LED Drivers for LCD Backlights Multifunction Backlight LED Drivers for Small LCD Panels (Charge Pump Type) BD6081GU, BD6081GVW No.11040EAT27 ●Description BD6081GU / BD6081GVW is compound LED Driver which is the most suitable for the cellular phone. Main LCD Back Light LED Driver (Max 4 Light), Sub LCD Back Light LED Driver (Max 2 Light), 2 system RGB LED Drivers, 2Ch LDO (2.8V/1.8V) included. This is PMIC (Power Management IC) that is the most suitable for "the indication part" of the cellular phone.A charge pump form is adopted, and a coil is never used for the part DC/DC. This IC achieves compact size with the chip size package (VCSP85H3). [BD6081GU] This IC solves a mounting problem by BGA package (SBGA063W060). [BD6081GVW] ●Features 1) Main LCD Back Light LED Driver (Max 4 Light) 4 Lighting / 3 Lighting can be chosen (register setting) 2) Sub LCD Back Light LED Driver (Max 2 Light) 2 Lighting / 1 Lighting can be chosen (register setting) 3) RGB LED Driver (2 System) Slope control is built in.(2 system independence can be controlled.) LED connection (for G1LED,G2LED,B1LED,B2LED) can be set up in the battery or the DC/DC output.(register setting) LED connection (for R1LED,R2LED) can be set up in the battery only. 4) 2ch Series Regulator 2.8V output Iomax=150mA 1.8V output Iomax=150mA(normal mode) 1.8V output low current consumption mode / normal mode Switching is possible. (The outside pin control / register setting) 5) Charge Pump DC/DC Soft start Functions Over voltage protection (Auto-return type) Over current protection (Auto-return type) 6) Thermal shutdown (Auto-return type) 2 7) I C BUS Fast-mode (max 400kHz)Writing *This chip is not designed to protect itself against radioactive rays. *This material may be changed on its way to designing. *This material is not the specification. ●Absolute Maximum Ratings (Ta=25 ℃) Parameter Symbol Ratings Unit Maximum Applied voltage VMAX 7 V Pd 1725 note1) mW Power Dissipation BD6081GU Pd 1060 note2) mW Operating Temperature Range BD6081GVW Topr -25 ~ +85 ℃ Storage Temperature Range Tstg -55 ~ +150 ℃ Ratings Unit VBAT 2.7 ~ 5.5 V VIO 1.65 ~ 3.3 V cote1)Power dissipation deleting is 13.8mW/ ℃, when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard)) Note2)Power dissipation deleting is 8.48mW/ ℃, when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard)) ●Operating conditions (VBAT≥VIO, Ta=-25~85 ℃) Parameter VBAT input voltage VIO pin voltage www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Symbol 1/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Condition 【Circuit Current】 VBAT Circuit current 1 IBAT1 - 0.1 3.0 μA RESET=0V, VIO=0V VBAT Circuit current 2 IBAT2 - 0.5 3.0 μA RESET=0V, VIO=1.8V VBAT Circuit current 3 IBAT3 - 6.2 9.5 μA REG2 low current consumption mode, Io=0mA VBAT Circuit current 4 IBAT4 - 100 150 μA REG2 normal mode, Io=0mA VBAT Circuit current 5 IBAT5 - 140 210 μA REG1, REG2 normal mode, Io=0mA VBAT Circuit current 6 IBAT6 - 63 95 mA DC/DC x1mode, Io=60mA,VBAT=4.0V VBAT Circuit current 7 IBAT7 - 95 143 mA VBAT Circuit current 8 IBAT8 - 125 188 mA DC/DC x1.5mode, Io=60mA,VBAT=3.6V DC/DC x2 mode, Io=60mA,VBAT=2.7V 【LED Driver】 LED current Step1 ILEDSTP1 32 Step MLED1~4, SLED1~2 LED current Step2 ILEDSTP2 64 Step R1LED, G1LED, B1LED,R2LED, G2LED, B2LED (with 0mA setting) LED Maximum setup current 1 IMAX1 - - 32 mA MLED1~4, SLED1~2, ISET=120kΩ LED Maximum setup current 2 IMAX2 - - 31.5 mA R1LED, G1LED, B1LED,R2LED, G2LED, B2LED, ISET=120kΩ LED current accurate ILED 18 20 22 mA LED current Matching ILEDMT - 5 10 % LED OFF Leak current ILKLED - - 1.0 μA - V ILED=20mA, ISET=120kΩ Between MLED1~4 Between SLED1~2 Between R1LED, G1LED and B1LED Between R2LED, G2LED and B2LED 【DC/DC(Charge Pump)】 Output voltage V℃P Current Load IOUT - - 255 mA fosc 0.8 1.0 1.2 MHz OVP - 6.0 6.5 V OCP - 250 375 mA Oscillator frequency Over voltage protection detect voltage Over current protection detect current 【REG1】 Vf+0.15 Vf+0.2 Vf is LED forward voltage VBAT≥3.2V, VOUT=4V VOUT=0V Vo1 2.716 2.80 2.884 V Io=150mA, VBAT≥3.1V I/O voltage difference Vsat1 - 0.2 0.3 V VBAT=2.5V, Io=150mA Load stability ΔVo11 - 10 60 mV Io=1~150mA Input stability ΔVo12 - 10 60 mV VBAT=3.2~5.5V, Io=150mA RR1 30 40 - dB f=100Hz, Vin=200mVp-p Vo=0V Output voltage Ripple Rejection Ratio Short circuit current limit Ilim01 - 225 450 mA ROFF1 - 1.0 1.5 kΩ Output voltage 1 Vo21 1.74 1.8 1.86 V Output voltage 2 Vo22 1.71 1.8 1.89 V Load stability ΔVo21 - 10 60 mV Io=1~150mA Input stability ΔVo22 - 10 60 mV VBAT=3.2~5.5V, Io=150mA RR2 30 40 - dB f=100Hz, Vin=200mVp-p Ilim02 - 225 450 mA Vo=0V ROFF2 - 1.0 1.5 kΩ Discharge resister at OFF 【REG2】 Ripple Rejection Ratio Short circuit current limit Discharge resister at OFF www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2/35 Io=150mA (normal mode) Io=100μA (low current consumption mode) 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Condition 【I2C Input (SDA, SCL)】 LOW level input voltage VIL -0.3 - 0.25 ×VIO V HIGH level input voltage VIH 0.75 ×VIO - VBAT+0.3 V Hysteresis of Schmitt trigger input LOW level output voltage (SDA) at 3mA sink current Vhys 0.05 ×VIO - - V VOL 0 - 0.3 V lin -10 - 10 μA Input current each I/O pin Input voltage = 0.1×VIO~0.9×VIO 【RESET, RGB1CNT, RGB2CNT】 LOW level input voltage VIL -0.3 - 0.25 ×VIO V HIGH level input voltage1 VIH1 0.75 ×VIO - VBAT+0.3 V RESET Pin HIGH level input voltage2 VIH2 0.75 ×VIO - VIO+0.3 V RGB1CNT, RGB2CNT Pin Input current each I/O pin1 Iin -10 - 10 μA Input current each I/O pin2 Iin - 6 15 μA LOW level input voltage VIL -0.3 - 0.3 V HIGH level input voltage VIH 1.4 - VBAT,+0.3 V Input current each I/O pin Iin - 6 15 μA Input voltage = 0.1×VIO~0.9×VIO,RESET Pin Input voltage = .9×VIO ,RGB1CNT, RGB2CNT Pin 【REG2EN, REG2MD】 Vin=1.8V ●Power dissipation (On the ROHM’s standard board) BD6081GU BD6081GVW 1.2 2.0 1.8 1.0 1725mW 1.6 1060mW 1.4 Power Dissipation( W) Power Dissipation( W) 0.8 1.2 1.0 0.8 0.6 0.4 0.6 0.4 0.2 0.2 0.0 0 25 50 75 100 125 0.0 150 0 Ta( ℃) 25 50 75 100 125 150 Ta( ℃) Fig.1 Fig.2 Information of the ROHM’s standard board Material: glass-epoxy Size: 50mm×58mm×1.75mm Information of the ROHM’s standard board Material: glass-epoxy (8 Layer) Size: 114.3mm×76.2mm×1.6mm Pattern of the board: Refer to it that goes later. