System LED Drivers for Mobile Phones 6 LEDs LDO 4ch BD6183GUL No.10041EAT09 ●Description BD6183GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone. It has 3 - 6LED driver and output variable LDO4ch for LCD Backlight. It can be developed widely from the high End model to the Low End model. As it has charge pump circuit for DCDC, it is no need to use coils, and it contributes to small space. VCSP50L3(3.15mm×2.65mm 0.5mm pitch) It adopts the very thin CSP package that is the most suitable for the slim phone. ●Features 1) Total 3 - 6LEDs driver for LCD Backlight ・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 2LEDs which can chose independent control or a main allotment by resister setting. ・“Main Group” can be controlled by external PWM signal. ・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence. 2) Charge Pump DC/DC for LED driver ・It has x1/x1.5/ x2 mode that will be selected automatically. ・The most suitable voltage up magnification is controlled automatically by LED port voltage. ・Soft start functions、Over voltage protection (Auto-return type)、Over current protection (Auto-return type) loading 3) 4ch Series Regulator (LDO) ・LDOIt has selectable output voltage by the register.(16 steps) LDO1, LDO2, LDO3, LDO4 : Iomax=150mA 4) Thermal shutdown 2 5) I C BUS FS mode(max 400kHz)Compatibility ●Absolute Maximum Ratings (Ta=25 ℃) Parameter Maximum Voltage Power Dissipation Symbol Ratings Unit VMAX 7 V Pd 1340 note) mW Operating Temperature Range Topr -30 ~ +85 ℃ Storage Temperature Range Tstg -55 ~ +150 ℃ Limits Unit VBAT 2.7 ~ 5.5 V VIO 1.65 ~ 3.3 V note) Power dissipation deleting is 10.72mW/ ℃ , when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard) ●Operating Conditions (VBAT≥VIO, Ta=-30~85 ℃) Parameter Symbol VBAT Input Voltage VIO Pin Voltage www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1/34 2010.07 - Rev.A Technical Note BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Conditions 【Circuit Current】 VBAT Circuit Current 1 IBAT1 - 0.1 3.0 μA RESETB=0V, VIO= 0V VBAT Circuit Current 2 IBAT2 - 0.5 3.0 μA RESETB=0V, VIO=1.8V VBAT Circuit Current 3 IBAT3 - 61 65 mA VBAT Circuit Current 4 IBAT4 - 92 102 mA VBAT Circuit Current 5 IBAT5 - 123 140 mA VBAT Circuit Current 6 IBAT6 - 90 150 μA LDO1,2=ON, ILDO=0mA VBAT Circuit Current 7 IBAT7 - 90 150 μA LDO3,4=ON, ILDO=0mA DC/DC x1 mode, Io=60mA VBAT=4.0V DC/DC x1.5 mode, Io=60mA VBAT=3.6V DC/DC x2 mode, Io=60mA VBAT=2.7V 【LED Driver】 LED Current Step (Setup) ILEDSTP1 128 Step LED1~6 LED Current Step (At slope) ILEDSTP2 256 Step LED1~6 LED Maximum setup Current IMAXWLED - 25.6 - mA LED1~6 LED Current Accuracy IWLED -7% 15 +7% mA ILED=15mA setting, VLED=1.0V LED Current Matching ILEDMT - - 4 % Between LED1~6 at VLED=1.0V, ILED=15mA LED OFF Leak Current ILKLED - - 1.0 μA VLED=4.5V Output Voltage VoCP - Vf+0.2 Vf+0.25 V Vf is forward direction of LED Drive Ability IOUT - - 150 mA Switching Frequency fosc 0.8 1.0 1.2 MHz OVP - 5.6 - V OCP - 250 375 mA 【DC/DC(Charge Pump)】 Over Voltage Protection Detect Voltage Over Current Protection Detect Current www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 2/34 VBAT≥3.2V, VOUT=3.9V VOUT=0V 2010.07 - Rev.A Technical Note BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Conditions 【Regulator (LDO1)】 Output Voltage Vo1 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io1 - - 150 mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=1.8V Dropout Voltage Vsat1 - 0.2 0.3 V Load Stability ΔVo11 - 10 60 mV VBAT=2.5V, Io=150mA, Vo=2.8V Io=1~150mA, Vo=1.8V Input Voltage Stability ΔVo12 - 10 60 mV Ripple Rejection Ratio RR1 - 65 - dB Short Circuit Current Limit Ilim1 - 200 400 mA VBAT=3.4~4.5V, Io=50mA, Vo=1.8V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V Discharge Resister at OFF ROFF1 - 1.0 1.5 kΩ Output Voltage Vo2 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io2 - - 150 mA 【Regulator (LDO2)】 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=2.5V Dropout Voltage Vsat2 - 0.2 0.3 V Load Stability ΔVo21 - 10 60 mV Io=1~150mA, Vo=2.5V Input Voltage Stability ΔVo22 - 10 60 mV Ripple Rejection Ratio RR2 - 65 - dB Ilim2 - 200 400 mA VBAT=3.4~4.5V, Io=50mA, Vo=2.5V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V ROFF2 - 1.0 1.5 kΩ Short circuit current Limit Discharge Resister at OFF www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3/34 VBAT=2.5V, Io=150mA, Vo=2.8V 2010.07 - Rev.A Technical Note BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Conditions Min. Typ. Max. 