FZ06NPA045FP preliminary datasheet NPC Application flowNPC 0 600V/50A & 45A PS* General conditions BUCK = = = = VGEon VGEoff Rgon Rgoff + 15 V - 15 V 8Ω 8Ω Vout= 230 VAC Figure 1. Buck MOSFET 15 V 0V 8Ω 8Ω Figure 2. Typical average static loss as a function of of output current IoRMS Ploss=f(Iout) Buck FRED Typical average static loss as a function of output current IoRMS Ploss=f(Iout) 45 50 Ploss (W) Ploss (W) BOOST = = = = VGEon VGEoff Rgon Rgoff 45 40 φ=0º φ=90º 40 35 35 30 30 25 25 20 20 φ=0º 15 15 φ=180º 10 10 5 5 φ=180º 0 0 0 10 20 Conditions: parameter: Tj= φ 30 125 from 40 50 I (A) out 0 60 °C 0° in 12 to 10 20 Conditions: parameter: 180° Tj= φ 30 125 from steps 40 Buck MOSFET 0° 12 60 to 180° steps Figure 4. Typical average static loss as a function of phase displacement φ Ploss=f(φ) I out (A) °C in Figure 3. 50 Buck FRED Typical average static loss as a function of phase displacement φ Ploss=f(φ) 50 IoutRMS=Imax Ploss (W) Ploss (W) 45 45 40 40 35 35 30 IoutRMS=Imax 30 25 25 20 20 15 15 10 10 5 5 IoutRMS=6%Imin IoutRMS=6% Imax 0 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of copyright by Vincotech 120 140 3,33 A 7 160 to 180 φ(º ) 0 200 Conditions: parameter: 50 A A 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of 1 120 140 3,33 A 7 160 to 180 φ(º ) 200 50 A A Revision: 4 FZ06NPA045FP preliminary datasheet NPC Application flowNPC 0 Figure 5. Buck MOSFET 600V/50A & 45A PS* Figure 6. Buck FRED Typical average switching loss as a function of phase displacement φ Ploss=f(φ) phase displacement φ Ploss=f(φ) Ploss (W) Typical average switching loss as a function of Ploss (W) 3,5 IoutRMS=Imax 0,20 0,18 3,0 0,16 0,14 2,5 IoutRMS=Imax 0,12 2,0 0,10 1,5 0,08 0,06 1,0 0,04 IoutRMS=6% Imax 0,5 0,02 IoutRMS=6% Imax 0,00 0 20 40 Conditions: parameter: 60 80 100 120 Tj= fsw= 125 20 °C kHz DC link= IoRMS 700 from V 140 φ(º ) 180 0 200 20 40 Conditions: 3,33 A in steps of 160 7 to 50 A parameter: 60 100 Tj= fsw= 125 20 °C kHz DC link= IoRMS 700 from V A Figure 7. 80 7 Buck FRED P loss (W) 47 47 43 43 40 0-5 40 5-10 37 37 33 33 15-20 10-15 15-20 30 30 27 27 20-25 25-30 20-25 23 25-30 23 20 20 17 17 30-35 30-35 35-40 35-40 13 13 10 10 40-45 45-50 40-45 7 0 15 30 45 60 75 90 200 50 A 50 IoutR 50 10-15 to 180 φ(º ) Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) P loss (W) 5-10 160 A Figure 8. Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) 0-5 140 3,33 A in steps of Buck MOSFET 120 IoutR 0,0 45-50 3 105 120 135 150 165 180 7 0 15 30 45 60 75 90 φ(º ) 3 105 120 135 150 165 180 φ(º ) Conditions: Tj= 125 °C DC link= fsw= 700 20 V kHz copyright by Vincotech Conditions: 2 Tj= 125 °C DC link= fsw= 700 20 V kHz Revision: 4 FZ06NPA045FP preliminary datasheet NPC Application flowNPC 0 Figure 9. for Buck MOSFET+FRED 600V/50A & 45A PS* Figure 10. for Buck MOSFET+FRED Typical available output current as a function of phase displacement φ Typical available output current as a function of switching frequency fsw Iout=f(φ) Iout=f(fsw) 70 Iout (A) Iout (A) 70 60 Th=50°C 60 Th=50°C 50 50 40 40 Th=100°C 30 30 Th=100°C 20 20 10 10 0 0 15 30 45 60 75 90 105 120 135 150 165 0 180 1 φ Conditions: Tj= Tjmax-25 °C fsw= parameter: 700 V Heatsink temp. Th from 50 °C to in 10 °C 20 kHz Conditions: DC link= parameter: 100 steps Figure 11. °C 10 fsw (kHz) φ= 0 ° Tj= Tjmax-25 °C DC link= Heatsink temp. Th from in 700 50 10 100 V °C to °C 100 steps °C for Buck IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement φ Iout=f(fsw,φ) 180 I out (A) φ 165 150 60-65 135 55-60 120 50-55 105 45-50 90 40-45 75 35-40 60 30-35 45 25-30 30 15 fsw (kHz) Conditions: 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= copyright by Vincotech 700 80 V °C 3 Revision: 4 FZ06NPA045FP preliminary datasheet flowNPC 0 NPC Application Figure 12. Boost IGBT 600V/50A & 45A PS* Figure 13. Typical average static loss as a function of output current Ploss=f(Iout) Boost FRED Typical average static loss as a function of output current Ploss=f(Iout) 80 Ploss (W) 35 Ploss (W) φ=0º φ=180º 70 30 60 25 50 20 40 15 30 10 20 φ=180º 5 10 φ=0º 0 0 0 10 20 Conditions: parameter: 30 Tj= 125 φ from in 40 50 Iout (A) 0 60 °C 10 20 Conditions: 0° 12 to steps Figure 14. 180º parameter: Boost IGBT 30 Tj= 125 φ from in 50 Iout (A) 60 °C 0° 12 to steps Figure 15. Typical average static loss as a function of phase displacement Ploss=f(φ) 180º Boost FRED Typical average static loss as a function of phase displacement Ploss=f(φ) 35 FRED D1 80 Ploss (W) IoutRMS=Imax Ploss (W) 40 IoutRMS=Imax 70 30 60 25 50 20 40 15 30 10 20 5 10 IoutRMS=6% Imax IoutRMS=6% Imax 0 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of copyright by Vincotech 120 3 A 140 160 to 180 φ(º ) 200 0 Conditions: parameter: 50 A 7 A 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of 4 120 3 A 140 160 to 180 φ(º ) 200 50 A 7 A Revision: 4 FZ06NPA045FP preliminary datasheet flowNPC 0 NPC Application Figure 16. Boost IGBT 600V/50A & 45A PS* Figure 17. Boost FRED Ploss (W) Typical average switching loss as a function of phase displacement Ploss=f(φ) Ploss (W) Typical average switching loss as a function of phase displacement Ploss=f(φ) 35 IoutRMS=Imax 25 IoutRMS=Imax 30 20 25 15 20 15 10 10 5 5 IoutRMS=6% Imax IoutRMS=6% Imax 0 0 40 80 100 Tj= 125 °C DC link= IoRMS 700 from V Conditions: parameter: 60 120 140 160 fsw= in steps of 3 A to 7 A A Figure 18. φ(º ) 180 0 20 kHz 40 Conditions: 50 A parameter: 60 80 100 Tj= 125 °C DC link= IoRMS 700 from V in steps of Boost IGBT 120 140 160 180 φ(º ) 200 fsw= 20 kHz 3 A to 50 A 7 A A Figure 19. Typical total loss as a function of phase displacement and IoutRMS Boost FRED Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ) Ploss=f(IoRMS;φ) P loss (W) 47 36-39 33-36 43 30-33 40 27-30 50 IoutR 50 P loss (W) 30 15-18 27 12-15 0 15 30 45 60 75 90 Tj= 125 °C DC link= fsw= 700 20 V kHz copyright by Vincotech 27 24-30 23 18-24 20 12-18 6-9 13 30 30-36 20 0-3 33 36-42 9-12 17 37 42-48 23 3-6 40 48-54 33 18-21 43 54-60 37 21-24 47 60-66 24-27 Conditions: 20 200 17 6-12 13 0-6 10 10 7 7 3 105 120 135 150 165 180 φ(º ) 0 15 Conditions: 5 MS 20 IoutR 0 30 45 60 75 90 φ(º ) 3 105 120 135 150 165 180 Tj= 125 °C DC link= fsw= 700 20 V kHz Revision: 4 FZ06NPA045FP preliminary datasheet NPC Application flowNPC 0 Figure 20. Boost IGBT+FRED 600V/50A & 45A PS* Figure 21. Typical available output current as a function of of phase displacement Iout=f(φ) Boost IGBT+FRED Typical available output current as a function of switching frequency Iout=f(fsw) 60 Iout (A) Iout (A) 60 Th=50°C 50 50 40 40 Th=50°C 30 30 20 20 Th=100°C Th=100°C 10 10 0 0 Conditions: 15 30 45 60 75 90 105 120 135 Tj= Tjmax-25 °C DC link= 700 V parameter: Th from in 150 fsw= Heatsink temp. 50 °C to 10 °C 165 0 180 φ(º ) 1 20 kHz Conditions: 10 Figure 22. °C f sw (kHz) Th from in Heatsink temp. 50 °C to 10 °C 1000 φ= 90° Tj= Tjmax-25 °C DC link= 700 V parameter: 100 steps 100 100 steps °C Boost IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 I out (A) φ 165 150 0-5 5-10 10-15 15-20 135 120 105 20-25 25-30 30-35 35-40 90 75 60 40-45 45-50 50-55 55-60 45 30 15 2 Conditions: 4 8 16 32 64 0 128 fsw (kHz) Tj= Tjmax-25 °C DC link= Th= copyright by Vincotech 700 80 V °C 6 Revision: 4 FZ06NPA045FP preliminary datasheet NPC Application flowNPC 0 Figure 23. per MODULE 600V/50A & 45A PS* Figure 24. Typical available output current as a function of heat sink temperature Iout=f(Th) per MODULE Typical available output current as a function of phase displacement Iout=f(φ) 60 Iout (A) Iout (A) 60 50 50 40 40 Th=50°C 2kHz 30 30 20 20 128kHz Th=100°C 10 10 0 0 φ 60 65 Conditions: 70 75 80 85 90 o 95T h ( C) 100 0 Tj= Tjmax-25 °C DC link= φ= parameter: Conditions: 700 V 0° Switching freq. fsw from 2 in steps of factor 2 15 30 45 parameter: 128 Figure 25. kHz Th from in per MODULE 75 90 105 120 135 150 50 10 °C to °C 100 steps per MODULE Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 60 Iout (A) 180 700 V 20 kHz Heatsink temp. Figure 26. Typical available output current as a function of switching frequency Iout=f(fsw) 165 Tj= Tjmax-25 °C DC link= fsw= kHz to 60 I out (A) Th=50°C φ 165 50 150 60-65 135 55-60 40 120 50-55 105 45-50 30 90 40-45 Th=100°C 75 35-40 20 60 30-35 45 25-30 10 30 15 0 1 10 Conditions: Tj= Tjmax-25 °C DC link= parameter: Th from in 50 10 copyright by Vincotech f sw (kHz) φ= 100 f sw (kHz) 0° Conditions: 700 V Heatsink temp. °C to °C 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= 700 80 V °C 100 steps 7 Revision: 4 FZ06NPA045FP preliminary datasheet NPC Application flowNPC 0 Figure 27. per MODULE 600V/50A & 45A PS* Figure 28. per MODULE Typical efficiency as a function of output power η=f(Pout) efficiency (%) Typical efficiency as a function of output power η=f(Pout) efficiency (%) 100,0 100,0 99,0 99,0 2kHz φ=0º 128kHz 98,0 98,0 φ=180º Pout (kVA) Pout (kVA) 97,0 97,0 0,0 2,0 Conditions: 4,0 Tj= fsw= 6,0 125 20 8,0 10,0 12,0 0,0 14,0 °C kHz Conditions: DC link= parameter: 2,0 700 V phase displacement φ from 0° in steps of 30 ° parameter: to Figure 29. Tj= DC link= 6,0 125 700 8,0 10,0 12,0 128 kHz Figure 30. per MODULE Typical available output power as a function of Typical loss distribution as a function of heat sink temperature Pout=f(Th) output current Pout=f(Th) 14 14,0 φ= 0 ° °C V Switching freq. fsw from 2 kHz to in steps of factor 2 180 ° per MODULE 4,0 Pout (kW) 100,0 Loss distribution 90,0 12 80,0 10 2kHz 8 T1 Stat. 70,0 D3-5 Sw. 60,0 D3-5 Stat. 50,0 T3 Sw. 40,0 T3 Stat. 30,0 6 128kHz 4 20,0 2 10,0 0,0 0 60 Conditions: parameter: 65 70 75 80 Tj= Tjmax-25 °C DC link= 700 φ= 0 Switching freq. fsw from 2 kHz to in steps of factor 2 copyright by Vincotech 85 90 95 T h ( o C) 3 100 10 13 17 20 23 27 30 33 37 40 43 47 50 Iout (A) Conditions: V ° 128 7 Tj= fsw= 125 20 °C kHz DC link= φ= 700 0° V kHz 8 Revision: 4 FZ06NPA045FP preliminary datasheet NPC Application flowNPC 0 Figure 31. Typical relativ loss distribution as a function of output current Pout=f(Th) per MODULE Figure 32. 600V/50A & 45A PS* per MODULE 1,0 Loss distribution 0,9 0,8 T1 Stat. 0,7 D3-5 Sw. 0,6 D3-5 Stat. 0,5 T3 Sw. 0,4 0,3 T3 Stat. 0,2 0,1 0,0 3 7 10 13 17 20 23 27 30 33 37 40 43 47 50 Iout (A) Conditions: Tj= fsw= DC link= φ= 125 20 700 0° °C kHz V Cg is included in the module copyright by Vincotech 9 Revision: 4 FZ06NPA045FP preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 10 Revision: 4