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 3/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Block Diagram / Application Circuit example C2P C2N C1P C1N CPGND 1μF (10V) 1μF (10V) VBATCP VOUT Charge Pump VBAT1 VBAT2 VOUTM x1 / x1.5 / x2 1μF (10V) MLED1~4 OVP Charge Pump Mode Control LED terminal voltage feedback Main LCD Back Light VIO RESET TSD SLED1~2 Sub LCD Back Light SCL SDA BLGND VBAT G1LED RGB1CNT 2 IC CONTROL LEVEL SHIFT I/O B1LED Slope Control (RGB1) RGB2CNT RGB1 LED R1LED External Control G2LED Slope Control (RGB2) DGND B2LED RGB2 LED R2LED External Control ISET IREF RGBGND 120kΩ VBAT VBATREG CREF VREF REG1 2.8V Io=150mA 0.1µF REG1O 1μF Register control REG2 1.8V Io=150mA REG2O 1μF REGGND REG2MD REG2EN TESTO2 TESTI2 TESTO1 TESTI1 T4 T3 T2 T1 REFGND Register control Fig.3 Block Diagram / Application Circuit example www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 4/35 2011.04 - Rev.A BD6081GU,BD6081GVW ●Pin Arrangement [Bottom Technical Note View] BD6081GU G T4 VBAT1 F REFGND R1LED CREF REG1O E G1LED B1LED ISET REG2EN RGB2CNT D RGBGND R2LED TESTI1 C G2LED B2LED REG2O VBATREG REGGND VIO REG2MD RGB1CNT T3 RESET SDA DGND VOUTM VOUT TESTO2 TESTO1 C1P C2P TESTI2 SCL index B SLED1 BLGND MLED2 MLED4 CPGND C1N VBATCP A T1 SLED2 MLED1 MLED3 VBAT2 C2N T2 1 2 3 4 5 6 7 Total: 48ball There is no Ball only in C3 for index. BD6081GVW H T2 C1P C2P G C1N - - F CPGND C2N TESTI1 E MLED3 D MLED2 MLED1 C - - VOUTM TESTO1 VOUT DGND MLED4 VBAT2 VBATCP SDA RESET T3 SCL RGB2CNT VIO RGB1CNT TESTO2 REG2MD - REG2EN REGGND - - - REG1O VBATREG - (index) BLGND B2LED - - TESTI2 CREF REG2O B SLED2 SLED1 R2LED - - REFGND - VBAT1 A T1 G2LED RGBGND R1LED ISET T4 1 2 3 6 7 8 - B1LED G1LED 4 5 Total: 63ball There is no Ball only in C1 for index. “-“ means NC pin (Non connect to internal circuit) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 5/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Package BD6081GU VCSP85H3 CSP small Package SIZE : 3.90mm×3.90mm(A difference in public: X and Y, together, ± 0.1mm) height 1.0mm max A ball pitch : 0.5mm BD6081 Lot No. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 6/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Package BD6081GVW SBGA063W060 SIZE : 6.0mm×6.0mm(A difference in public: X and Y, together, ± 0.1mm) height 0.9mm max A ball pitch : 0.65mm BD6081 Lot No. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 7/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Pin Functions Pin No. No Pin Name I/O Input Level ESD Diode For For Power Ground GND Equivalent circuit diagram Functions BD6081GU BD6081GVW 1 B7 E4 VBATCP - - Battery is connected A 2 G2 B8 VBAT1 - - - GND Battery is connected A 3 A5 E3 VBAT2 - - - GND Battery is connected A 4 G4 D7 VBATREG - - - GND Battery is connected A 5 A1 A1 T1 - - - GND Test Pin (short to GND) A 6 A7 H1 T2 - - - GND Test Pin (short to GND) A 7 G7 H8 T3 - - VBAT GND Test Pin (short to GND) J 8 G1 A8 T4 - - VBAT GND Test Pin (short to GND) J 9 F3 C7 CREF O - VBAT GND Reference voltage output P 10 G6 G8 VIO - - VBAT GND I/O voltage source is connected C 11 F7 H7 RESET I VIO VBAT GND Reset input (L: RESET, H: RESET cancel) H 12 E6 H6 SDA I VIO VBAT GND I2C data input I 13 D5 G6 SCL I VIO VBAT GND I2C clock input H 14 B5 F1 CPGND - - VBAT - Ground B 15 F1 B6 REFGND - - VBAT - Ground B 16 G5 E7 REGGND - - VBAT - Ground B 17 B2 C2 BLGND - - VBAT - Ground B 18 D1 A3 RGBGND - - VBAT - Ground B 19 E7 F5 DGND - - VBAT - Ground B 20 B6 G1 C1N I/O - VBAT GND Charge Pump capacitor is connected F 21 C6 H2 C1P I/O - - GND Charge Pump capacitor is connected G 22 A6 C7 F2 C2N I/O - VBAT GND Charge Pump capacitor is connected F 23 H3 C2P I/O - GND Charge Pump capacitor is connected G 24 D7 F4 VOUT O - - GND Charge Pump output pin A 25 D6 G4 VOUTM O - - GND Charge Pump output pin output pin A 26 E3 A7 ISET I - VBAT GND LED standard current O 27 F4 D6 REG1O O - VBAT GND REG1 output pin Q 28 G3 C8 REG2O O - VBAT GND REG2 output pin Q 29 A3 D3 MLED1 I - VBAT GND Main LCD Back Light LED is connected 1 D 30 B3 D1 MLED2 I - VBAT GND Main LCD Back Light LED is connected 2 D 31 A4 E1 MLED3 I - VBAT GND Main LCD Back Light LED is connected 3 D 32 B4 E2 MLED4 I - VBAT GND Main LCD Back Light LED is connected 4 D 33 B1 B2 SLED1 I - VBAT GND Sub LCD Back Light LED is connected 1 D 34 A2 B1 SLED2 I GND Sub LCD Back Light LED is connected 2 D F2 A6 R1LED I - VBAT 35 VBAT GND Red LED1 is connected D 36 E1 A5 G1LED I - VBAT GND Green LED1 is connected D D 37 E2 A4 B1LED I GND Blue LED1 is connected D2 B3 R2LED I - VBAT 38 VBAT GND Red LED2 is connected D 39 C1 A2 G2LED I - VBAT GND Green LED2 is connected D 40 C2 C3 B2LED I - VBAT GND Blue LED2 is connected D 41 F6 F6 RGB1CNT I VIO VIO GND RGB1 LED external ON/OFF Synchronism Pin K 42 E5 G7 