pF 521µH ±35% Voltage 250V 250 V 3 KV ---- Reference Rubycon BXF series 1812 MLCC 1808 MLCC Common Choke, P/N: TCK-088 Note: 1. Common mode choke have been define and show in page 56. 2. While testing, connect four screw bolts to shield plane, the EMI could be reduced. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 53 / 70 Application Note 182W, Single Output EMI considerations Suggested schematic for EN55011,EN55022 conducted emission Class B limits Recommended Layout With Input Filter Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 54 / 70 Application Note 182W, Single Output EMI considerations To meet conducted emissions EN55011, EN55022 CLASS B needed the following components: TEP 160-24xxWIR Component C1, C3, C6 C2, C4, C5, C7, C8 C9, C10, C13, C14 C11 C12 L1, L2 Value 330μF 4.7μF 10nF 1000pF 4700pF 156μH ±35% Voltage 50 V 50 V 2 KV 3 KV 3 KV ---- Reference Nippon Chemi-Con KY series 1812 MLCC 1812 MLCC 1808 MLCC 1812 MLCC Common Choke, P/N: TCK-086 TEP 160-48xxWIR Component C1, C3, C6 C2, C4, C5, C7, C8 C9, C10, C13, C14 C11 C12 C15 L1, L2 Value 100μF 2.2μF 10nF 2200pF 4700pF 1000pF 224μH ±35% Voltage 100 V 100 V 2 KV 3 KV 3 KV 2 KV ---- Reference Nippon Chemi-Con KY series 1812 MLCC 1812 MLCC 1808 MLCC 1812 MLCC 1808 MLCC Common Choke, P/N: TCK-087 TEP 160-72xxWIR Component C1, C3, C6 C2, C4, C5, C7, C8 C9, C10 C13, C14, C15 C11, C12 L1, L2 Value 100μF 1μF 2200pF 1000pF 2200pF 521μH ±35% Voltage 250 V 250 V 2 KV 2 KV 3 KV ---- Reference Rubycon BXF series 1812 MLCC 1808 MLCC 1808 MLCC 1808 MLCC Common Choke, P/N: TCK-088 Note: 1. Common mode choke have been define and show in page 56. 2. While testing, connect four screw bolts to shield plane, the EMI could be reduced. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 55 / 70 Application Note 182W, Single Output EMI considerations These common mode choke have been define as follow: ■ TCK-086 Inductance: 156μH±35% Impedance: 2.5mΩ, max Rated current: 21A, max. ■ TCK-087 Inductance: 224μH±35% Impedance: 3.6mΩ, max Rated current: 15.4A, max. TBD All dimensions in millimeters ■ TCK-088 Inductance: 521μH±35% Impedance: 12mΩ, max Rated current: 7.7A, max Measurement Instrument (Test condition): ■ L: HP 4263B LCR Meter (100KHz / 100mV) ■ DCR: HIOKI 3540mΩ HITESTER ■ IDC: Agilent 34401A Meter Recommended through hole: Φ1.0mm Output Voltage Adjustment Output voltage is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external resistor between the TRIM pin and either the +SENSE or -SENSE pins. With an external resistor between the TRIM and -SENSE pin, the output voltage set point decreases. With an external resistor between the TRIM and +SENSE pin, the output voltage set point increases. Maximum output deviation is +10% inclusive of remote sense. (Please refer to page 58, remote sense). The value of external resistor can be obtained by equation or trim table shown in next page. The external TRIM resistor needs to be at least 1/8W resistors. TRIM UP Created by Traco Electronic AG TRIM DOWN www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 56 / 70 Application Note 182W, Single Output Output Voltage Adjustment TRIM EQUATION (100 + ∆%) 100 + 2∆% V RU = OUT − KΩ ∆% 1.225∆% 100 RD = − 2 KΩ ∆% TRIM TABLE 3 3.399 57.156 TEP 160-xx10WIR 4 5 6 3.432 3.465 3.498 43.041 34.571 28.925 7 3.531 24.892 8 3.564 21.867 9 3.597 19.515 10 3.630 17.633 Trim up (%) 1 2 3 VOUT (Volts) = 5.05 5.10 5.15 RU (KΩ) = 310.245 156.163 104.803 TEP 160-xx11WIR 4 5 6 5.20 5.25 5.30 79.122 63.714 53.442 7 5.35 46.105 8 5.40 40.602 9 5.45 