LED Drivers for LCD BackLights Multifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type) BD6083GUL No.10040EAT16 ●Description BD6083GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone. It has 3 - 6LED driver and output variable LDO4ch for LCD Backlight. It has ALC function that is “Low Power Consumption System” realized. It can be developed widely from the high End model to the Low End model. As it has charge pump circuit for DCDC, it is no need to use coils, and it contributes to small space. VCSP50L3 (3.15mm x 3.15mm 0.5mm pitch) It adopts the very thin CSP package that is the most suitable for the slim phone. ●Features 1) Total 3 - 6LEDs driver for LCD Backlight ・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 2LEDs which can chose independent control or a main allotment by resister setting. ・Main Group” can be controlled by Auto Luminous Control (ALC) system. “Main Group” can be controlled by external PWM signal. ・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence. 2) Ambient Light sensor interface ・Incorporates various functions such as a sensor bias adjustment function, an ADC with an average filter, a gainoffset adjustment function and an LOG conversion function so that options can be increased for illumination intensity sensors (Photo Diode, Photo Transistor, Photo IC (Linear/LOG)). ・Incorporates an auto gain switching function for suppressing an illumination intensity sensor current at high illumination intensity and improving sensitivity at low illumination intensity ・Capable of customizing an LED current value according to a table setting. ・Slope control loading and an independent control change are possible. 3) Charge Pump DC/DC for LED driver ・It has x1/x1.5/ x2 mode that will be selected automatically. ・The most suitable voltage up magnification is controlled automatically by LED port voltage. ・Soft start functions、Over voltage protection (Auto-return type),Over current protection (Auto-return type) loading 4) 4ch Series Regulator (LDO) ・It has selectable output voltage by the register.(16 steps) LDO1, LDO2, LDO3, LDO4: Iomax=150mA 5) Thermal shutdown 2 6) I C BUS FS mode (max 400 kHz) Compatibility ●Absolute Maximum Ratings (Ta=25 ℃) Parameter Maximum Voltage Power Dissipation Symbol Ratings Unit VMAX 7 V Pd 1280 (Note) mW Operating Temperature Range Topr -30 ~ +85 ℃ Storage Temperature Range Tstg -55 ~ +150 ℃ (Note) Power dissipation deleting is 10.24mW/ ℃ , when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard) ●Operating Conditions (VBAT≥VIO, Ta=-30~85 ℃) Parameter Symbol VBAT Input Voltage VIO Pin Voltage www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Limits Unit VBAT 2.7 ~ 5.5 V VIO 1.65 ~ 3.3 V 1/45 2010.07 - Rev.A Technical Note BD6083GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Conditions 【Circuit Current】 VBAT Circuit Current 1 IBAT1 - 0.1 3.0 μA RESETB=0V, VIO= 0V VBAT Circuit Current 2 IBAT2 - 0.5 3.0 μA RESETB=0V, VIO=1.8V VBAT Circuit Current 3 IBAT3 - 61 65 mA VBAT Circuit Current 4 IBAT4 - 92 102 mA VBAT Circuit Current 5 IBAT5 - 123 140 mA VBAT Circuit Current 6 IBAT6 - 0.25 1.0 mA VBAT Circuit Current 7 IBAT7 - 90 150 μA LDO1,2=ON, ILDO=0mA VBAT Circuit Current 8 IBAT8 - 90 150 μA LDO3,4=ON, ILDO=0mA DC/DC x1 mode, Io=60mA VBAT=4.0V DC/DC x1.5 mode, Io=60mA VBAT=3.6V DC/DC x2 mode, Io=60mA VBAT=2.7V ALC Operating ALCEN=1, AD cycle=0.5s setting Except sensor current 【LED Driver】 LED Current Step (Setup) ILEDSTP1 128 Step LED1~6 LED Current Step (At slope) ILEDSTP2 256 Step LED1~6 LED Maximum Setup Current IMAXWLED - 25.6 - mA LED1~6 LED Current Accuracy IWLED -7% 15 +7% mA ILED=15mA setting, VLED=1.0V LED Current Matching ILEDMT - - 4 % Between LED1~6 at VLED=1.0V, ILED=15mA LED OFF Leak Current ILKLED - - 1.0 μA VLED=4.5V Output Voltage VoCP - Vf+0.2 Vf+0.25 V Vf is forward direction of LED Drive Ability IOUT - - 150 mA Switching Frequency fosc 0.8 1.0 1.2 MHz OVP - 5.6 - V OCP - 250 375 mA VOUT=0V VoS 2.85 3.0 3.15 V Io=200µA IomaxS 30 - - mA ROFFS - 1.0 1.5 kΩ VISS 0 - VoS× 255/256 V 【DC/DC(Charge Pump)】 Over Voltage Protection Detect Voltage Over Current Protection Detect Current VBAT≥3.2V, VOUT=3.9V 【Sensor Interface】 SBIAS Output Voltage SBIAS Maximum Output Current SBIAS Discharge Resister at OFF SSENS Input Range ADC Resolution ADC Integral Calculus Non-linearity ADC Differential Calculus Non-linearity www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. ADRES 8 bit ADINL -3 - +3 LSB ADDNL -1 - +1 LSB 2/45 2010.07 - Rev.A Technical Note BD6083GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Condition 【Regulator (LDO1)】 Output Voltage Vo1 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io1 - - 150 mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=1.8V Dropout Voltage Vsat1 - 0.2 0.3 V Load Stability ΔVo11 - 10 60 mV VBAT=2.5V, Io=150mA, Vo=2.8V Input Voltage Stability ΔVo12 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=1.8V Io=1~150mA, Vo=1.8V Ripple Rejection Ratio RR1 - 65 - dB f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Short Circuit Current Limit Ilim1 - 200 400 mA Vo=0V Discharge Resister at OFF ROFF1 - 1.0 1.5 kΩ Output Voltage Vo2 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io2 - - 150 mA 【Regulator (LDO2)】 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=2.5V Dropout Voltage Vsat2 - 0.2 0.3 V Load Stability Δvo21 - 10 60 mV VBAT=2.5V, Io=150mA, Vo=2.8V Input Voltage Stability Δvo22 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=2.5V Io=1~150mA, Vo=2.5V Ripple Rejection Ratio RR2 - 65 - dB f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Short Circuit Current Limit Ilim2 - 200 400 mA Vo=0V Discharge Resister at OFF ROFF2 - 1.0 1.5 kΩ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3/45 2010.07 - Rev.A Technical Note BD6083GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Condition 