【Regulator (LDO3)】 Output Voltage Vo3 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io3 - - 150 mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=1.8V Dropout Voltage Vsat3 - 0.2 0.3 V Load Stability ΔVo31 - 10 60 mV VBAT=2.5V, Io=150mA, Vo=2.8V Io=1~150mA, Vo=1.8V Input Voltage Stability ΔVo32 - 10 60 mV Ripple Rejection Ratio RR3 - 65 - dB Short Circuit Current Limit Ilim3 - 200 400 mA VBAT=3.4~4.5V, Io=50mA, Vo=1.8V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V Discharge Resister at OFF ROFF3 - 1.0 1.5 kΩ Output voltage Vo4 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 V V V V V V V V V V V V V V V V Output Current Io4 - - 150 mA 【Regulator (LDO4)】 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA <Initial Voltage> Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=2.8V Dropout Voltage Vsat4 - 0.2 0.3 V Load Stability ΔVo41 - 10 60 mV Io=1~150mA, Vo=2.8V Input Voltage Stability ΔVo42 - 10 60 mV Ripple Rejection Ratio RR4 - 65 - dB Short Circuit Current Limit Ilim4 - 200 400 mA VBAT=3.4~4.5V, Io=50mA, Vo=2.8V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V Discharge Resister at OFF ROFF4 - 1.0 1.5 kΩ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 4/34 VBAT=2.5V, Io=150mA, Vo=2.8V 2010.07 - Rev.A Technical Note BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. Conditions 【SDA, SCL】(I2C Interface) L Level Input Voltage VILI -0.3 - 0.25×VIO V H Level Input Voltage VIHI 0.75×VIO - VBAT+0.3 V Hysteresis of Schmitt trigger Input VhysI 0.05 ×VIO - - V L level Output Voltage VOLI 0 - 0.3 V SDA Pin, IOL=3 mA linI - - 1 μA Input Voltage= 0.1×VIO ~ 0.9×VIO L Level Input Voltage VILR -0.3 - 0.25×VIO V H Level Input Voltage VIHR 0.75×VIO - VBAT+0.3 V IinR - - 1 μA L Level Input Voltage VILA -0.3 - 0.3 V H Level Input Voltage VIHA 1.4 - VBAT+0.3 V IinA - 3.6 10 μA Input Voltage = 1.8V PWmin 250 - - μs WPWMIN Pin Input Current 【RESETB】(CMOS Input Pin) Input Current Input Voltage = 0.1×VIO ~ 0.9×VIO 【WPWMIN】(NMOS Input Pin) Input Current PWM Input Minimum High Pulse Width ●Power Dissipation (On the ROHM’s standard board) 1.6 1340mW Power Dissipation Pd (W) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 25 50 75 100 125 150 Ta(℃) Information of the ROHM’s standard board Material : glass-epoxy Size : 50mm×58mm×1.75mm(8th layer) Wiring pattern figure Refer to after page. Fig.1 Power Dissipation www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 5/34 2010.07 - Rev.A Technical Note BD6183GUL ●Block Diagram / Application Circuit Example 1 6LED + PWM C2P C2N C1P C1N CPGND 1μF/10V 1μF/10V VBAT VBATCP VOUT Charge Pump VBAT1 x1 / x1.5 / x2 1μF/10V 2.2µF/10V LED1 LED2 OVP Charge Pump Mode Control LED3 LED terminal voltage feedback VIO Voltage VIO LED5 RESETB From CPU From LCM LED6 SCL SDA 6LED Main Back Light LED4 I/O TSD 2 Level I C interface Shift Digital Control LEDGND WPWMIN IREF LDO1 VREF Vo Selectable Io=150mA LDO2 LDO1O 1μF/6.3V LDO2O Vo Selectable Io=150mA LDO3 1μF/6.3V LDO3O Vo Selectable Io=150mA LDO4 Vo Selectable Io=150mA F1 A1 F6 1μF/6.3V A3 GND1 T3 (Open) T1 (Open) T4 T2 A6 1μF/6.3V LDO4O Fig.2 Block Diagram / Application Circuit Example 1 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 6/34 2010.07 - Rev.A Technical Note BD6183GUL ●Block Diagram / Application Circuit Example 2 5LED + PWM C2P C2N C1P C1N CPGND 1μF/10V 1μF/10V VBAT VBATCP VOUT Charge Pump VBAT1 x1 / x1.5 / x2 1μF/10V 2.2µF/10V LED1 