36.322 10 5.50 32.898 TEP 160-xx12WIR Trim up (%) 1 2 3 4 5 6 7 8 9 VOUT (Volts) = 12.12 12.24 12.36 12.48 12.60 12.72 12.84 12.96 13.08 RU (KΩ) = 887.388 447.592 300.993 227.694 183.714 154.395 133.452 117.745 105.528 10 13.20 95.755 Trim up (%) 1 VOUT (Volts) = 3.333 RU (KΩ) = 170.082 2 3.366 85.388 TEP 160-xx13WIR Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts) = 15.15 15.30 15.45 15.60 15.75 15.90 16.05 16.20 16.35 16.50 RU (KΩ) = 1134.735 572.490 385.075 291.367 235.143 197.660 170.886 150.806 135.188 122.694 TEP 160-xx15WIR Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts) = 24.24 24.48 24.72 24.96 25.20 25.44 25.68 25.92 26.16 26.40 RU (KΩ) = 1876.776 947.184 637.320 482.388 389.429 327.456 283.190 249.990 224.168 203.510 TEP 160-xx16WIR Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts) = 28.28 28.56 28.84 29.12 29.40 29.68 29.96 30.24 30.52 30.80 RU (KΩ) = 2206.571 1113.714 749.429 567.286 458.000 385.143 333.102 294.071 263.714 239.429 TEP 160-xx18WIR Trim up (%) 1 2 3 4 5 6 7 8 9 10 VOUT (Volts) = 48.48 48.96 49.44 49.92 50.40 50.88 51.36 51.84 52.32 52.80 RU (KΩ) = 3855.551 1946.367 1309.973 991.776 800.857 673.578 582.665 514.480 461.447 419.020 Trim down (%) 1 RD (KΩ) = 98.000 Trim down (%) 11 RD (KΩ) = 7.091 Created by Traco Electronic AG 2 48.000 12 6.333 3 31.333 13 5.692 All TEP 160-xxxxWIR 4 5 6 23.000 18.000 14.667 14 15 16 5.143 4.667 4.250 www.tracopower.com 7 12.286 17 3.882 8 10.500 18 3.556 9 9.111 19 3.263 10 8.000 20 3.000 Date: June 27th, 2012 / Rev.: 1.2 / Page 57 / 70 Application Note 182W, Single Output Remote Sense To minimize the effects of distribution losses by regulating the voltage at the Remote Sense pin. The voltage between the SENSE pin and OUTPUT pin must not exceed 10% of Vout, i.e. [ +OUTPUT to –OUTPUT ] – [ +SENSE to –SENSE ] < 10% Vout The voltage between +OUTPUT and –OUTPUT terminals must not exceed the minimum output overvoltage protection threshold. This limit includes any increase in voltage due to remote sense compensation and trim function. If not using the remote sense feature to regulate the output at the point of load, then connect +SENSE to +OUTPUT and –SENSE to –OUTPUT. Remote Sense circuit configuration Input Source Impedance The power modules will operate as specifications without external components, assuming that the source voltage has a very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor The TEP 160-24xxWIR and TEP 160-48xxWIR recommended Nippon Chemi-Con KY series, 100μF/100V, ESR 110mΩ. The TEP 160-72xxWIR recommended Ruby-con BXF series, 68μF/200V. Output Over Current Protection When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 120~150 percent of rated current for TEP 160WIR series. Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods. One of the problems resulting from over current is that excessive heat may be generated in power devices, especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged. The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power supply will start up and operate normally, otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower. The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected, or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an over-current event is detected, or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 58 / 70 Application Note 182W, Single Output Short Circuitry Protection Continuous, hiccup and auto-recovery mode. During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety in this condition. Output Over