【Regulator (LDO3)】 Output Voltage Vo3 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io3 - - 150 mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=1.8V Dropout Voltage Vsat3 - 0.2 0.3 V Load Stability ΔVo31 - 10 60 mV VBAT=2.5V, Io=150mA, Vo=2.8V Input Voltage Stability ΔVo32 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=1.8V Io=1~150mA, Vo=1.8V Ripple Rejection Ratio RR3 - 65 - dB f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Short Circuit Current Limit Ilim3 - 200 400 mA Vo=0V Discharge Resister at OFF ROFF3 - 1.0 1.5 kΩ Output Voltage Vo4 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io4 - - 150 mA 【Regulator (LDO4)】 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=2.8V Dropout Voltage Vsat4 - 0.2 0.3 V Load Stability ΔVo41 - 10 60 mV VBAT=2.5V, Io=150mA, Vo=2.8V Input Voltage Stability ΔVo42 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=2.8V Io=1~150mA, Vo=2.8V Ripple Rejection Ratio RR4 - 65 - dB f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Short Circuit Current Limit Ilim4 - 200 400 mA Vo=0V Discharge Resister at OFF ROFF4 - 1.0 1.5 kΩ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 4/45 2010.07 - Rev.A Technical Note BD6083GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Condition 【SDA, SCL】 (I2C Interface) L Level Input Voltage VILI -0.3 - 0.25 ×VIO V H Level Input Voltage VIHI 0.75 ×VIO - VBAT+0.3 V Hysteresis of Schmitt trigger Input VhysI 0.05 ×VIO - - V L Level Output Voltage VOLI 0 - 0.3 V SDA Pin, IOL=3 mA linI - - 1 μA Input Voltage= 0.1×VIO ~ 0.9×VIO Input Current 【RESETB】 (CMOS Input Pin) L Level Input Voltage VILR -0.3 - 0.25 ×VIO V H Level Input Voltage VIHR 0.75 ×VIO - VBAT+0.3 V Input Current IinR - - 1 μA L Level Input Voltage VILA -0.3 - 0.3 V H Level Input Voltage VIHA 1.4 - VBAT+0.3 V Input Current IinA - 3.6 10 μA Input Voltage = 1.8V PWmin 250 - - μs WPWMIN Pin Input Voltage = 0.1×VIO ~ 0.9×VIO 【WPWMIN】 (NMOS Input Pin) PWM Input Minimum High Pulse Width 【GC1, GC2】 (Sensor Gain Control CMOS Output Pin) L Level Output Voltage VOLS - - 0.2 V IOL=1mA H Level Output Voltage VOHS VoS-0.2 - - V IOH=1mA ●Power Dissipation (On the ROHM’s standard board) 1.6 Power Dissipation Pd (W) 1.4 1280mW 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 25 50 75 100 125 150 Ta(℃) Information of the ROHM’s standard board Material: glass-epoxy Size : 50mm×58mm×1.75mm(8th layer) Wiring pattern figure Refer to after page. Fig.1 Power Dissipation www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 5/45 2010.07 - Rev.A Technical Note BD6083GUL ●Block Diagram / Application Circuit Example 1 6LED + ALC +PWM C5 C2P C2N C1P C1N A4 CPGND 1μF/10V 1μF/10V B5 C6 A5 VBAT VBATCP B6 VBAT1 VOUT Charge Pump F4 VBAT2 F5 D6 x1 / x1.5 / x2 1μF/10V 2.2µF/10V LED1 A2 LED2 OVP Charge Pump Mode Control B1 LED3 LED terminal voltage feedback VIO Voltage VIO SCL SDA WPWMIN From LCM C2 LED5 D1 B4 LED6 C4 I/O D4 Level I C interface Shift Digital Control D2 TSD 2 LEDGND C1 B3 IREF LDO1 VCC GND GC1 <ALS> VREF SBIAS F3 Vo Selectable Io=150mA LDO4 (ALC) F2 Vo Selectable Io=150mA E6 LDO1O 1μF/6.3V E5 LDO2O 1μF/6.3V LDO3O E4 1μF/6.3V E3 LDO4O 1μF/6.3V D3 E2 T2 A6 F1 A1 F6 A3 GND1 GC1 Vo Selectable Io=150mA LED control T3 (Open) GC2 Sensor I/F E1 T4 SGND LDO3 T1 (Open) IOUT 1μF/6.3V GC2 Vo Selectable Io=150mA LDO2 BH1621FVC SSENS 6LED Main Back Light LED4 D5 RESETB From CPU B2 Fig.2 Block Diagram / Application Circuit Example 1 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 6/45 2010.07 - Rev.A Technical Note BD6083GUL ●Block Diagram / Application Circuit Example 2 5LED + ALC +PWM C5 C2P C2N C1P C1N A4 CPGND 1μF/10V 1μF/10V B5 C6 A5 VBAT VBATCP B6 VBAT1 VOUT Charge Pump F4 VBAT2 F5 D6 x1 / x1.5 / x2 1μF/10V 2.2µF/10V LED1 A2 LED2 OVP Charge Pump Mode Control B1 LED3 LED terminal voltage feedback VIO Voltage VIO SCL SDA WPWMIN From LCM C2 LED5 D1 B4 LED6 C4 I/O D4 Level I C interface Shift Digital Control D2 TSD 2 LEDGND C1 B3 IREF LDO1 VCC GND GC1 <ALS> VREF SBIAS F3 Vo Selectable Io=150mA LDO4 (ALC) F2 Vo Selectable Io=150mA E6 LDO1O 1μF/6.3V E5 LDO2O 1μF/6.3V LDO3O E4 1μF/6.3V E3 LDO4O 1μF/6.3V D3 E2 T2 A6 F1 A1 F6 A3 GND1 GC1 Vo Selectable Io=150mA LED control T3 (Open) GC2 Sensor I/F E1 T4 SGND LDO3 T1 (Open) IOUT 1μF/6.3V GC2 Vo Selectable Io=150mA LDO2 BH1621FVC SSENS 5LED Main Back Light LED4 D5 RESETB From CPU B2 Fig.3 Block Diagram / Application Circuit Example 2 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 7/45 2010.07 - Rev.A Technical Note BD6083GUL ●Block Diagram / Application Circuit Example 3 4LED + 2LED + ALC +PWM C5 C2P C2N C1P C1N A4 CPGND 1μF/10V 1μF/10V B5 C6 A5 VBAT VBATCP B6 VBAT1 VOUT Charge Pump F4 VBAT2 F5 D6 x1 / x1.5 / x2 1μF/10V 2.2µF/10V LED1 A2 LED2 OVP Charge Pump Mode Control B1 VIO SCL SDA WPWMIN From LCM B2 LED4 D5 C2 LED5 RESETB From CPU B4 D1 C4 D2 I/O D4 Level I2C interface Shift Digital Control TSD LEDGND C1 B3 IREF LDO1 VCC GND GC1 VREF SBIAS F3 Vo Selectable Io=150mA Vo Selectable Io=150mA LED control LDO4 (ALC) F2 Vo Selectable Io=150mA E6 LDO1O 1μF/6.3V E5 LDO2O 1μF/6.3V LDO3O E4 1μF/6.3V E3 LDO4O 1μF/6.3V D3 E2 F1 A1 F6 A3 GND1 T2 A6 T3 (Open) GC1 Sensor I/F E1 T4 GC2 LDO3 T1 (Open) IOUT 1μF/6.3V GC2 Vo Selectable Io=150mA LDO2 BH1621FVC SGND 2LED Sub Back Light or Key Back Light LED6 <ALS> SSENS 6LED Main Back Light LED3 LED terminal voltage feedback VIO Voltage Fig.4 Block Diagram / Application Circuit Example 3 . www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 8/45 2010.07 - Rev.A Technical Note BD6083GUL ●Pin Arrangement [Bottom View] F T4 SGND SBIAS VBAT1 VBAT2 T3 E SSENS GC1 LDO4O LDO3O LDO2O LDO1O D LED5 LED6 GC2 SDA VIO VOUT SCL C1P C2P index C LEDGND LED4 B LED2 LED3 WPWMIN RESETB C2N VBATCP A T1 LED1 GND1 C1N CPGND T2 1 2 3 4 5 6 Total 35 Ball Fig.5 Pin Arrangement