RGB2CNT I VIO VIO GND RGB2 LED external ON/OFF Synchronism Pin K 43 E4 E6 REG2EN I (VBAT) VBAT GND REG2 ON/OFF control Pin (L: OFF, H: ON) L GND REG2 Mode control Pin (L: low current consumption, H: normal) L 44 F5 F8 REG2MD I (VBAT) VBAT 45 D3 F3 TESTI1 I - VBAT GND Test input pin 1 (short to GND) H 46 D4 C6 TESTI2 I - VBAT GND Test input pin 2 (short to GND) H 47 C5 G5 TESTO1 O - VBAT GND Test output pin 1 (OPEN) M 48 C4 F7 TESTO2 O - VBAT GND Test output pin 2 (OPEN) N 49 63 - (Other) NC - - - - Non connect pin - ※ The LED pin which isn't used is to short-circuit to the ground. But, the setup of a register concerned with LED that isn’t used is prohibited. Total: Functional 48Pin 48 balls (BD6081GU) 63 balls (BD6081GVW) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Equivalent circuit diagram A B E F VBAT VBAT I VBAT VIO J M VBAT VBAT N Q VBAT VBAT VBAT www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. C VBAT G VIO K VIO VBAT O VBAT 9/35 VIO D VBAT H VBAT VIO L VBAT VBAT P VBAT VBAT 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●I2C BUS format The writing/reading operation is based on the I2C slave standard. ・Slave address A7 1 A6 1 A5 1 A4 0 A3 1 A2 1 A1 0 W 0 ・Bit Transfer SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal. SDA SCL Data line stable; Data valid Change of data allowed ・START and STOP condition When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end. SDA SCL S P START Condition STOP Condition ・Acknowledge It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL from master S 1 8 9 clock pulse for acknowledgement START condition www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2 10/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ・ Writing protocol A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address (1Ah), it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out. *1 S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address register address from slave to master D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment R/W=0(write) from master to slave *1 register address A=acknowledge(SDA LOW) _ A=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing ●Timing diagram SDA t BUF t SU;DAT t LOW t HD;STA SCL t HD;STA t SU;STA t HD;DAT S t HIGH t SU;STO Sr ●Electrical Characteristics(Unless otherwise specified, Ta=25 ℃, VBAT=3.6V, VIO=1.8V) Standard-mode Parameter Symbol Min. Typ. Max. Min. 【I2C BUS format】 SCL clock frequency fSCL 0 100 0 LOW period of the SCL clock tLOW 4.7 1.3 HIGH period of the SCL clock tHIGH 4.0 0.6 Hold time (repeated) START condition tHD;STA 4.0 0.6 After this period, the first clock is generated Set-up time for a repeated START condition tSU;STA 4.7 0.6 Data hold time tHD;DAT 0 3.45 0 Data set-up time tSU;DAT 250 100 Set-up time for STOP condition tSU;STO 4.0 0.6 Bus free time between a STOP 4.7 1.3 tBUF and START condition www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 11/35 P S Fast-mode Typ. Max. Unit - 400 - kHz μs μs - - μs - 0.9 - μs μs ns μs - - μs 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Register List Address Register data D7 D6 00h - - 01h - - 02h - - 03h - 04h Function D4 D3 D2 D1 - - - - - SFTRST REG2NML REG2PD - - - REG1PD Control LDO SLEDSEL SLEDEN - - MLEDSEL MLEDEN Control Back Light - - IMLED4 IMLED3 IMLED2 IMLED1 IMLED0 Main Back Light current value - - - ISLED4 ISLED3 ISLED2 ISLED1 ISLED0 Sub Back Light current value 05h - B2LEDMD G2LEDMD RGB2STA - B1LEDMD G1LEDMD RGB1STA 06h RGB1MD1 RGB1MD0 B1LEDPL G1LEDPL R1LEDPL B1LEDEN G1LEDEN R1LEDEN 07h D5 RGB1WT2TM2 RGB1WT2TM1 RGB1SL1 RGB1SL1 RGB1SL1 RGB1SL1 RGB1SL2 RGB1SL2 RGB1SL2 RGB1SL2 STEP3 STEP2 STEP1 STEP0 STEP3 STEP2 STEP1 STEP0 09h - - - - - RGB1SLNUM2 RGB1SLNUM1 0Ah - - I1R1LED5 I1R1LED4 I1R1LED3 I1R1LED2 I1R1LED1 I1R1LED0 0Bh - - IDLTR1LED5 IDLTR1LED4 IDLTR1LED3 IDLTR1LED2 IDLTR1LED1 IDLTR1LED0 0Ch - - I1G1LED5 I1G1LED4 I1G1LED3 I1G1LED2 I1G1LED1 I1G1LED0 08h RGB1WT1TM3 RGB1WT1TM2 RGB1WT1TM1 RGB1WT1TM0 RGB1WT2TM3 D0 - IDLTG1LED5 IDLTG1LED4 IDLTG1LED3 IDLTG1LED2 IDLTG1LED1 IDLTG1LED0 0Eh - - I1B1LED5 I1B1LED4 I1B1LED3 I1B1LED2 I1B1LED1 I1B1LED0 0Fh - - IDLTB1LED5 IDLTB1LED4 IDLTB1LED3 IDLTB1LED2 IDLTB1LED1 IDLTB1LED0 10h RGB2MD1 RGB2MD0 B2LEDPL G2LEDPL R2LEDPL B2LEDEN G2LEDEN R2LEDEN RGB2WT2TM2 RGB2WT2TM1 RGB2SL1 RGB2SL1 RGB2SL1 RGB2SL1 RGB2SL2 RGB2SL2 RGB2SL2 RGB2SL2 STEP3 STEP2 STEP1 STEP0 STEP3 STEP2 STEP1 STEP0 13h - - - - - RGB2SLNUM2 RGB2SLNUM1 14h - - I1R2LED5 I1R2LED4 I1R2LED3 I1R2LED2 I1R2LED1 I1R2LED0 15h - - IDLTR2LED5 IDLTR2LED4 IDLTR2LED3 IDLTR2LED2 IDLTR2LED1 IDLTR2LED0 16h - - I1G2LED5 I1G2LED4 I1G2LED3 I1G2LED2 I1G2LED1 I1G2LED0 17h - - IDLTG2LED5 IDLTG2LED4 IDLTG2LED3 IDLTG2LED2 IDLTG2LED1 IDLTG2LED0 18h - - I1B2LED5 I1B2LED4 I1B2LED3 I1B2LED2 I1B2LED1 I1B2LED0 19h - - IDLTB2LED5 IDLTB2LED4 IDLTB2LED3 IDLTB2LED2 IDLTB2LED1 IDLTB2LED0 1Ah - - - - - - RGB2MEL RGB1MEL 12h Setting GB LED connection Control RGB1 LED RGB1 slope 1step time setting RGB1SLNUM0 RGB1 slope step number setting - RGB2WT1TM3 RGB2WT1TM2 RGB2WT1TM1 RGB2WT1TM0 RGB2WT2TM3 Control RGB1, RGB2 LED RGB1WT2TM0 RGB1 ON time setting 0Dh 11h Software reset R1 LED current value1 Δ current value for R1 LED current step G1 LED current value1 Δ current value for G1 LED current step B1 LED current value1 Δ current value for B1 LED current step Control RGB2 LED RGB2WT2TM0 RGB2 ON time setting RGB2 slope 1step time setting RGB2SLNUM0 RGB2 slope step number setting R2 LED current value1 Δ current value for R2 LED current step G2 LED current value1 Δ current value for G2 LED current step B2 LED current value1 Δ current value for B2 LED current step RGB1, RGB2 LED external ON/OFF control 1Dh Reserved For test 1Eh Reserved For test 1Fh Reserved For test Input "0” for "-". Prohibit to accessing the address that isn’t mentioned and the register for test. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 12/35 2011.04 - Rev.A BD6081GU,BD6081GVW ●Register Map Address 00h Technical Note <Software reset> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 SFTRST 0 Address 01h 1 Reset <Control LDO> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 REG2NML REG2PD REG1PD 0 0 0 Address 02h Function 0 Reset cancel Function 0 1 REG2 low current consumption mode REG2 power OFF REG1 power OFF REG2 normal mode REG2 power ON REG1 power ON <Control Back Light> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 SLEDSEL SLEDEN MLEDSEL MLEDEN 0 0 0 0 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Function 0 2 lights ON (SLED1~2) Sub Back Light OFF 4 lights ON (MLED1~4) Main Back Light OFF 13/35 1 1 lights ON (SLED1) Sub Back Light ON 3 lights ON (MLED1~3) Main Back Light ON 2011.04 - Rev.A BD6081GU,BD6081GVW Address 03h Technical Note <Main Back Light current value> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 IMLED4 IMLED3 IMLED2 IMLED1 IMLED0 0 0 0 0 0 Function 0 1 - - IMLED4 0 0 0 ・ IMLED3 0 0 0 ・ IMLED2 0 0 0 ・ IMLED1 0 0 1 ・ IMLED0 0 1 0 ・ Current value 1mA 2mA 3mA ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 1 1 1 0 1 30mA 1 1 1 1 0 31mA 1 1 1 1 1 32mA 1mA Step When 120kΩ is connected to ISET pin. Address 04h <Sub Back Light current value> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 ISLED4 ISLED3 ISLED2 ISLED1 ISLED0 0 0 0 0 0 Function ISLED4 0 0 0 ・ ・ ・ 1 1 0 1 - - ISLED3 0 0 0 ・ ・ ・ 1 1 ISLED2 0 0 0 ・ ・ ・ 1 1 ISLED1 0 0 1 ・ ・ ・ 0 1 1 1 1 1 When 120kΩ is connected to ISET pin. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 14/35 ISLED0 0 1 0 ・ ・ ・ 1 0 Current value 1mA 2mA 3mA 1 32mA 1mA Step 30mA 31mA 2011.04 - Rev.A BD6081GU,BD6081GVW Address 05h Technical Note <Control RGB1, RGB2 LED, Setting GB LED connection> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 B2LEDMD G2LEDMD RGB2STA B1LEDMD G1LEDMD RGB1STA 0 0 0 0 0 0 Address 06h Function 0 B2LED connection =VBAT G2LED connection =VBAT RGB2 LED Lighting stop B1LED connection =VBAT G1LED connection =VBAT RGB1 LED Lighting stop 1 B2LED connection =VOUT G2LED connection =VOUT RGB2 LED Lighting start B1LED connection =VOUT G1LED connection =VOUT RGB1 LED Lighting start <Control RGB1 LED> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 RGB1MD1 RGB1MD0 B1LEDPL G1LEDPL R1LEDPL B1LEDEN G1LEDEN R1LEDEN 0 0 0 0 0 0 0 0 Function 0 Refer to the following Refer to the following Refer to the following Refer to the following Refer to the following B1 LED OFF G1 LED OFF R1 LED OFF RGB1MD1 0 0 RGB1MD0 0 1 1 0 1 1 1 Refer to the following Refer to the following Refer to the following Refer to the following Refer to the following B1 LED ON G1 LED ON R1 LED ON *1LEDPL 0/1 0/1 0 1 0 1 Mode Normal 1 Normal 2 Blink 1 Blink 2 Slope 1 Slope 2 *1LEDPL : R1LEDPL, G1LEDPL, B1LEDPL is shown. Address 07h <RGB1 ON time setting> BIT Name Initial D7 D6 D5 D4 RGB1WT1TM3 RGB1WT1TM2 RGB1WT1TM1 RGB1WT1TM0 0 0 0 0 D3 D2 D1 D0 RGB1WT2TM3 RGB1WT2TM2 RGB1WT2TM1 RGB1WT2TM0 0 0 0 0 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Function RGB1WT1TM3 RGB1WT1TM2 RGB1WT1TM1 RGB1WT1TM0 Current light time 0 0 0 0 0 0 0 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 1 1 0 1 1 1 1 0 1 1 1 1 Lighting time depends on internal OSC frequency. RGB1WT2TM3 RGB1WT2TM2 RGB1WT2TM1 RGB1WT2TM0 0 0 0 0 0 0 0 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 1 1 0 1 1 1 1 0 1 1 1 1 Lighting time depends on internal OSC frequency. 15/35 0.256s 0.512s 0.256s Step 3.584s 3.84s 4.096s Current light time 0.256s 0.512s 0.256s Step 3.584s 3.84s 4.096s 2011.04 - Rev.A BD6081GU,BD6081GVW Address 08h Technical Note <RGB1 slope 1step time setting> BIT Name Initial D7 RGB1SL1STEP3 0 D6 RGB1SL1STEP2 0 D5 D4 RGB1SL1STEP1 RGB1SL1STEP0 0 0 Function RGB1SL1 STEP3 0 0 ・ ・ ・ 1 1 1 RGB1SL1 STEP2 0 0 ・ ・ ・ 1 1 1 RGB1SL1 STEP1 0 0 ・ ・ ・ 0 1 1 RGB1SL1 STEP0 0 1 ・ ・ ・ 1 0 1 Current light time 4ms 8ms 4ms Step 56ms 60ms 64ms Lighting time depends on internal OSC frequency. D3 RGB1SL2STEP3 0 D2 RGB1SL2STEP2 0 D1 D0 RGB1SL2STEP1 RGB1SL2STEP0 0 0 RGB1SL2 STEP3 0 0 RGB1SL2 STEP2 0 0 RGB1SL2 STEP1 0 0 RGB1SL2 STEP0 0 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 4ms Step 1 1 1 1 0 1 1 0 56ms 60ms 1 1 1 1 64ms Current light time 4ms 8ms Lighting time depends on internal OSC frequency. Address 09h <RGB1 slope step number setting> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 RGB1SLNUM2 RGB1SLNUM1 RGB1SLNUM0 0 0 0 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Function 0 - 1 - RGB1SLNUM2 0 0 0 0 1 1 RGB1SLNUM1 0 0 1 1 0 0 RGB1SLNUM0 0 1 0 1 0 1 Step 1 Step 2 Step 4 Step 8 Step 16 Step 32 Step 1 1 0 64 Step 1 1 1 (Prohibited) 16/35 2011.04 - Rev.A BD6081GU,BD6081GVW Address 0Ah Technical Note <R1 LED current value 1> BIT Name Initial D7 D6 D5 I1R1LED5 0 D4 I1R1LED4 0 D3 D2 D1 D0 I1R1LED3 I1R1LED2 I1R1LED1 I1R1LED0 0 0 0 0 Function 0 - 1 - I1R1 LED5 0 0 0 ・ ・ ・ ・ 1 1 I1R1 LED4 0 0 0 ・ ・ ・ ・ 1 1 I1R1 LED3 0 0 0 ・ ・ ・ ・ 1 1 I1R1 LED2 0 0 0 ・ ・ ・ ・ 1 1 I1R1 LED1 0 0 1 ・ ・ ・ ・ 0 1 I1R1 LED0 0 1 0 ・ ・ ・ ・ 1 0 1 1 1 1 1 1 Current value 0mA 0.5mA 1mA 0.5mA Step 30.5mA 31mA 31.5mA When 120kΩ is connected to ISET pin. Address 0Bh <Δ current value for R1 LED current step> BIT Name Initial D7 D6 D5 IDLTR1LED5 0 D4 IDLTR1LED4 0 D3 D2 D1 D0 IDLTR1LED3 IDLTR1LED2 IDLTR1LED1 IDLTR1LED0 0 0 0 0 Function 0 - 1 - IDLTR1 LED5 0 0 0 ・ ・ ・ ・ 1 1 IDLTR1 LED4 0 0 0 ・ ・ ・ ・ 1 1 IDLTR1 LED3 0 0 0 ・ ・ ・ ・ 1 1 IDLTR1 LED2 0 0 0 ・ ・ ・ ・ 1 1 IDLTR1 LED1 0 0 1 ・ ・ ・ ・ 0 1 IDLTR1 LED0 0 1 0 ・ ・ ・ ・ 1 0 1 1 1 1 1 1 Current value 0mA 0.5mA 1mA 0.5mA Step 30.5mA 31mA 31.5mA When 120kΩ is connected to ISET pin. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 17/35 2011.04 - Rev.A BD6081GU,BD6081GVW Address 0Ch <G1 LED current value1> BIT Name Initial D7 D6 D5 D4 I1G1LED5 0 I1G1LED4 0 I1G1LED3 I1G1LED2 I1G1LED1 I1G1LED0 0 0 0 0 D3 D2 D1 D0 Technical Note Function 0 I1G1 LED5 0 0 0 ・ ・ ・ ・ 1 1 1 - I1G1 LED4 0 0 0 ・ ・ ・ ・ 1 1 I1G1 LED3 0 0 0 ・ ・ ・ ・ 1 1 I1G1 LED2 0 0 0 ・ ・ ・ ・ 1 1 1 1 1 1 When 120kΩ is connected to ISET pin. Address 0Dh I1G1 LED0 0 1 0 ・ ・ ・ ・ 1 0 Current value 0mA 0.5mA 1mA 30.5mA 31mA 1 1 31.5mA 0.5mA Step <Δ current value for G1 LED current step > BIT Name Initial D7 D6 D5 D4 IDLTG1LED5 0 IDLTG1LED4 0 IDLTG1LED3 IDLTG1LED2 IDLTG1LED1 IDLTG1LED0 0 0 0 0 D3 D2 D1 D0 I1G1 LED1 0 0 1 ・ ・ ・ ・ 0 1 Function 0 IDLTG1 LED5 0 0 0 ・ ・ ・ ・ 1 1 1 - IDLTG1 LED4 0 0 0 ・ ・ ・ ・ 1 1 IDLTG1 LED3 0 0 0 ・ ・ ・ ・ 1 1 IDLTG1 LED2 0 0 0 ・ ・ ・ ・ 1 1 1 1 1 1 When 120kΩ is connected to ISET pin. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 18/35 IDLTG1 LED1 0 0 1 ・ ・ ・ ・ 0 1 IDLTG1 LED0 0 1 0 ・ ・ ・ ・ 1 0 1 1 Current value 0mA 0.5mA 1mA 0.5mAStep 30.5mA 31mA 31.5mA 2011.04 - Rev.A BD6081GU,BD6081GVW Address 0Eh <B1 LED Current value1> BIT Name Initial D7 D6 D5 D4 I1B1LED5 0 I1B1LED4 0 I1B1LED3 I1B1LED2 I1B1LED1 I1B1LED0 0 0 0 0 D3 D2 D1 D0 Technical Note Function 0 I1B1 LED5 0 0 0 ・ ・ ・ ・ 1 1 1 - I1B1 LED4 0 0 0 ・ ・ ・ ・ 1 1 I1B1 LED3 0 0 0 ・ ・ ・ ・ 1 1 I1B1 LED2 0 0 0 ・ ・ ・ ・ 1 1 1 1 1 1 When 120kΩ is connected to ISET pin. Address 0Fh I1B1 LED1 0 0 1 ・ ・ ・ ・ 0 1 I1B1 LED0 0 1 0 ・ ・ ・ ・ 1 0 1 1 Current value 0mA 0.5mA 1mA 0.5mA Step 30.5mA 31mA 31.5mA <Δ current value for B1 LED current step > BIT Name Initial D7 D6 D5 D4 IDLTB1LED5 0 IDLTB1LED4 0 D3 D2 D1 D0 IDLTB1LED3 IDLTB1LED2 IDLTB1LED1 IDLTB1LED0 0 0 0 0 Function 0 IDLTB1 LED5 0 0 0 ・ ・ ・ ・ 1 1 1 - IDLTB1 LED4 0 0 0 ・ ・ ・ ・ 1 1 IDLTB1 LED3 0 0 0 ・ ・ ・ ・ 1 1 IDLTB1 LED2 0 0 0 ・ ・ ・ ・ 1 1 1 1 1 1 When 120kΩ is connected to ISET pin. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 19/35 IDLTB1 LED1 0 0 1 ・ ・ ・ ・ 0 1 IDLTB1 LED0 0 1 0 ・ ・ ・ ・ 1 0 1 1 Current value 0mA 0.5mA 1mA 0.5mA Step 30.5mA 31mA 31.5mA 2011.04 - Rev.A BD6081GU,BD6081GVW Address 10h Technical Note <Control RGB2 LED> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 RGB2MD1 RGB2MD0 B2LEDPL G2LEDPL R2LEDPL B2LEDEN G2LEDEN R2LEDEN 0 0 0 0 0 0 0 0 Function 0 Refer to following Refer to following Refer to following Refer to following Refer to following B2 LED OFF G2 LED OFF R2 LED OFF RGB2MD1 0 0 1 Refer to following Refer to following Refer to following Refer to following Refer to following B2 LED ON G2 LED ON R2 LED ON *2LEDPL Mode 0/1 Normal 1 0/1 Normal 2 0 Blink 1 1 0 1 Blink 2 0 Slope 1 1 1 1 Slope 2 *2LEDPL : R2LEDPL, G2LEDPL, B2LEDPL is shown. Address 11h RGB2MD0 0 1 <RGB2 ON time setting> BIT Name Initial D7 RGB2WT1TM3 0 D6 RGB2WT1TM2 0 D5 D4 RGB2WT1TM1 RGB2WT1TM0 0 0 D3 RGB2WT2TM3 0 D2 RGB2WT2TM2 0 D1 D0 RGB2WT2TM1 RGB2WT2TM0 0 0 Function RGB2WT1 TM3 0 0 ・ ・ ・ 1 1 1 RGB2WT1 RGB2WT1 RGB2WT1 Current ON time TM2 TM1 TM0 setting 0 0 0 0.256s 0 0 1 0.512s ・ ・ ・ 0.256s ・ ・ ・ Step ・ ・ ・ 1 0 1 3.584s 1 1 0 3.845s 1 1 1 4.096s Lighting time depends on internal OSC frequency. RGB2WT2 TM3 0 0 RGB2WT2 TM2 0 0 RGB2WT2 TM1 0 0 RGB2WT2 TM0 0 1 Current ON time setting 0.256s 0.512s ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 0.256s Step 1 1 1 1 0 1 1 0 3.584s 3.845s 1 1 1 1 4.096s Lighting time depends on internal OSC frequency. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 20/35 2011.04 - Rev.A BD6081GU,BD6081GVW Address 12h Technical Note <RGB2 slope 1step time setting> BIT Name Initial D7 D6 D5 D4 RGB2SL1STEP3 RGB2SL1STEP2 0 0 0 0 RGB2SL1STEP1 RGB2SL1STEP0 D3 RGB2SL2STEP3 0 D2 D1 D0 RGB2SL2STEP2 0 0 0 RGB2SL2STEP1 RGB2SL2STEP0 Function RGB2SL1STEP3 RGB2SL1STEP2 RGB2SL1STEP1 RGB2SL1STEP0 Current ON time setting 0 0 0 0 0 0 0 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 1 1 0 1 1 1 1 0 1 1 1 1 Lighting time depends on internal OSC frequency. RGB2SL2STEP3 RGB2SL2STEP2 RGB2SL2STEP1 RGB2SL2STEP0 4ms 8ms 4ms Step 56ms 60ms 64ms Current ON time setting 0 0 0 0 0 0 0 1 4ms 8ms ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 4ms Step 1 1 1 1 0 1 1 0 56ms 60ms 1 1 1 1 64ms Lighting time depends on internal OSC frequency. Address 13h <RGB2 slope step number setting> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 RGB2SLNUM2 RGB2SLNUM1 RGB2SLNUM0 0 0 0 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Function 0 - 1 - RGB2SLNUM2 0 0 0 0 1 1 RGB2SLNUM1 0 0 1 1 0 0 RGB2SLNUM0 0 1 0 1 0 1 1 1 0 64 Step 1 1 1 (Prohibited) 21/35 Step 1 Step 2 Step 4 Step 8 Step 16 Step 32 Step 2011.04 - Rev.A BD6081GU,BD6081GVW Address 14h Technical Note <R2 LED current value1> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 I1R2LED5 I1R2LED4 I1R2LED3 I1R2LED2 I1R2LED1 I1R2LED0 0 0 0 0 0 0 Function 0 - 1 - I1R2LED5 I1R2LED4 I1R2LED3 I1R2LED2 I1R2LED1 I1R2LED0 Current value 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 1 ・ ・ ・ ・ 0 1 0 1 0 ・ ・ ・ ・ 1 0 0mA 0.5mA 1mA 30.5mA 31mA 1 1 31.5mA 1 1 1 1 When 120kΩ is connected to ISET pin. Address 15h 0.5mA Step <Δ current value for R2 LED current step > BIT Name Initial D7 D6 D5 IDLTR2LED5 0 D4 IDLTR2LED4 0 D3 D2 D1 D0 IDLTR2LED3 IDLTR2LED2 IDLTR2LED1 IDLTR2LED0 0 0 0 0 Function 0 IDLTR2 LED5 0 0 0 ・ ・ ・ ・ 1 1 1 - IDLTR2 LED4 0 0 0 ・ ・ ・ ・ 1 1 IDLTR2 LED3 0 0 0 ・ ・ ・ ・ 1 1 IDLTR2 LED2 0 0 0 ・ ・ ・ ・ 1 1 1 1 1 1 When 120kΩ is connected to ISET pin. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 22/35 IDLTR2 LED1 0 0 1 ・ ・ ・ ・ 0 1 IDLTR2 LED0 0 1 0 ・ ・ ・ ・ 1 0 Current value 0mA 0.5mA 1mA 30.5mA 31mA 1 1 31.5mA 0.5mA Step 2011.04 - Rev.A BD6081GU,BD6081GVW Address 16h <G2 LED current value1> BIT Name Initial D7 D6 D5 I1G2LED5 0 D4 I1G2LED4 0 D3 D2 D1 D0 I1G2LED3 I1G2LED2 I1G2LED1 I1G2LED0 0 0 0 0 Address 17h Technical Note Function 0 - 1 - I1G2LED I1G2LED I1G2LED I1G2LED I1G2LED I1G2LED 5 4 3 2 1 0 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 1 ・ ・ ・ ・ 0 1 0 1 0 ・ ・ ・ ・ 1 0 1 1 1 1 1 1 When 120kΩ is connected to ISET pin. Current value 0mA 0.5mA 1mA 0.5mA Step 30.5mA 31mA 31.5mA <Δ current value for G2 LED current step > BIT Name Initial D7 D6 D5 IDLTG2LED5 0 D4 IDLTG2LED4 0 D3 D2 D1 D0 IDLTG2LED3 IDLTG2LED2 IDLTG2LED1 IDLTG2LED0 0 0 0 0 Function 0 - 1 - IDLTG2 LED5 0 0 0 ・ ・ ・ ・ 1 1 IDLTG2 LED4 0 0 0 ・ ・ ・ ・ 1 1 IDLTG2 LED3 0 0 0 ・ ・ ・ ・ 1 1 IDLTG2 LED2 0 0 0 ・ ・ ・ ・ 1 1 IDLTG2 LED1 0 0 1 ・ ・ ・ ・ 0 1 IDLTG2 LED0 0 1 0 ・ ・ ・ ・ 1 0 Current value 0mA 0.5mA 1mA 30.5mA 31mA 1 1 1 1 1 1 31.5mA 0.5mA Step When 120kΩ is connected to ISET pin. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 23/35 2011.04 - Rev.A BD6081GU,BD6081GVW Address 18h Technical Note <B2 LED current value1> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 I1B2LED5 I1B2LED4 I1B2LED3 I1B2LED2 I1B2LED1 I1B2LED0 0 0 0 0 0 0 Address 19h 1 - I1B2LED5 I1B2LED4 I1B2LED3 I1B2LED2 I1B2LED1 I1B2LED0 Current value 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 0 ・ ・ ・ ・ 1 1 0 0 1 ・ ・ ・ ・ 0 1 0 1 0 ・ ・ ・ ・ 1 0 0mA 0.5mA 1mA 1 1 1 1 1 1 When 120kΩ is connected to ISET pin. 0.5mA Step 30.5mA 31mA 31.5mA <Δ current value for B2 LED current step > BIT Name Initial D7 D6 D5 IDLTB2LED5 0 D4 IDLTB2LED4 0 D3 D2 D1 D0 IDLTB2LED3 IDLTB2LED2 IDLTB2LED1 IDLTB2LED0 0 0 0 0 Address 1Ah Function 0 - Function 0 - 1 - IDLTB2 LED5 0 0 0 ・ ・ ・ ・ 1 1 IDLTB2 LED4 0 0 0 ・ ・ ・ ・ 1 1 1 1 IDLTB2 LED3 0 0 0 ・ ・ ・ ・ 1 1 IDLTB2 LED2 0 0 0 ・ ・ ・ ・ 1 1 IDLTB2 LED1 0 0 1 ・ ・ ・ ・ 0 1 IDLTB2 LED0 0 1 0 ・ ・ ・ ・ 1 0 1 1 1 1 When 120kΩ is connected to ISET pin. Current value 0mA 0.5mA 1mA 0.5mA Step 30.5mA 31mA 31.5mA <RGB1, RGB2 LED external ON/OFF control> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 RGB2MEL RGB1MEL 0 0 Function 0 RGB*MEL 1 RGB*CNT (external pin) RGB* LED Lighting 0 L ON 0 H ON 1 L OFF 1 H ON But, a state of lighting depends on the setup of other registers. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 24/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●RGB LED operating 1. Operating mode RGB LED can set up the following operating mode by the setup of the register. <Setup register> I1**LED : (register) Initial electric current value [mA] IDLT**LED : (register) The electric current Δ value of around 1Step [mA] RGB*SLNUM : (register) slope step number (1,2,4,8,16,32,64 Step) RGB*SL1STEP : (register) The first half slope 1Step time [ms] RGB*SL2STEP : (register) The latter half slope 1Step time [ms] RGB*WT1TM : (register) The first half lighting time [ms] RGB*WT2TM : (register) The latter half lighting time [ms] As for the following setup, calculate it from the above setup. I2**LED : At the time of middle lighting current value [mA] = I1**LED + IDLT**LED x RGB*SLNUM (In case of the value that a calculation exceeds maximum value, the current value is at the limit with maximum.) RGB*SL1TM : The first half slope time [ms] = RGB*SL1STEP x RGB*SLNUM RGB*SL2TM : The latter half slope time [ms] = RGB*SL2STEP x RGB*SLNUM Each setup is necessary for DC current (at Normal mode or Blink mode). (* : 1/ 2 channels is shown. ** : R1/G1/B1/R2 /G2/B2 is shown.) Note) The current value in the table, it is value when 120kΩ is connected to ISET pin. Normal mode 1 31.5mA I1**LED 0mA Time RGB*STA=1 RGB*STA=0 Normal mode 2 31.5mA I2**LED is a calculation. I2**LED Time 0mA RGB*STA=1 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. RGB*STA=0 25/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note Blink mode 1 RGB*WT1TM RGB*WT1TM/RGB*WT2TM is repeated. RGB*WT2TM 31.5mA I2**LED I1**LED 0mA Time RGB*STA=1 RGB*STA=0 I2**LED is a calculation. RGB*WT1TM/RGB*WT2TM is repeated. Blink mode 2 RGB*WT1TM RGB*WT2TM 31.5mA I2**LED I1**LED 0mA Time RGB*STA=0 RGB*STA=1 Slope mode 1 I2**LED,RGB*SL1TM,RGB*SL2TM is a calculation. Until it becomes RGB*STA=0, Slope control is repeated. RGB*SL1TM RGB*WT1TM RGB*SL2TM RGB*WT2TM 31.5mA I2**LED RGB*SL1STEP IDLT**LED IDLT**LED RGB*SL2STEP I1**LED Time 0mA RGB*STA=1 RGB*SLNUM Step RGB*STA=0 RGB*SLNUM Step Slope mode 2 I2**LED,RGB*SL1TM,RGB*SL2TM is a calculation. Until it becomes RGB*STA=0, Slope control is repeated. RGB*SL1TM RGB*WT1TM RGB*SL2TM RGB*WT2TM 31.5mA IDLT**LED I2**LED RGB*SL1STEP IDLT**LED I1**LED RGB*SL2STEP 0mA RGB*STA=1 RGB*SLNUM Step www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Time RGB*SLNUM Step 26/35 RGB*STA=0 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note External pin control 31.5mA RGB*WT2TM RGB*WT1TM 0mA I1**LED RGB*STA=1 Time I2**LED RGB*STA=0 RGB*MEL (register) RGB*CNT (External pin) RGB*MEL=1 and RGB*CNT=H, When RGB*MEL =0, Lighting. lighting When RGB*MEL=0, lighting 2. Slope control The slope control that this LSI is equipped processes step time inside as follows. It is made to have electric current by the log curve that is a simple target as to the slope. RGB*STA IDLT**LED LED current I1**LED T2 T1 T3 T4 T5 T7 T6 (A) (B) T8 (C) (A)Section : It transits at the step time of two times when it was set up with RGB*SL1STEP (B)Section : It transits at the step time when it was set up with RGB*SL1STEP. (C)Section : It transits at the step time of a half times when it was set up with RGB*SL1STEP. The time of the total (RGB*SL1TM) is calculated with RGB*SL1STEP x RGB*SLNUM. A similar movement is done on the descent (RGB*SL2TM) side as well. The acceptance of the setup of a register concerned with LED working during the slope movement stops. But, a RGB*STA signal interrupts even during the slope movement, and it is possible that LED is turned off. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 27/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Explanation for operate 1. Reset There are two kinds of reset, software reset and hardware reset. (1) Software reset ・All the registers are initialized more than making a register (SFTRST) setup "1". ・The register of software resetting is an automatic return (Auto Return 0). (2) Hardware reset ・It shifts to hardware reset by changing RESET pin “H” → “L”. ・The condition of all the registers under hardware reset pin is returned to the initial value, and it stops accepting all address. ・It’s possible to release from a state of hardware reset by setting register “L” → “H”. ・RESET pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs. (3) Reset Sequence ・When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled. (Because the initial value of software reset is “0”) 2. Thermal shutdown The blocks which thermal shutdown function is effective in the following. Charge pump LED Driver REG1 REG2 is not shut down by thermal shutdown function, because REG2 can be used for I/O voltage. A thermal shutdown function works in about 195 ℃. Detection temperature has a hysteresis, and detection release temperature is about 175 ℃. (Design reference value) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 28/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note 3. DC/DC Start up DC/DC circuit operates when either LED turns ON. (But, when LED connection is set to DC/DC output (VOUT) only.) DC/DC circuit has soft start function to prevent a rush current. VBAT and VIO sequence is as follow. VBAT T VBATON T VBATOFF VIO T VIOON=min 0.1ms T VIOOFF=min 1ms RESET T RSTB=min 0.1ms T RST=min 0ms EN (*) T SOFT VOUT LED Current (*) An EN signal means the following in the upper figure. EN = “MLEDEN” or “SLEDEN” or “RGB1STA” or “RGB2STA” (= LED The LED lighting control of a setup of connection VOUT) But, as for VBAT < 2.2V (typ) or Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective. Mode transition The transition of boosts multiple transits automatically by the VBAT voltage and the voltage of the LED electric current inflow pin. STANDBY 1 Condition:○ 1 ○ ALL off MLEDEN=”1” or SLEDEN=”1” or RGB*STA=”1” (But, LED connection= It is limited to the LED lighting control of a setup of VOUT.) and VBAT>2.2V(typ) and Ta<TTSD SOFT CP x1.0 mode VOUT>1.5V(typ) After it is detected, 128us(typ) wait X1.0 CP x1.0 mode mode up=”H” mode down=”H” X1.5 CP x1.5mode mode up=”H” mode down=”H” X2.0 CP x2.0mode Over voltage protection / Over current protection DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function. A VOUT over-voltage detection voltage is about 6.0V.(VOUT at the time of rise in a voltage) A detection voltage has a hysteresis, and a detection release voltage is about 5.75V. (Design reference value) And, when VOUT output short-circuits in GND, drain electric current is controlled by an over current protection function. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 29/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note 4. LED Driver LED current value setting LED maximum current value (White LED driver and RGB LED Driver common) can be established in the resistance value RISET that it is connected to the ISET Pin. A setting is shown in the following. ILEDmax = 6.4 x 0.6 [V] / RISET [kΩ] [A] (Typ) ILEDmax = 6.3 x 0.6 [V] / RISET [kΩ] [A] (Typ) MLED1to4, SLED1to2 All RGB LED The maximum setting of LED current is 32mA (MLED and SLED), 31.5mA (RGB) on the D range of the internal circuit. LED current overload protection ISET Pin is mount with the GND short detection function. LED current value prevents excessive LED current from flowing when ISET Pin becomes low impedance because it is shown with a formula of the former extension. White LED Driver The number of lighting of white LED can be set up by the register MLEDSEL and SLEDSEL (address02h). The settlement of the number of lighting can be setup with follow. Main LCD Back light ・・・3 Light (MLED1 ~ 3) or 4 Light (MLED1 ~ 4) Sub LCD Back light ・・・1 Light (SLED1) or 2 Light (SLED1 ~ 2) Connect the LED pin that isn't used to the ground. RGB LED Driver By register B*LEDMD and G*LEDMD (address05h), a place of connection of Green LED and Blue LED It can be set up in VBAT or VOUT. When Vf is low, it is connected to VBAT, and it is possible that efficiency is raised. When a VBAT connection is chosen, a feedback route to the DC/DC circuit is interrupted, and it works as a simple constant current driver. A write protect is given in the following address when "1" is written in the RGB*STA register. Register RGB1STA RGB2STA A protected address 06h ~ 0Fh 10h ~ 19h VBAT connection a start in the setup Sequence RGB*STA Ton (Max:6ms) VOUT LED current When the connection of LED is VBAT, only a LED driver turns it on, and a DC/DC circuit is turned off. The LED pin which isn't used is to short to the ground. But, the setup of a register concerned with LED that isn’t used is prohibited. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 30/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note 5. I/O CPU interface control input is possible low voltage interface. Interface peripheral block diagram is as follows. VIO voltage or interface voltage is possible the setting range of 1.65~3.3V. (But, VBAT voltage ≥ VIO voltage) Also, I/O of with enable is being used for SCL, SDA input as a prevention of clock propagation to the inside when other LSI shared the SCL, SDA line. RESET=L, Output "H" SCL (SDA) Level shift EN Logic RESET An equivalent circuit around the part I/O becomes p.8. By rising turn of the I/O power supply and the input level be careful enough because an electric current route may occur through the protection Diode of the pin. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 31/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note 6. About the start of REG2 (the voltage for I/O) It must start as follows when REG2 output is used as VIO voltage. VBAT (force) RESET (external pin control) REG2EN (external pin control) Min:7.5ms (*2) Min:0ms (*4) REG2MD (external pin control) REG2O(output) (=VIO voltage) Low current Stand By consumption mode Normal mode Stand By ド Register access is possible (*3) Min:2ms(*2) (*1) This sequence is when REG2O is used as an I/O voltage. Take the specifications of the outside power supply into consideration when the I/O voltage is applied from outside. (*2) When the low consumption mode is unnecessary, REG2EN=REG2MD (simultaneous control) is possible. But, at that case as well, REG2 rising time in the normal mode Take a (Min : 2ms) into consideration. (*3) REG2 should go for a release of RESET at the time of the normal mode. (*4) REG2EN= Though "L" and RESET= "L" don't care even about the simultaneous timing, It is prohibition to take REG2EN= "L" in front of RESET= "L". It must start as follows when external power supply is used as VIO voltage. VBAT(force) VIO(force) RESET(external pin control) Register control Impossible Possible Impossible VIO should go for a release of RESET after the time of the rising mode. And it is forbid to fall VIO before RESET=”L”. 7. About the pin management of the function that isn't used and test pins Please connect the pin that isn’t used and test pin referred to equivalent circuit (P.8). TESTI1, TESTI2 ▪ ▪ ▪ ▪ ▪ ▪ Short to GND (Must) because input pin for test TESTO1, TESTO2 ▪ ▪ ▪ ▪ ▪ ▪ Be OPEN because output for test T1~T4 ▪ ▪ ▪ ▪ ▪ ▪ Short to GND (Must) because input pin for test Non-used LED Pin ▪ ▪ ▪ ▪ Short to GND But, the setup of a register concerned with LED that isn’t used is prohibited. REG2EN, REG2MD, RGB1CNT, RGB2CNT ▪ ▪ ▪ ▪ ▪ ▪ Pull-Down resistance is built in. Short to GND www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 32/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note 10. BD6081GU PCB pattern of the Power dissipation measuring board 1st layer(component) 3rd laye 2nd layer 4th layer r 5th layer 6th layer 7th layer www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8th layer(solder) 33/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Notes for use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Power supply and ground line Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (3) Ground voltage Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient. (4) Short circuit between pins and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down. (5) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (6) Input pins In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (7) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. (8) Thermal shutdown circuit (TSD) This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation. (9) Thermal design Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use. (10) LDO Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable. (11) About the pin for the test, the un-use pin Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge. (12) About the function description or application note or more. The function manual and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 34/35 2011.04 - Rev.A BD6081GU,BD6081GVW Technical Note ●Ordering part number B D 6 Part No. 0 8 1 G Part No. 6081 U - Package E 2 Packaging and forming specification E2: Embossed tape and reel GU : VCSP85H3 GVW : SBGA063W060 VCSP85H3 (BD6081GU) 1PIN MARK 0.08 S 48- φ 0.30±0.05 (φ0.15)INDEX POST A G F E D C B A Embossed carrier tape Quantity 2500pcs Direction of feed S E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand B 1 2 3 4 5 6 7 0.45±0.1 ) P=0.5 × 6 0.05 A B Tape 0.45± 0.1 3.90±0.1 1.0MAX 0.25± 0.1 3.90 ± 0.1 <Tape and Reel information> 1pin P=0.5×6 Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SBGA063W060 <Tape and Reel information> 6.0 ± 0.1 6.0±0.1 0.1 S 63- φ 0.33±0.05 φ 0.08 M S AB P=0.65×7 0.65 0.08 0.9MAX 1PIN MARK Tape Embossed carrier tape (with dry pack) Quantity 2000pcs Direction of feed S E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 0.725±0.1 0.65 12345678 0.725± 0.1 B P=0.65× 7 A H G F E D C B A www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 1pin (Unit : mm) Reel 35/35 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2011.04 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. R1120A