Voltage Protection The output over-voltage protection consists of circuitry that monitors the voltage on the output terminals. If the voltage on the output terminals exceeds the over-voltage protection threshold, then the module enter the non-latch hiccup mode. Over Temperature Protection Sufficient cooling is needed for the power module and provides more reliable operation of the unit. If a fault condition occurs, the temperature of the unit will be higher. And will damage the unit. For protecting the power module, the unit includes over-temperature protection circuit. When the temperature of the case is to the protection threshold, the unit enters “Hiccup” mode. And it will auto restart when the temperature is down. Thermal Consideration TEP 160WIR is a high power density product, it operates in a variety of thermal environments. However, sufficient cooling should be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling can be verified by measuring the point as the figure below. The case temperature at this location is -40 ~115°C. When operating, although the maximum point temperature of the power modules is 115°C, we suggest to keep the test point temperature at or below 80°C for extremely high reliability, so the module can be in stable operation and get better lifecycle. Measurement shown in inches (mm) TOP VIEW The suggested heat dissipation modes as below: 1. Add the heat-sink The main function of heat-sink is to add the touch surface of heat source for air. Under the suitable air convection condition (including natural convection), that can reduce the heat resistance θca apparently. After combination of the heat resistance θca, it’s the sub-total of θcp, θph and θha. Because the air gets big heat resistance under no air convection, the θha which touch the air is the main heat resistance. Suggestions as below: (1) θca = θcp + θph + θha. In order to let the heat-sink reducing the θha in big range, we suggest to use the thermal pad with good heat conduction and flushing performance. (2) The best layout for heat sink is to put the fin of the heat-sink vertical to the air, and this will cause a good “stack effect”. So, we can have the best natural air convection condition. When there’s no force air to help the heat dissipation, this point is critical. 2. Force Air Normally, we use the fan for the force air. By the air movement rapidly, it can bring the heat energy from the case surface. This is a good solution to reduce the heat resistance θca of the module. When the air speed is bigger, the heat resistance is smaller, and the heat dissipation performance is better. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 59 / 70 Application Note 182W, Single Output Heat Sink Heat-sink for lower temperature and higher reliability of the module. Order Code: TEP-HS1 Order code: TEP-HS1 Includes heatsink with thermal pad and mounting screws. To order modules with mounted heatsink, please ask factory. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 60 / 70 Application Note 182W, Single Output Remote ON/OFF Control The CTRL Pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high or low level of the pin referenced to -INPUT. The switch can be open collector transistor, FET and Photo-Couple. The switch must be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the CTRL pin signal maximum voltage is allowable leakage current of the switch at 12V is 0.5 mA. Remote ON/OFF Implementation Circuits Isolated-Closure Remote ON/OFF Level Control Using TTL Output Level Control Using