www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 9/45 2010.07 - Rev.A Technical Note BD6083GUL ●Package Outline VCSP50L3 CSP small package SIZE : 3.15mm x 3.15mm (A difference in public:X,Y Both ±0.05mm) Height : 0.55mm max A ball pitch : 0.5 mm (Unit : mm) Fig.6 Package Outline www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 10/45 2010.07 - Rev.A Technical Note BD6083GUL ●Pin Functions ESD Diode Equivalent Circuit No Ball No. Pin Name I/O Functions 1 B6 VBATCP 2 F4 VBAT1 3 F5 VBAT2 - - GND Battery is connected A 4 A1 T1 O VBAT GND Test Output Pin(Open) N 5 A6 T2 I VBAT GND Test Input Pin (short to Ground) S 6 F6 T3 O VBAT GND Test Output Pin(Open) M 7 F1 T4 I VBAT GND Test Input Pin (short to Ground) S 8 D5 VIO - VBAT GND I/O Power supply is connected C 9 B4 RESETB I VBAT GND Reset input (L: reset, H: reset cancel) H For Power For Ground - - GND Battery is connected A - - GND Battery is connected A 2 10 D4 SDA I/O VBAT GND I C data input / output I 11 C4 SCL I VBAT GND I2C clock input H 12 A5 CPGND - VBAT - Ground B 13 A3 GND1 - VBAT - Ground B 14 C1 LEDGND - VBAT - Ground B 15 A4 C1N I/O VBAT GND Charge Pump capacitor is connected F 16 C5 C1P I/O - GND Charge Pump capacitor is connected G 17 B5 C2N I/O VBAT GND Charge Pump capacitor is connected F 18 C6 C2P I/O - GND Charge Pump capacitor is connected G 19 D6 VOUT O - GND Charge Pump output pin A 20 A2 LED1 I - GND LED is connected 1 for LCD Back Light E 21 B1 LED2 I - GND LED is connected 2 for LCD Back Light E 22 B2 LED3 I - GND LED is connected 3 for LCD Back Light E 23 C2 LED4 I - GND LED is connected 4 for LCD Back Light E 24 D1 LED5 I - GND LED is connected 5 for LCD Back Light E 25 D2 LED6 I - GND LED is connected 6 for LCD Back Light E 26 F3 SBIAS O VBAT GND Bias output for the Ambient Light Sensor Q 27 E1 SSENS I VBAT GND Ambient Light Sensor input N 28 E2 GC1 O VBAT GND Ambient Light Sensor gain control output 1 X 29 D3 GC2 O VBAT GND Ambient Light Sensor gain control output 2 X 30 F2 SGND - VBAT - Ground B 31 B3 WPWMIN I VBAT GND External PWM input for Back Light * L 32 E6 LDO1O O VBAT GND LDO1 output pin Q 33 E5 LDO2O O VBAT GND LDO2 output pin Q 34 E4 LDO3O O VBAT GND LDO3 output pin Q 35 E3 LDO4O O VBAT GND LDO4 output pin Q * A setup of a register is separately necessary to make it effective. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 11/45 2010.07 - Rev.A Technical Note BD6083GUL ●Equivalent Circuit A B VBAT F VBAT G J VBAT VIO L VBAT Q VBAT VBAT R V VBAT VBAT W C VBAT E H VBAT VIO I VBAT M VBAT VBAT N VBAT VBAT S VBAT VBAT U VBAT VIO X VoS VBAT Y VBAT VIO VBAT VIO VBAT Fig.7 Equivalent Circuit www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 12/45 2010.07 - Rev.A Technical Note BD6083GUL ●I2C BUS Format 2 The writing/reading operation is based on the I C slave standard. ・Slave address A7 A6 A5 A4 A3 A2 A1 1 1 1 0 1 1 0 R/W 1/0 ・Bit Transfer SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal. SDA SCL SDA a state of stability: SDA It can change Data are effective Fig.8 ・START and STOP condition When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end. SDA SCL S P STOP condition START condition Fig.9 ・Acknowledge It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL S 1 2 8 9 clock pulse for acknowledgement START condition Fig.10 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 13/45 2010.07 - Rev.A Technical Note BD6083GUL ・Writing protocol A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out. *1 S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address register address *1 D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment R/W=0(write) register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing from master to slave from slave to master Fig.11 ・Reading protocol It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. 1 A D7 D6 D5 D4 D3 D2 D1 D0 A S X X X X X X X slave address D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment register address increment R/W=1(read) A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition from master to slave from slave to master Fig.12 ・Multiple reading protocols After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A slave address register address slave address R/W=0(write) R/W=1(read) D7 D6 D5 D4 D3D2 D1D0 A DATA D7D6 D5D4D3D2D1D0 A P DATA register address increment register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition from master to slave from slave to master Fig.13 As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 14/45 2010.07 - Rev.A Technical Note BD6083GUL ●Timing Diagram SDA t BUF t SU;DAT t LOW t HD;STA SCL t HD;STA S t SU;STO t SU;STA t HD;DAT Sr t HIGH P S Fig.14 ●Electrical Characteristics(Unless otherwise specified, Ta=25 oC, VBAT=3.6V, VIO=1.8V) Standard-mode Parameter Symbol Min. Typ. Max. Fast-mode Min. Typ. Max. Unit 【I2C BUS format】 SCL clock frequency fSCL 0 - 100 0 - 400 kHz LOW period of the SCL clock tLOW 4.7 - - 1.3 - - μs HIGH period of the SCL clock tHIGH 4.0 - - 0.6 - - μs Hold time (repeated) START condition After this period, the first clock is generated tHD;STA 4.0 - - 0.6 - - μs Set-up time for a repeated START condition tSU;STA 4.7 - - 0.6 - - μs Data hold time tHD;DAT 0 - 3.45 0 - 0.9 μs Data set-up time tSU;DAT 250 - - 100 - - ns Set-up time for STOP condition tSU;STO 4.0 - - 0.6 - - μs Bus free time between a STOP and START condition tBUF 4.7 - - 1.3 - - μs www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 15/45 2010.07 - Rev.A Technical Note BD6083GUL ●Register List Address W/R Register data D7 D6 D5 D4 D3 D2 D1 D0 Function 00h W - - - - - - - SFTRST Software Reset 01h W - - - - W6MD W5MD W4MD MLEDMD LED Pin function setting 02h W WPWMEN ALCEN - - W6EN W5EN - MLEDEN LED Power Control 03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) Main group current setting 04h - - - - - - - - - 