LED2 OVP Charge Pump Mode Control LED3 LED terminal voltage feedback VIO Voltage VIO LED5 RESETB From CPU From LCM LED6 SCL SDA 5LED Main Back Light LED4 I/O TSD 2 Level I C interface Shift Digital Control LEDGND WPWMIN IREF LDO1 VREF Vo Selectable Io=150mA LDO2 LDO1O 1μF/6.3V LDO2O Vo Selectable Io=150mA LDO3 1μF/6.3V LDO3O Vo Selectable Io=150mA LDO4 1μF/6.3V GND1 T3 (Open) T4 T1 (Open) T2 Vo Selectable Io=150mA 1μF/6.3V LDO4O Fig.3 Block Diagram / Application Circuit Example 2 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 7/34 2010.07 - Rev.A Technical Note BD6183GUL ●Block Diagram / Application Circuit Example 3 4LED + 2LED + PWM C2P C2N C1P C1N CPGND 1μF/10V 1μF/10V VBAT VBATCP VOUT Charge Pump VBAT1 x1 / x1.5 / x2 1μF/10V 2.2µF/10V LED1 LED2 OVP Charge Pump Mode Control VIO LED4 LED5 RESETB From CPU 2LED Sub Back Light or Key Back Light LED6 SCL SDA 4LED Main Back Light LED3 LED terminal voltage feedback VIO Voltage I/O TSD 2 Level I C interface Shift Digital Control LEDGND From LCM WPWMIN IREF LDO1 Vo Selectable Io=150mA VREF LDO2 LDO1O 1μF/6.3V LDO2O Vo Selectable Io=150mA LDO3 1μF/6.3V LDO3O Vo Selectable Io=150mA LDO4 LDO4O 1μF/6.3V GND1 T3 (Open) T1 (Open) T4 T2 Vo Selectable Io=150mA 1μF/6.3V Fig.4 Block Diagram / Application Circuit Example 3 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 8/34 2010.07 - Rev.A Technical Note BD6183GUL ●Pin Arrangement [Bottom View] E T4 LDO4O VBAT1 LDO2O LDO1O T3 D LED5 LED6 LDO3O RESETB VIO SCL C LEDGND LED4 WPWMIN SDA C2P VOUT C2N C1P VBATCP index B LED2 LED3 A T1 LED1 GND1 C1N CPGND T2 1 2 3 4 5 6 Total 29 Ball Fig.5 Pin Arrangement www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 9/34 2010.07 - Rev.A Technical Note BD6183GUL ●Package Outline VCSP50L3 SIZE : Height : A ball pitch : CSP small package 3.15mm x 2.65mm (A difference in public : X,Y Both ±0.05mm) 0.55mm max 0.5 mm 1PIN MARK 2.65±0.05 Lot No. BD6183 0.325±0.05 0.05 S A 29-φ0.25±0.05 S AB E (φ0.15)INDEX POST D C B A B P=0.5×4 0.06 0.55MAX 0.1±0.05 3.15±0.05 1 2 3 4 5 6 0.325±0.05 P=0.5×5 (Unit: mm) Fig.6 Package Outline www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 10/34 2010.07 - Rev.A Technical Note BD6183GUL ●Pin Functions No Ball No. Pin Name I/O ESD Diode For Power For Ground Functions Equivalent Circuit 1 B6 VBATCP - - GND Battery is connected A 2 E3 VBAT1 - - GND Battery is connected A 3 A1 T1 O VBAT GND Test Output Pin(Open) N 4 A6 T2 I VBAT GND Test Input Pin (short to Ground) S 5 E6 T3 O VBAT GND Test Output Pin(Open) M 6 E1 T4 I VBAT GND Test Input Pin (short to Ground) S 7 D5 VIO - VBAT GND I/O Power supply is connected C 8 D4 RESETB I VBAT GND Reset input (L: reset, H: reset cancel) H 2 9 C4 SDA I/O VBAT GND I C data input / output I 10 D6 SCL I VBAT GND I2C clock input H 11 A5 CPGND - VBAT - Ground B 12 A3 GND1 - VBAT - Ground B 13 C1 LEDGND - VBAT - Ground B 14 A4 C1N I/O VBAT GND Charge Pump capacitor is connected F 15 B5 C1P I/O - GND Charge Pump capacitor is connected G 16 B4 C2N I/O VBAT GND Charge Pump capacitor is connected F 17 C5 C2P I/O - GND Charge Pump capacitor is connected G 18 C6 VOUT O - GND Charge Pump output pin A 19 A2 LED1 I - GND LED is connected 1 for LCD Back Light E 20 B1 LED2 I - GND LED is connected 2 for LCD Back Light E 21 B2 LED3 I - GND LED is connected 3 for LCD Back Light E 22 C2 LED4 I - GND LED is connected 4 for LCD Back Light E 23 D1 LED5 I - GND LED is connected 5 for LCD Back Light E 24 D2 LED6 I - GND LED is connected 6 for LCD Back Light E 25 C3 WPWMIN I VBAT GND External PWM input for Back Light * L 26 E5 LDO1O O VBAT GND LDO1 output pin Q 27 E4 LDO2O O VBAT GND LDO2 output pin Q 28 D3 LDO3O O VBAT GND LDO3 output pin Q 29 E2 LDO4O O VBAT GND LDO4 output pin Q * A setup of a register is separately necessary to make it effective. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 11/34 2010.07 - Rev.A Technical Note BD6183GUL ●Equivalent Circuit A B C VBAT F VBAT G J VBAT VIO L VBAT Q VBAT VBAT R V VBAT VBAT W VBAT E H VBAT VIO I VBAT M VBAT VBAT N VBAT VBAT S VBAT VBAT U VBAT VIO X VoS VBAT Y VBAT VIO VBAT VIO VBAT Fig.7 Equivalent Circuit www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 12/34 2010.07 - Rev.A Technical Note BD6183GUL ●I2C BUS format 2 The writing/reading operation is based on the I C slave standard. ・Slave address A7 A6 1 1 A5 A4 A3 A2 A1 R/W 1 0 1 1 0 1/0 ・Bit Transfer SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal. SDA SCL SDA a state of stability: SDA It can change Data are effective Fig.8 ・START and STOP condition 2 When SDA and SCL are H, data is not transferred on the I C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end. SDA SCL S P STOP condition START condition Fig.9 ・Acknowledge It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL S 1 2 8 9 clock pulse for acknowledgement START condition Fig.10 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 13/34 2010.07 - Rev.A Technical Note BD6183GUL ・Writing protocol A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out. *1 S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address register address *1 D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment R/W=0(write) register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing from master to slave from slave to master Fig.11 ・Reading protocol It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 1 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment R/W=1(read) register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition from master to slave from slave to master Fig.12 ・Multiple reading protocols After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A slave address register address slave address R/W=0(write) R/W=1(read) D7 D6 D5 D4 D3D2 D1D0 A DATA D7D6 D5D4D3D2D1D0 A P DATA register address increment register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition from master to slave from slave to master Fig.13 As for reading protocol and multiple reading protocols, please do A (not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge) is done. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 14/34 2010.07 - Rev.A Technical Note BD6183GUL ●Timing Diagram SDA t BUF t SU;DAT t LOW t HD;STA SCL t HD;STA S t SU;STO t SU;STA t HD;DAT Sr t HIGH P S Fig.14 Timing Diagram ●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Standard-mode Parameter Symbol Min. Typ. Max. Fast-mode Min. Typ. Max. Unit 【I2C BUS format】 SCL clock frequency fSCL 0 - 100 0 - 400 kHz LOW period of the SCL clock tLOW 4.7 - - 1.3 - - μs HIGH period of the SCL clock tHIGH 4.0 - - 0.6 - - μs Hold time (repeated) START condition After this period, the first clock is generated tHD;STA 4.0 - - 0.6 - - μs Set-up time for a repeated START condition tSU;STA 4.7 - - 0.6 - - μs Data hold time tHD;DAT 0 - 3.45 0 - 0.9 μs Data set-up time tSU;DAT 250 - - 100 - - ns Set-up time for STOP condition tSU;STO 4.0 - - 0.6 - - μs Bus free time between a STOP and START condition tBUF 4.7 - - 1.3 - - μs www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 15/34 2010.07 - Rev.A Technical Note BD6183GUL ●Register List Address W/R Register data D7 D6 D5 D4 D3 D2 D1 D0 Function 00h W - - - - - - - SFTRST Software Reset 01h W - - - - W6MD W5MD W4MD - 02h W WPWMEN - - - W6EN W5EN - MLEDEN LED Power Control 03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) Main group current setting 04h - - - - - - - - - 05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) LED5 current setting 06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) LED6 current setting 07h - - - - - - - - - - 08h - - - - - - - - - - 09h W THL (3) THL (2) THL (1) THL (0) TLH (3) TLH (2) TLH (1) TLH (0) 0Ah - - - - - - - - - - 0Bh - - - - - - - - - - 0Ch - - - - - - - - - - 0Dh - - - - - - - - - - 0Eh - - - - - - - - - - 0Fh - - - - - - - - - - 10h - - - - - - - - - - 11h - - - - - - - - - - 12h - - - - - - - - - - 13h W - - - - LDO4EN LDO3EN LDO2EN LDO1EN 14h W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0 LDO1 Vout Control LDO2 Vout Control 15h W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0 LDO3 Vout Control LDO4 Vout Control LED Pin function setting - Main Current transition LDO Power Control Input "0” for "-". A free address has the possibility to assign it to the register for the test. Access to the register for the test and the undefined register is prohibited. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 16/34 2010.07 - Rev.A Technical Note BD6183GUL ●Register Map Address 00h < Software Reset > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 00h W - - - - - - - SFTRST Initial Value 00h - - - - - - - 0 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit[7:1] : (Not used) Bit0 : SFTRST Software Reset “0” : Reset cancel “1” : Reset(All register initializing) Refer to “Reset” for detail. Address 01h < LED Pin function setting> Address R/W Bit7 Bit6 01h W - - - - W6MD W5MD W4MD - Initial Value 02h - - - - 0 0 1 - Bit[7:4] : (Not used) Bit3 : W6MD LED6 control setting (individual / Main group) “0” : LED6 individual control (Initial Value) “1” : LED6 Main group control Refer to “LED Driver” for detail. Bit2 : W5MD LED5 control setting (individual / Main group) “0” : LED5 individual control (Initial Value) “1” : LED5 Main group control Refer to “LED Driver” for detail. Bit1 : W4MD LED4 Control Board setting (unuse / use) “0” : LED4 unuse “1” : LED4 use (Main group Control) (Initial Value) Refer to “LED Driver” for detail. Bit0 : (Not used) Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically. And, do the setup of W*PW when each LED is Off. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 17/34 2010.07 - Rev.A Technical Note BD6183GUL Address 02h < LED Power Control> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 02h W WPWMEN - - - W6EN W5EN - MLEDEN Initial Value 00h 0 - - - 0 0 - 0 Bit7 : WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid) “0” : External PWM input invalid (Initial Value) “1” : External PWM input valid Refer to “●Current Adjustment”for detail. Bit[6:4] : (Not used) Bit3 : W6EN LED6 Control (ON/OFF) “0” : LED6 OFF (Initial Value) “1” : LED6 ON(individual control) Refer to “LED Driver” for detail. Bit2 : W5EN LED5 Control (ON/OFF) “0” : LED5 OFF (Initial Value) “1” : LED5 ON(individual control) Refer to “LED Driver” for detail. Bit1 : (Not used) Bit0 : MLEDEN Main group LED Control (ON/OFF) “0” : Main group OFF (Initial Value) “1” : Main group ON Refer to “●Slope process”for detail. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 18/34 2010.07 - Rev.A Technical Note BD6183GUL Address 03h < Main group LED Current setting(Normal Mode) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) Initial Value 00h - 0 0 0 0 0 0 0 Bit7 : (Not used) Bit[6:0] : IMLED (6:0) Main Group LED Current Setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 19/34 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6183GUL Address 05h < LED5 Current setting(Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) Initial Value 00h - 0 0 0 0 0 0 0 Bit7 : (Not used) Bit[6:0] : IW5 (6:0) LED5 Current setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20/34 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6183GUL Address 06h < LED6 Current setting(Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) Initial Value 00h - 0 0 0 0 0 0 0 Bit7 : (Not used) Bit[6:0] : IW6 (6:0) LED6 Current setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 21/34 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA 2010.07 - Rev.A Technical Note BD6183GUL Address 09h < Main Current slope time setting > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 09h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0) Initial Value C7h 1 1 0 0 0 1 1 1 Bit[7:4] : THL (3:0) Main LED current Down transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms (Initial Value) “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “●Slope process”for detail. Bit[3:0] : TLH (3:0) Main LED current Up transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms (Initial Value) “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “●Slope process”for detail. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 22/34 2010.07 - Rev.A Technical Note BD6183GUL Address 13h <LDO Power Control> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 13h W/R - - - - LDO4EN LDO3EN LDO2EN LDO1EN Initial Value 00h - - - - 0 0 0 0 Bit4 Bit3 Bit2 Bit1 Bit0 Bit[7:4] : (Not used) Bit3 : LDO4EN LDO4 control (ON/OFF) “0” : LDO4 OFF (Initial Value) “1” : LDO4 ON Bit2 : LDO3EN LDO3 control (ON/OFF) “0” : LDO3 OFF (Initial Value) “1” : LDO3 ON Bit1 : LDO2EN LDO2 control (ON/OFF) “0” : LDO2 OFF (Initial Value) “1” : LDO2 ON Bit0 : LDO1EN LDO1 control (ON/OFF) “0” : LDO1 OFF (Initial Value) “1” : LDO1 ON Address 14h < LDO1 Vout Control, LDO2 Vout Control > Address R/W Bit7 Bit6 Bit5 14h Initial Value R/W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0 74h 0 1 Bit[7:4] : LDO2VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V (Initial Value) “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V Bit[3:0] : LDO1VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1 1 23/34 0 1 0 0 2010.07 - Rev.A Technical Note BD6183GUL Address 15h < LDO3 Vout Control, LDO4 Vout Control > Address R/W Bit7 Bit6 Bit5 15h Initial Value Bit4 Bit3 Bit2 Bit1 Bit0 R/W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0 A4h 1 0 Bit[7:4] : LDO4VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V (Initial Value) “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V Bit[3:0] : LDO3VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1 0 24/34 0 1 0 0 2010.07 - Rev.A Technical Note BD6183GUL ●Reset There are two kinds of reset, software reset and hardware reset (1) Software reset ・All the registers are initialized by SFTRST="1". ・SFTRST is an automatically returned to "0". (Auto Return 0). (2) Hardware reset ・It shifts to hardware reset by changing RESETB pin “H” → “L”. ・The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address. ・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”. ・RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs. (3) Reset Sequence ・When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled. (Because the Initial Value of software reset is “0”) ●VIODET The decline of the VIO voltage is detected, and faulty operation inside the LSI is prevented by giving resetting to Levelsift block Image Block Diagram VIO VBAT DEToutput 2.6V Inside reset Reset by VIODET VBAT (typ)1.0V VIO VIODET RESETB RESETB R Digital pin I/O LEVEL SHIFT DET output Inside reset Fig.15 Fig.16 When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed. On the contrary, when VIO is as follows 1.0V, it takes reset.(The VBAT voltage being a prescribed movement range) ●Thermal Shut Down A thermal shutdown function is effective in the following block. DC/DC (Charge Pump) LED Driver LDO1, LDO2, LDO3, LDO4 The thermal shutdown function is detection temperature that it works is about 195℃. Detection temperature has a hysteresis, and detection release temperature is about 175 ℃.(Design reference value) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 25/34 2010.07 - Rev.A Technical Note BD6183GUL ●DC/DC Start DC/DC circuit operates when any LED turns ON. (DCDCFON=0) When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current. Force of VBAT and VIO is to go as follows. VBAT VIO TVIOON=min 0.1ms TVIOOFF=min 0.1ms RESETB TRSTB=min 0.1ms TRST=min 0ms EN (*) TSOFT VOUT LEDcurrent (*) An EN signal means the following in the upper figure. EN = “MLEDEN” or “W*EN” (= LED The LED lighting control of a setup of connection VOUT) But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective. TSOFT changes by the capacitor connected to VOUT and inside OSC. TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF). Fig.17 Over Voltage protection / Over Current protection DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function. A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage) A detection voltage has a hysteresis, and a detection release voltage is about 5.4V (typ). And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection function. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 26/34 2010.07 - Rev.A Technical Note BD6183GUL Mode transition The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage. STANDBY 1 condition○ ALL off MLEDEN=”1” or W*EN=”1” 1 ○ and Ta<TTSD SOFT CP x1.0 mode After detecting VOUT>1.5V(typ), 128us(typ) wait X1.0 CP x1.0 mode mode up=”H” mode down=”H” X1.5 CP x1.5 mode mode up=”H” mode down=”H” X2.0 CP x2.0 mode Fig.18 The mode transition of the charge pump works as follows. <x1.0→x1.5→x2.0 Mode transition> The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied. x1.0→x1.5 Mode transition VBAT ≤ VOUT + (Ron10×Iout) (LED Pin feedback: VOUT = Vf+0.2(Typ)) x1.5→x2.0 Mode transition VBAT×1.5 ≤ VOUT +(Ron15×Iout) (LED Pin feedback: VOUT = Vf+0.2(Typ)) Ron10: x1 Charge pump on resistance 1.4Ω (Typ) Ron15: x1.5 Charge pump on resistance 8.5Ω (Typ) <x2.0→x1.5→x1.0 Mode transition> The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio. x1.5→x1.0 Mode transition VBAT / VOUT =1.16(Design value) x2.0→x1.5 Mode transition VBAT / VOUT =1.12(Design value) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 27/34 2010.07 - Rev.A Technical Note BD6183GUL ●LED Driver The LED driver of 6ch is constructed as the ground plan. Equivalence control is possible with LED1 - 4(LED4 can choose use/un-use with a register W4MD.). LED5, LED6 is controllable individually. As for LED5, LED6, grouping setting to the main control is possible, and main control becomes effective for the main group in the allotment. LED5 and LED6 are setups of grouping to the main control. When LED5 and LED6 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective. LED1 LED2 IMLED[6:0] MLEDEN LED3 MLEDMD WPWMIN LED4 W4MD 1 IW5[6:0] LED5 0 W5EN W5MD 1 IW6[6:0] LED6 0 W6EN W6MD Fig.19 LED Composition which can be set up is the following. The main, other1 and other2 are controllable to each.(Enable and current setting) Main (PWM) Other1 Other2 6LEDs - - 5LEDs - - 5LEDs 1LED - 4LEDs - - 4LEDs 1 LED - 4LEDs 2 LEDs - 4LEDs 1 LED 1LED 3LEDs - - 3LEDs 1 LED - 3LEDs 2 LEDs - 3LEDs 1 LED 1LED www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 28/34 2010.07 - Rev.A Technical Note BD6183GUL ●Current Adjustment ・When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible. Register: WPWMEN ・It is suitable for the intensity correction by external control, because PWM based on Main LED current of register setup. WPWMEN(Register) WPWMIN(External Pin) 0 1 Main group LED current L Normal operation H Normal operation L Forced OFF H Normal operation “Normal operation " depends on the setup of each register. EN(*) Internal Soft-Start Time DC/DC Output WPWMIN input WPWMEN LED Current EN(*) : it means “MLEDEN” or “W*EN”. It is possible to make it a WPWMIN input and WPWMEN=1 in front of EN(*). A PWM drive becomes effective after the time of an LED current standup. When rising during PWM operation, as for the standup time of a DC/DC output, only the rate of PWM Duty becomes late. Appearance may be influenced when extremely late frequency and extremely low Duty are inputted. Please secure 250 μs or more of H sections at the time of PWM pulse Force. Fig.20 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 29/34 2010.07 - Rev.A Technical Note BD6183GUL Current Data which is set LED Current Main LED current ●Slope process ・Slope process is given to LED current to dim naturally. ・LED current changes in the 256Step gradation in sloping. ・Up(dark→bright),Down(bright→dark) LED current transition speed are set individually. Register : THL(3:0) Register : TLH(3:0) ・Main LED current changes as follows at the time as the slope. TLH (THL) is setup of time of the current step 2/256. TLH THL (3:0) TLH(3:0) Up/Down transition Speed is set individually time 25.6mA =0.1mA 256 THL Zoom Main LED current Fig.21 TLH(3:0) time ●I/O When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power. When RESETB=L, output is fixed at “H.” SCL (SDA) Level shifter Logic EN RESETB Fig.22 Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O power-on sequence or an input level. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 30/34 2010.07 - Rev.A Technical Note BD6183GUL ●About the Start of LDO1 ~ LDO4 It must start as follows. VBAT TVBATON TVBATOFF VIO TVIOON=min 0.1ms TVIOOFF=min 1ms RESETB TRSTB=min 0.1ms TRST=min 0ms LDO1EN or LDO2EN or LDO3EN or LDO4EN TRISE = max 1ms LDO1O or LDO2O or LDO3O or LDO4O (LDO output) Fig.23 <Start Sequence> VBAT ON (Enough rise up) → VIO ON (Enough rise up) → Reset release → LDO ON (Register access acceptable) <End Sequence> LDO OFF → Reset → VIO OFF (Enough fall down) → VBAT OFF ●About the pin management of the function that isn't used and test pins Setting it as follows is recommended with the test pin and the pin which isn't used. Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use. T2, T4 Short to GND because pin for test input T1,T3 OPEN because pin for test output Non-used LED Pin Short to GND (Must) But, the setup of a register concerned with LED that isn’t used is prohibited. WPWMIN Short to ground (A Pull-Down resistance built-in terminal is contained, too.) ●Operation Settings (Flow Example) Backlight: Fade-in/Fade-out Apply supply voltage. Cancel reset. Backlight: Various settings Backlight setting. Slow time setting. MLEDEN=1 The backlight turns on. (Rise at designated slope time) Set the minimum current. (Rise at designated slope time) MLEDEN=0 The backlight turns off. Fig.24 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 31/34 2010.07 - Rev.A Technical Note BD6183GUL ●PCB Pattern of the Power Dissipation Measuring Board 1st layer(component) 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer 8th layer(solder) Fig.25 PCB Pattern www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 32/34 2010.07 - Rev.A Technical Note BD6183GUL ●Notes for Use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Power supply and ground line Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (3) Ground voltage Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient. (4) Short circuit between pins and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down. (5) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (6) Input pins In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (7) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. (8) Thermal Shut Down Circuit (TSD) This LSI builds in a thermal shutdown circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation. (9) Thermal design Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use. (10) LDO Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable. (11) About the pin for the test, the un-use pin Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge. (12) About the rush current For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of wiring. (13) About the function description or application note or more. The function description and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 33/34 2010.07 - Rev.A Technical Note BD6183GUL ●Ordering Part Number B D 6 Part No. 1 8 3 Part No. G U L - Package GUL: VCSP50L3 E 2 Packaging and forming specification E2: Embossed tape and reel VCSP50L3(BD6183GUL) A 0.05 A B (φ0.15)INDEX POST E D C B A B 1 0.325±0.05 Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) P=0.5× 4 0.06 S 29- φ 0.25±0.05 S Tape 0.325± 0.05 3.15±0.05 0.55MAX 0.1± 0.05 2.65±0.05 <Tape and Reel information> 1PIN MARK 2 3 4 5 6 1pin P=0.5×5 (Unit : mm) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Reel 34/34 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2010.07 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. R1010A