Line Voltage There are two remote control options available, positive logic and negative logic. a. The Positive logic structure turned on of the DC/DC module when the CTRL pin is at high-level logic and low-level logic is turned off it. When TEP 160-xxxxWIR module is turned off at Low-level logic When TEP 160-xxxxWIR module is turned on at High-level logic b. The Negative logic structure turned on of the DC/DC module when the CTRL pin is at low-level logic and turned off when at high-level logic. When TEP 160-xxxxWIR module is turned on at Low-level logic Created by Traco Electronic AG When TEP 160-xxxxWIR module is turned off at High-level logic www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 61 / 70 Application Note 182W, Single Output Synchronous Pin (optional) 1. Multiple TEP 160-xxxxWIR series module can be synchronized together simply by connecting the module SYNC pins together. Synchronous Circuits Recommended Layout NOTE: (1) Care should be taken to ensure the ground potential differences between modules are minimized. (2) In this configuration all of the modules will be synchronized to the highest frequency module. (3) Up to three modules can be synchronized using this technique. 2. The SYNC pin can be used to synchronize the internal oscillator to an external clock. NOTE: (1) The internal oscillator can be synchronized to an external clock with an external pull-down device. An open drain output is the recommended interface between the external clock to the SYNC pin. (2) The clock pulse width must be greater than 15 ns. (3) The external clock frequency must be a higher than the converter frequency. (Max. frequency < 280kHz) (4) Sync Threshold (falling) voltage is 1.4V typical. (5) Care should be taken to ensure the ground potential differences between modules are minimized. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 62 / 70 Application Note 182W, Single Output Mechanical Data Of The Standard Product Metal Case Mechanical Drawing Plastic Case Mechanical Drawing 1. All dimensions in inch (mm) 2. Tolerance: x.xx ±0.02 (x.x ±0.5) x.xxx ±0.01 (x.xx ±0.25) 3. Pin pitch tolerance: ±0.01 (0.25) 4. Pin dimension tolerance: ±0.004(0.1) TERMINAL CONNECTION Pin Define Diameter 1 - INPUT 0.04 inch EXTERNAL OUTPUT TRIMMING 2 CASE 0.04 inch Output can be externally trimmed by using the 3 CTRL 0.04 inch method shown below. 4 + INPUT 0.04 inch 5 - OUTPUT 0.08 inch 6 - SENSE 0.04 inch 7 TRIM 0.04 inch 8 + SENSE 0.04 inch 9 + OUTPUT 0.08 inch 10 SYNC (Option) 0.04 inch TRIM UP TRIM DOWN 6 7 RU 8 Created by Traco Electronic AG RD 7 www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 63 / 70 Application Note 182W, Single Output Mechanical Data Of The Terminal Block Type 1. Terminal Block without EMC Filter, Suffix: -CM Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be screwed into 2.8mm maximum. Customer shall take care as select the screw to avoid damaging the converter. TERMINAL CONNECTION EXTERNAL OUTPUT TRIMMING Output can be externally trimmed by using the method shown below. TRIM UP TRIM DOWN 6 7 RU 8 Created by Traco Electronic AG RD 7 Pin Define Wire Range 1 - INPUT 8AWG to 9AWG 2 CASE 14AWG to 18AWG 3 CTRL 14AWG to 18AWG 4 + INPUT 8AWG to 9AWG 5 - OUTPUT 4AWG to 5AWG 6 - SENSE 14AWG to 18AWG 7 TRIM 14AWG to 18AWG 8 + SENSE 14AWG to 18AWG 9 + OUTPUT 4AWG to 5AWG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 64 / 70 Application Note 182W, Single Output Mechanical Data Of The Terminal Block Type 2. Terminal Block with EMC Filter (EN55011, EN55022 Class A), Suffix: -CMF Terminal Connection see above! Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be screwed into 2.8mm maximum. 3. Terminal Block with Din Rail Clip TEP-MK1 (DIN-Rail incl. screws) Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 65 / 70 Application Note 182W, Single Output Recommended Pad Layout All dimensions in inch (mm) Tolerances : x.xxx ± 0.010 (x.xx ± 0.25 ) PAD SIZE (LEAD FREE RECOMMENDED) ± OUTPUT: THROUGH HOLE: TOP VIEW PAD: BOTTOM VIEW PAD: OTHERS: THROUGH HOLE: TOP VIEW PAD: BOTTOM VIEW PAD: Created by Traco Electronic AG Ø 2.3mm Ø 2.9mm Ø 3.6mm Ø 1.3mm Ø 1.9mm Ø 2.6mm www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 66 / 70 Application Note 182W, Single Output Soldering Considerations Lead free wave solder profile for TEP 160WIR series Zone Preheat zone Actual heating Reference Parameter Rise temp. speed: 3°C/sec max. Preheat temperature: 100~130°C Peak temperature: 250~260°C Peak time (T1+T2 time): 4~6 sec Reference Solder: Sn-Ag-Cu , Sn-Cu Hand Welding: Soldering iron: Power 90W Welding Time: 2~4 sec Temperature: 380~400°C Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 67 / 70 Application Note 182W, Single Output Packaging Information Dimensions shown in millimeters Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 68 / 70 Application Note 182W, Single Output Part Number Structure Model Number TEP 160-2410WIR Input Range 9 ~ 36 Vdc Output Voltage 3.3Vdc Output Current Max. Load 40.0A Input Current (1) No Load 25mA TEP 160-2411WIR 9 ~ 36 Vdc 5Vdc 28.0A 30mA 90 TEP 160-2412WIR TEP 160-2413WIR 8.5 ~ 36 Vdc 8.5 ~ 36 Vdc 12Vdc 15Vdc 12.0A 9.5A 30mA 30mA 90 91 TEP 160-2415WIR TEP 160-2416WIR 8.5 ~ 36 Vdc 8.5 ~ 36 Vdc 24Vdc 28Vdc 6.0A 5.0A 35mA 40mA 90 90 Efficiency (%) 88 TEP 160-2418WIR 8.5 ~ 36 Vdc 48Vcd 3.0A 45mA 90 TEP 160-4810WIR TEP 160-4811WIR 16.5 ~ 75 Vdc 16.5 ~ 75 Vdc 3.3Vdc 5Vdc 40.0A 30.0A 20mA 20mA 89 91 TEP 160-4812WIR TEP 160-4813WIR 16.5 ~ 75 Vdc 16.5 ~ 75 Vdc 12Vdc 15Vdc 13.0A 10.0A 20mA 20mA 91 91 TEP 160-4815WIR TEP 160-4816WIR 16.5 ~ 75 Vdc 16.5 ~ 75 Vdc 24Vdc 28Vdc 6.5A 5.5A 20mA 25mA 91 91 TEP 160-4818WIR 16.5 ~ 75 Vdc 48Vcd 3.2A 25mA 91 TEP 160-7210WIR TEP 160-7211WIR 43 ~ 160 Vdc 43 ~ 160 Vdc 3.3Vdc 5Vdc 43.0A 32.0A 10mA 10mA 88 90 TEP 160-7212WIR TEP 160-7213WIR 43 ~ 160 Vdc 43 ~ 160 Vdc 12Vdc 15Vdc 15.0A 12.0A 10mA 10mA 90 90 TEP 160-7215WIR 43 ~ 160 Vdc 24Vdc 7.5A 10mA 90 TEP 160-7216WIR TEP 160-7218WIR 43 ~ 160 Vdc 43 ~ 160 Vdc 28Vdc 48Vcd 6.5A 3.8A 15mA 15mA 90 90 (2) Note 1. Typical value at nominal input and no load. Note 2. Typical value at nominal input and full load. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 69 / 70 Application Note 182W, Single Output Safety and Installation Instruction Fusing Consideration Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast blow fuse with maximum rating of 30A for TEP 160-24xxWIR, 15A for TEP 160-48xxWIR and 7A for TEP 160-72xxWIR. Based on the information provided in this data sheet on Inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the fuse manufacturer’s data for further information. MTBF and Reliability The MTBF of TEP 160WIR series DC/DC converters has been calculated using Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40°C (Ground fixed and controlled environment). The resulting figure for MTBF is 1’010’000 hours. MIL-HDBK 217F NOTICE2 FULL LOAD, Operating Temperature at 25°C. The resulting figure for MTBF is 74’160 hours. Created by Traco Electronic AG www.tracopower.com Date: June 27th, 2012 / Rev.: 1.2 / Page 70 / 70