05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) LED5 current setting - 06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) LED6 current setting 07h - - - - - - - - - - 08h - - - - - - - - - - 09h W THL (3) THL (2) THL (1) THL (0) TLH (3) TLH (2) TLH (1) TLH (0) 0Ah W - ADCYC - GAIN - - MDCIR SBIASON Measurement mode setting Main Current transition 0Bh W - - - - CRV STEP (2) STEP (1) STEP (0) ALC Slope curve setup 0Ch R - - - - AMB (3) AMB (2) AMB (1) AMB (0) Ambient level 0Dh W - IU0 (6) IU0 (5) IU0 (4) IU0 (3) IU0 (2) IU0 (1) IU0 (0) LED Current at Ambient level 0h (ALC) 0Eh W - IU1 (6) IU1 (5) IU1 (4) IU1 (3) IU1 (2) IU1 (1) IU1 (0) LED Current max (ALC) 0Fh - - - - - - - - - - 10h - - - - - - - - - - 11h - - - - - - - - - - 12h - - - - - - - - - - 13h W - - - - LDO4EN LDO3EN LDO2EN LDO1EN LDO Power Control LDO1 Vout Control 14h W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0 LDO2 Vout Control LDO3 Vout Control 15h W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0 LDO4 Vout Control Input "0” for "-". A free address has the possibility to assign it to the register for the test. Access to the register for the test and the undefined register is prohibited. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 16/45 2010.07 - Rev.A Technical Note BD6083GUL ●Register Map Address 00h Address < Software Reset > R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 00h W - - - - - - - SFTRST Initial Value 00h - - - - - - - 0 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit[7:1] : (Not used) Bit0 : SFTRST Software Reset “0” : Reset cancel “1” : Reset(All register initializing) Refer to “Reset” for detail. Address 01h < LED Pin function setting> Address R/W Bit7 Bit6 01h W - - - - W6MD W5MD W4MD MLEDMD Initial Value 02h - - - - 0 0 1 0 Bit[7:4] : (Not used) Bit3 : W6MD LED6 control setting (individual / Main group) “0” : LED6 individual control (Initial Value) “1” : LED6 Main group control Refer to “LED Driver” for detail. Bit2 : W5MD LED5 control setting (individual / Main group) “0” : LED5 individual control (Initial Value) “1” : LED5 Main group control Refer to “LED Driver” for detail. Bit1 : W4MD LED4 Control Board setting (unuse / use) “0” : LED4 unuse “1” : LED4 use (Main group Control) (Initial Value) Refer to “LED Driver” for detail. Bit0 : MLEDMD Main group setting (Normal / ALC) “0” : Main group Normal Mode(ALCNon-reflection)(Initial Value) “1” : Main group ALC Mode Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail. Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically. And, do the setup of W*PW when each LED is Off. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 17/45 2010.07 - Rev.A Technical Note BD6083GUL Address 02h < LED Power Control> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 02h W WPWMEN ALCEN - - W6EN W5EN - MLEDEN Initial Value 00h 0 0 0 0 0 0 0 0 Bit7 : WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid) “0” : External PWM input invalid (Initial Value) “1” : External PWM input valid Refer to “(10) Current Adjustment” of “ALC” for detail. Bit6 : ALCEN ALC function Control (ON/OFF) “0” : ALC block OFF (Initial Value) “1” : ALC block ON (Ambient Measurement) Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail. Bit[5:4] : (Not used) Bit3 : W6EN LED6 Control (ON/OFF) “0” : LED6 OFF (Initial Value) “1” : LED6 ON(individual control) Refer to “LED Driver” for detail. Bit2 : W5EN LED5 Control (ON/OFF) “0” : LED5 OFF (Initial Value) “1” : LED5 ON(individual control) Refer to “LED Driver” for detail. Bit1 : (Not used) Bit0 : MLEDEN Main group LED Control (ON/OFF) “0” : Main group OFF (Initial Value) “1” : Main group ON Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 18/45 2010.07 - Rev.A Technical Note BD6083GUL Address 03h < Main group LED Current setting(Normal Mode) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) Initial Value 00h - 0 0 0 0 0 0 0 Bit7 : (Not used) Bit[6:0] : IMLED (6:0) Main Group LED Current Setting at non-ALC mode “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 19/45 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6083GUL Address 05h < LED5 Current setting(Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) Initial Value 00h - 0 0 0 0 0 0 0 Bit7 : (Not used) Bit[6:0] : IW5 (6:0) LED5 Current setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20/45 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6083GUL Address 06h < LED6 Current setting(Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) Initial Value 00h - 0 0 0 0 0 0 0 Bit7 : (Not used) Bit[6:0] : IW6 (6:0) LED6 Current setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 21/45 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6083GUL Address 09h < Main Current slope time setting > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 09h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0) Initial Value C7h 1 1 0 0 0 1 1 1 Bit[7:4] : THL (3:0) Main LED current Down transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms (Initial Value) “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “(8) Slope Process” of “ALC” for detail. Bit[3:0] : TLH (3:0) Main LED current Up transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms (Initial Value) “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “(8) Slope Process” of “ALC” for detail. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 22/45 2010.07 - Rev.A Technical Note BD6083GUL Address 0Ah < ALC mode setting > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Ah W - ADCYC - GAIN - - MDCIR SBIASON Initial Value 01h - 0 - 0 - - 0 1 Bit7 : (Not used) Bit6 : ADCYC ADC Measurement Cycle “0” : 0.52 s (Initial Value) “1” : 1.05 s Refer to “(4) A/D conversion” of “ALC” for detail. Bit5 : (Not used) Bit4 : GAIN Sensor Gain Switching Function Control “0” : Auto Change (Initial Value) “1” : Fixed Refer to “(3) Gain control” of “ALC” for detail. Bit[3:2] : (Not used) Bit1 : MDCIR LED Current Reset Select by Mode Change “0” : LED current non-reset when mode change (Initial Value) “1” : LED current reset when mode change Refer to “(9) LED current reset when mode change” of “ALC” for detail. Bit0 : SBIASON “0” : Measurement cycle synchronous “1” : Usually ON (at ALCEN=1) (Initial Value) Refer to “(4) A/D conversion” of “ALC” for detail. Address 0Bh < ALC slope curve setting > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Bh W - - - - CRV STEP (2) STEP (1) STEP (0) Initial Value 00h - - - - 0 0 0 1 Bit[7:4] : (Not used) Bit3 : CRV Brightness Current Conversion Curve Type “0” Log curve (Initial Value) “1” linear Bit[2:0] : STEP (2:0) Step At the time of Brightness Current Conversion “000” : 1.0mA “001” : 1.1mA (Initial Value) “010” : 1.2mA “011” : 1.3mA “100” : 1.6mA “101” : 1.7mA “110” : 1.8mA “111” : 1.9mA Refer to “(7) Convert LED Current” of “ALC” for detail. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 23/45 2010.07 - Rev.A Technical Note BD6083GUL Address 0Ch < Ambient level (Read Only) > Address R/W Bit7 Bit6 0Ch R Initial Value (00h) Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - - AMB(3) AMB(2) AMB(1) AMB(0) - - - - (0) (0) (0) (0) Bit[7:4] : (Not used) Bit[3:0] : AMB (3:0) “0000” : “0001” : “0010” : “0011” : “0100” : “0101” : “0110” : “0111” : “1000” : “1001” : “1010” : “1011” : “1100” : “1101” : “1110” : “1111” : Ambient Level 0h (Initial Value) 1h 2h 3h 4h 5h 6h 7h 8h 9h Ah Bh Ch Dh Eh Fh It begins to read Ambient data through I2C, and possible. To the first AD measurement completion, it is AMB(3:0)=0000. Refer to “(6) Ambient level detection” of “ALC” for detail. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 24/45 2010.07 - Rev.A Technical Note BD6083GUL Address 0Dh < Ambient LED Current setting > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Dh W - IU0 (6) IU0 (5) IU0 (4) IU0 (3) IU0 (2) IU0 (1) IU0 (0) Initial Value 13 - 0 0 1 0 0 1 1 Bit7 : (Not used) Bit[6:0] : IU0 (6:0) Main Current at Ambient Level for 0h “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA (Initial Value) 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 25/45 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6083GUL Address 0Eh < LED Max Current setting > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Eh W - IU1 (6) IU1 (5) IU1 (4) IU1 (3) IU1 (2) IU1 (1) IU1 (0) Initial Value 63h - 1 1 0 0 0 1 1 Bit7 : (Not used) Bit[6:0] : IU1 (6:0) LED Max Current (for ALC) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 26/45 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA (Initial Value) 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6083GUL Address 13h <LDO Power Control> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 13h W/R - - - - LDO4EN LDO3EN LDO2EN LDO1EN Initial Value 00h - - - - 0 0 0 0 Bit4 Bit3 Bit2 Bit1 Bit0 Bit[7:4] : (Not used) Bit3 : LDO4EN LDO4 control (ON/OFF) “0” : LDO4 OFF (Initial Value) “1” : LDO4 ON Bit2 : LDO3EN LDO3 control (ON/OFF) “0” : LDO3 OFF (Initial Value) “1” : LDO3 ON Bit1 : LDO2EN LDO2 control (ON/OFF) “0” : LDO2 OFF (Initial Value) “1” : LDO2 ON Bit0 : LDO1EN LDO1 control (ON/OFF) “0” : LDO1 OFF (Initial Value) “1” : LDO1 ON Address 14h < LDO1 Vout Control, LDO2 Vout Control > Address R/W Bit7 Bit6 Bit5 14h Initial Value R/W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0 74h 0 1 Bit[7:4] : LDO2VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V (Initial Value) “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V Bit[3:0] : LDO1VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1 1 27/45 0 1 0 0 2010.07 - Rev.A Technical Note BD6083GUL Address 15h < LDO3 Vout Control, LDO4 Vout Control > Address R/W Bit7 Bit6 Bit5 15h Initial Value Bit4 Bit3 Bit2 Bit1 Bit0 R/W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0 A4h 1 0 Bit[7:4] : LDO4VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V (Initial Value) “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V Bit[3:0] : LDO3VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1 0 28/45 0 1 0 0 2010.07 - Rev.A Technical Note BD6083GUL ●Reset There are two kinds of reset, software reset and hardware reset (1)Software reset ・All the registers are initialized by SFTRST="1". ・SFTRST is an automatically returned to "0". (Auto Return 0). (2) Hardware reset ・It shifts to hardware reset by changing RESETB pin “H” → “L”. ・The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address. ・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”. ・RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs. (3) Reset Sequence ・When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled. (Because the Initial Value of software reset is “0”) ●VIODET The decline of the VIO voltage is detected, and faulty operation inside the IC is prevented by giving resetting to Levelsift block Image Block Diagram VIO VBAT DEToutput 2.6V Inside reset Reset by VIODET VBAT (typ)1.0V VIO VIODET RESETB RESETB R Digital pin I/O LEVEL SHIFT DET output Inside reset Fig.15 Fig.16 When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed. On the contrary, when VIO is as follows 1.0V, it takes reset.(The VBAT voltage being a prescribed movement range) ●Thermal Shut Down A thermal shutdown function is effective in the following block. DC/DC (Charge Pump) LED Driver SBIAS LDO1, LDO2, LDO3, LDO4 The thermal shutdown function is detection temperature that it works is about 195℃. Detection temperature has a hysteresis, and detection release temperature is about 175 oC. (Design reference value) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 29/45 2010.07 - Rev.A Technical Note BD6083GUL ●DC / DC Start DC/DC circuit operates when any LED turns ON. (DCDCFON=0) When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current. Force of VBAT and VIO is to go as follows. VBAT VIO T VIOON=min 0.1ms T VIOOFF=min 0.1ms RESETB T RSTB=min 0.1ms T RST=min 0ms EN (*) T SO FT VOUT LEDcurrent (*) An EN signal means the following in the upper figure. EN = “MLEDEN” or “W*EN” (= LED The LED lighting control of a setup of connection VOUT) But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective. TSOFT changes by the capacitor connected to VOUT and inside OSC. TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF). Fig.17 Over Voltage protection / Over Current protection DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function. A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage) A detection voltage has a hysteresis, and a detection release voltage is about 5.4V (typ). And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection function. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 30/45 2010.07 - Rev.A Technical Note BD6083GUL Mode transition The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage. STANDBY 1 condition○ ALL off MLEDEN=”1” or W*EN=”1” 1 ○ and Ta<TTSD SOFT CP x1.0 mode After detecting VOUT>1.5V(typ), 128us(typ) wait X1.0 CP x1.0 mode mode up=”H” mode down=”H” X1.5 CP x1.5 mode mode up=”H” mode down=”H” X2.0 CP x2.0 mode Fig.18 The mode transition of the charge pump works as follows. <x1.0→x1.5→x2.0 Mode transition> The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied. x1.0→x1.5 Mode transition VBAT ≤ VOUT + (Ron10×Iout) (LED Pin feedback:VOUT = Vf+0.2(Typ)) x1.5→x2.0 Mode transition VBAT×1.5 ≤ VOUT +(Ron15×Iout) (LED Pin feedback:VOUT = Vf+0.2(Typ)) Ron10: x1 Charge pump on resistance 1.4Ω(Typ) Ron15: x1.5 Charge pump on resistance 8.5Ω(Typ) <x2.0→x1.5→x1.0 Mode transition> The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio. x1.5→x1.0 Mode transition VBAT / VOUT =1.16(Design value) x2.0→x1.5 Mode transition VBAT / VOUT =1.12(Design value) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 31/45 2010.07 - Rev.A Technical Note BD6083GUL ●LED Driver The LED driver of 6ch is constructed as the ground plan. Equivalence control is possible with LED1 - 4(LED4 can choose use/un-use with a register W4MD.). LED5, LED6 is controllable individually. As for LED5, LED6, grouping setting to the main control is possible, and main control becomes effective for the main group in the allotment. LED5 and LED6 are setups of grouping to the main control. When LED5 and LED6 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective. LED1 LED2 IMLED[6:0] MLEDEN LED3 MLEDMD WPWMIN LED4 W4MD 1 IW5[6:0] LED5 0 W5EN W5MD 1 IW6[6:0] LED6 0 W6EN W6MD Fig.19 LED Composition which can be set up is the following. The main, other1 and other2 are controllable to each.(Enable and current setting) Main (ALC,PWM) Other1 Other2 6LEDs - - 5LEDs - - 5LEDs 1LED - 4LEDs - - 4LEDs 1 LED - 4LEDs 2 LEDs - 4LEDs 1 LED 1LED 3LEDs - - 3LEDs 1 LED - 3LEDs 2 LEDs - 3LEDs 1 LED 1LED www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 32/45 2010.07 - Rev.A Technical Note BD6083GUL ●ALC (Auto Luminous Control) LCD backlight current adjustment is possible in the basis of the data detected by external ambient light sensor. ・Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear / logarithm)) is possible by building adjustment feature of Sensor bias, gain adjustment and offset adjustment. ・Ambient data is changed into ambient level by digital data processing, and it can be read through I2C I / F. ・ Register setting can customize a conversion to LED current. (Initial Value is pre-set.) ・Natural dimming of LED driver is possible with the adjustment of the current transition speed. PWM enabling Always ON / Intermittence WPWMIN SBIAS SBIAS Slope Timer Conversion Mode Select LED* Sensor SSENS LCD Backlight Average ADC Slope process Current Logarithmic Conv. Conversion Ambient Level DC current setup Main Group setup GC1 Gain Control GC2 Ambient Level Gain Control ON/OFF :Effective also in ALC functional the case of not using it Fig.20 (1)Auto Luminous Control ON/OFF ・ALC block can be independent setting ON/OFF. ・It can use only to measure the Ambient level. Register: ALCEN Register: MLEDEN Register: MLEDMD ・Refer to under about the associate ALC mode and Main LED current. ALCEN MLEDEN MLEDMD 0 0 x 0 1 0 0 1 1 (*1) (*2) 1 0 x 1 1 0 1 1 1 Sensor I/F LED control Mode Main LED current OFF OFF - ON Non ALC mode OFF ( AMB(3:0)=0h ) OFF ON ON IMLED(6:0) IU0(6:0) (*1) - ALC mode IMLED(6:0) ALC mode (*2) At this mode, because Sensor I/F is OFF, AMB(3:0)=0h. So, Main LED current is selected IU0(6:0). At this mode, Main LED current is calculated (See(8)Convert LED Current) It becomes current value corresponding to each brightness. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 33/45 2010.07 - Rev.A Technical Note BD6083GUL SBIAS Sensor Current (Iout) (2) I/V conversion ・External resistance for the I-V conversion (Rs) are adjusted with adaptation of sensor characteristic SBIAS SSENS voltage VSSENS VCC Sensor IC A/D Iout IOUT Ambient SSENS GND Rs Rs : Sense resistance (A sensor output current is changed into the voltage value.) SBIAS : Bias power supply terminal for the sensor SSENS : Sense voltage input terminal SSENS Voltage = Iout x Rs www.rohm.com Rs is large Rs is small Ambient Fig.21 © 2010 ROHM Co., Ltd. All rights reserved. SSENS Voltage (=Iout x Rs) SGND 34/45 2010.07 - Rev.A Technical Note (3) Gain control ・Sensor gain switching function is built in to extend the dynamic range. ・It is controlled by register setup. ・When automatic gain control is off, the gain status can be set upin the manual. Register : GAIN ・GC1 and GC2 are outputted corresponding to each gain status. SSENS Voltage BD6083GUL High Gain mode Low Gain mode SSENS Voltage Ambient Auto Gain mode Ambient Example 1 (Use BH1621FVC) SBIAS SSENS SSENS SSENS GC1 GC1 GC1 GC2 GC2 GND GC2 GC2 SGND SGND SGND 1 SBIAS BH1621 GC1 Example 3 SBIAS 9.5 (*1) VCC IOUT Application example Example 2 Resister values are relative Operating mode Auto Auto Fixed GAIN setting 0 0 1 Gain status High GC1 output GC2 output Low High L Low - L L L L : This means that it becomes High with A/D measurement cycle synchronously. (*1) : Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 35/45 2010.07 - Rev.A Technical Note BD6083GUL (4) A/D conversion ・The detection of ambient data is done periodically for the low power. ・SBIAS and ADC are turned off except for the ambient measurement. ・The sensor current may be shut in this function, it can possible to decrease the current consumption. ・SBIAS pin and SSENS pin are pull-down in internal when there are OFF. ・SBIAS circuit has the two modes. (Usually ON mode or intermittent mode) Register: ADCYC Register: SBIASON 16 times ALCEN ADCYC ADC Cycle SBIAS Output Twait= 64ms(typ) (Wait time) When SBIASON=1 ADC Movement TAD= 16.4ms(typ) AD start signal (A/D conversion time) GC1, GC2 GC1, GC2=00 TADone= 1.024ms(typ) AMB(3:0) AMB(3:0) Toprt= 80.4ms(typ) 16 times measurement Fig.22 (Operate time) (5) Average filter ・Average filter is built in to rid noise or flicker. Average is 16 times (6) Ambient level detection ・Averaged A/D value is converted to Ambient level corresponding to Gain control. ・Ambient level is judged to rank of 16 steps by ambient data. ・Ambient level is output through I2C. Register: AMB(3:0) GAIN 0 GAIN Setting Low Ambient Level 1 High - SSENS Voltage 0h VoS×0 / 256 VoS×0 / 256 1h VoS×1 / 256 VoS×1 / 256 2h VoS×2 / 256 VoS×3 / 256 VoS×4 / 256 VoS×5 / 256 VoS×7 / 256 VoS×8 / 256 VoS×12 / 256 VoS×13 / 256 VoS×21 / 256 VoS×22 / 256 VoS×37 / 256 VoS×38 / 256 VoS×65 / 256 VoS×66 / 256 VoS×113 / 256 VoS×114 / 256 VoS×199 / 256 VoS×200 / 256 VoS×255 / 256 VoS×2 / 256 VoS×3 / 256 VoS×4 / 256 VoS×5 / 256 VoS×6 / 256 VoS×7 / 256 VoS×9 / 256 VoS×10 / 256 VoS×13 / 256 VoS×14 / 256 VoS×19 / 256 VoS×20 / 256 VoS×27 / 256 VoS×28 / 256 VoS×38 / 256 VoS×39 / 256 VoS×53 / 256 VoS×54 / 256 VoS×74 / 256 VoS×75 / 256 VoS×104 / 256 VoS×105 / 256 VoS×144 / 256 VoS×145 / 256 VoS×199 / 256 VoS×200 / 256 VoS×255 / 256 3h 4h 5h VoS×0 / 256 6h VoS×1 / 256 7h 8h 9h Ah Bh Ch Dh Eh Fh VoS×2 / 256 VoS×3 / 256 VoS×4 / 256 VoS×6 / 256 VoS×7 / 256 VoS×11 / 256 VoS×12 / 256 VoS×20 / 256 VoS×21 / 256 VoS×36 / 256 VoS×37 / 256 VoS×64 / 256 VoS×65 / 256 VoS×114 / 256 VoS×115 / 256 VoS×199 / 256 VoS×200 / 256 VoS×255 / 256 ※In the Auto Gain control mode, sensor gain changes in gray-colored ambient level. ※“/”: This means that this zone is not outputted in this mode. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 36/45 2010.07 - Rev.A Technical Note BD6083GUL (7)Convert LED Current ・LED current can be assigned as each of 16 steps of the ambient level. ・Convert LED Current by Min Current setting,Max Current setting,step setting and curbu setting. Register: IU0 IU1 CRV STEP [2:0] Conversion Table (Initial Value) Coefficient Ambient Level CRV=0 CRV=1 Step Table Setting Coefficient Ambient Level CRV=0 CRV=1 STEP[2:0] ΔI 0h 0 0 8h 6.5 8 000 1.0mA 1h 0.25 1 9h 8 9 001 1.1mA 2h 0.5 2 Ah 10 10 010 1.2mA 3h 1 3 Bh 12 11 011 1.3mA 4h 1.5 4 Ch 13 12 100 1.6mA 5h 2.5 5 Dh 14 13 101 1.7mA 6h 3.5 6 Eh 15 14 110 1.8mA 7h 5 7 Fh 16 15 111 1.9mA I=ΔI×Coefficient+IU0 ※ I≧IU1:I=IU1 ※ ΔI×Coefficient Drop under 1mA The example of a setting IU0=4mA IU1=20mA CRV=1 CRV=0 30 30 SLP=1mA SLP=1.1mA SLP=1.2mA SLP=1.3mA SLP=1.6mA SLP=1.7mA SLP=1.8mA SLP=1.9mA 20 25 LED Current(mA) LED Current(mA) 25 15 10 20 SLP=1mA SLP=1.1mA SLP=1.2mA SLP=1.3mA SLP=1.6mA SLP=1.7mA SLP=1.8mA SLP=1.9mA 15 10 5 5 0 0h0 0 0h 0 3h 3 6h 6 9h 9 Ch 12 Fh 15 Fig.23 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3h3 6h 6 9h 9 Ch 12 C Fh 15 AMBLevel Ambient Ambient AMB Level Fig.24 37/45 2010.07 - Rev.A Technical Note BD6083GUL Current Data which is set LED Current Main LED current (8) Slope process ・Slope process is given to LED current to dim naturally. ・LED current changes in the 256Step gradation in sloping. ・Up(dark→bright),Down(bright→dark) LED current transition speed are set individually. Register: THL (3:0) Register: TLH (3:0) ・Main LED current changes as follows at the time as the slope. TLH (THL) is setup of time of the current step 2/256. THL (3:0) TLH(3:0) Up/Down transition Speed is set individually TLH time THL Zoom Main LED current 25.6mA =0.1mA 256 Fig.25 TLH(3:0) time NonALC mode Main LED current (9) LED current reset when mode change ・When mode is changed (ALC↔Non ALC), it can select the way to sloping. Register : MDCIR “0” : LED current non-reset when mode change “1” : LED current reset when mode change ALC mode NonALC mode IMLED(6:0) IMLED(6:0) IU*(6:0) MDCIR= “0” 0mA time Main LED current NonALC mode ALC mode NonALC mode IMLED(6:0) IMLED(6:0) IU*(6:0) MDCIR= “1” 0mA time www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 38/45 2010.07 - Rev.A Technical Note BD6083GUL (10) Current adjustment ・When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible. Register : WPWMEN ・It is suitable for the intensity correction by external control, because PWM based on Main LED current of register setup or ALC control. WPWMEN (Register) WPWMIN(External Pin) Main group LED current L Normal operation H Normal operation L Forced OFF H Normal operation 0 1 " Normal operation " depends on the setup of each register. EN(*) Internal Soft-Start Time DC/DC Output WPWMIN input WPWMEN LED Current EN(*) : it means “MLEDEN” or “W*EN”. It is possible to make it a WPWMIN input and WPWMEN=1 in front of EN(*). A PWM drive becomes effective after the time of an LED current standup. When rising during PWM operation, as for the standup time of a DC/DC output, only the rate of PWM Duty becomes late. Appearance may be influenced when extremely late frequency and extremely low Duty are inputted. Please secure 250 μs or more of H sections at the time of PWM pulse Force. Fig.26 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 39/45 2010.07 - Rev.A Technical Note BD6083GUL ●I/O When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power. When RESETB=L, output is fixed at “H.” Level shifter SCL (SDA) Logic EN RESETB Fig.27 Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O power-on sequence or an input level. ●About the start of LDO1~LDO4 It must start as follows. VBAT TVBATON TVBATOFF VIO TVIOON=min 0.1ms TVIOOFF=min 1ms RESETB TRSTB=min 0.1ms TRST=min 0ms LDO1EN or LDO2EN or LDO3EN or LDO4EN TRISE = max 1ms LDO1O or LDO2O or LDO3O or LDO4O (LDO output) Fig.28 <Start Sequence> VBAT ON (Enough rise up) → VIO ON (Enough rise up) → Reset release → LDO ON (Register access acceptable) <End Sequence> LDO OFF → Reset → VIO OFF (Enough fall down) → VBAT OFF ●About the pin management of the function that isn't used and test pins Setting it as follows is recommended with the test pin and the pin which isn't used. Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use. T2, T4 Short to GND because pin for test input T1,T3 OPEN because pin for test output Non-used LED Pin Short to GND (Must) But, the setup of a register concerned with LED that isn’t used is prohibited. WPWMIN Short to ground (A Pull-Down resistance built-in terminal is contained, too.) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 40/45 2010.07 - Rev.A Technical Note BD6083GUL ●Operation Settings (Flow Example) 1. Backlight: Auto Luminous Mode Apply supply voltage. Cancel reset. Luminous control: Various settings Backlight: Various settings The backlight settings can be made at any timing so long as it precedes MLEDEN=1. MLEDMD=1 is mandatory. ALC block operation takes place for Illumination Intensity measurement. ALCEN=1 Wait for 80.4 ms or more Time required for initial Illumination Intensity acquisition. MLEDEN=1 The backlight turns on. MLEDEN=0 must be set first when the backlight is off. Fig.29 A LC E N A D C YC A D C C ycle S B IA S O utput T w ait= 64m s(typ) W hen S B IA S O N =1 A D C M ovem ent T A D = 16.4m s(typ) G C 1, G C 2 G C 1, G C 2=00 A M B (3:0) A M B (3:0) T A M B = 80.4m s(typ) VOUT LE D current ① T S O FT Fig.30 When It cannot wait for the first illumination measurement, backlight lighting is possible with ALCEN. But the extremely short case of slope rise time, a shoulder may be done like ① for an LED electric current. (To the first illumination measurement for AMB(3:0)=00h) 2. Backlight: Fade-in/Fade-out Apply supply voltage. Cancel reset. Backlight: Various settings Backlight setting. Slow time setting. MLEDEN=1 The backlight turns on. (Rise at designated slope time) Set the minimum current. (Rise at designated slope time) MLEDEN=0 The backlight turns off. Fig.31 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 41/45 2010.07 - Rev.A Technical Note BD6083GUL 3. Backlight without Auto Luminous Mode Apply supply voltage. Cancel reset. Backlight: Various settings MLEDEN=1 The backlight settings can be made at any timing so long as it precedes MLEDEN=1. MLEDMD=0 is mandatory. The backlight turns on. MLEDEN=0 must be set first when the backlight is off. Fig.32 M LE D EN V O UT LED current T SO FT The rise time depends on TLH(3:0) setting Fig.33 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 42/45 2010.07 - Rev.A Technical Note BD6083GUL ●PCB Pattern of the Power Dissipation Measuring Board 1st layer(component) 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer 8th layer(solder) Fig.34 PCB Pattern of the Power Dissipation Measuring Board www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 43/45 2010.07 - Rev.A Technical Note BD6083GUL ●Notes for Use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Power supply and ground line Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for smalICgnal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (3) Ground voltage Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient. (4) Short circuit between pins and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down. (5) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (6) Input pins In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (7) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. (8) Thermal shutdown circuit (TSD) This IC builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the IC from thermal runaway as much as possible, is not aimed at the protection or guarantee of the IC. Therefore, do not continuously use the IC with this circuit operating or use the IC assuming its operation. (9) Thermal design Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use. (10) LDO Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable. (11) About the pin for the test, the un-use pin Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge. (12) About the rush current For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of wiring. (13) About the function description or application note or more. The function description and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 44/45 2010.07 - Rev.A Technical Note BD6083GUL ●Ordering Part Number B D 6 Part No. 0 8 3 Part No. G U L - Package GUL: VCSP50L3 E 2 Packaging and forming specification E2: Embossed tape and reel VCSP50L3(BD6083GUL) 0.1± 0.05 35- φ 0.25±0.05 A 0.05 A B F E D C B A B 1 2 3 4 5 0.325±0.05 Embossed carrier tape (heat sealing method) Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) P=0.5 × 5 0.06 S (φ0.15)INDEX POST S Tape 0.325± 0.05 3.15±0.05 0.55MAX 3.15± 0.05 <Tape and Reel information> 1PIN MARK 6 1pin P=0.5×5 (Unit : mm) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Reel 45/45 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2010.07 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. R1010A