F206NIA200SA-M105F preliminary datasheet NPC Application flowNPC2 600V/200A General conditions BUCK = = = = VGEon VGEoff Rgon Rgoff 15 V -15 V 4Ω 4Ω Vout= 230 VAC Figure 1. Buck IGBT BOOST = = = = VGEon VGEoff Rgon Rgoff 15 V -15 V 4Ω 4Ω Figure 2. Typical average static loss as a function of Buck FRED Typical average static loss as a function of output current IoRMS Ploss=f(Iout) 120 ●UPS 90 φ=90º Ploss (W) Ploss (W) φ=0º 80 100 70 60 80 50 60 40 30 40 φ=0º 20 φ=180º 20 10 φ=180º 0 0 0 20 40 Conditions: parameter: 60 Tj= φ 80 100 150 from 120 140 160 180(A) I out 0 200 °C 0° in to 12 20 40 Conditions: parameter: 180° 60 Tj= φ 80 100 150 from °C steps Buck IGBT 140 0° in Figure 3. 120 12 160 to 200 180° steps Figure 4. Typical average static loss as a function of phase displacement φ Ploss=f(φ) 180 I out (A) Buck FRED Typical average static loss as a function of phase displacement φ Ploss=f(φ) 120 IoutRMS=Imax Ploss (W) Ploss (W) 90 80 100 70 IoutRMS=Imax 80 60 50 60 40 40 30 20 20 10 IoutRMS=6% Imax IoutRMS=6%Imin 0 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 150 from in steps of Copyright by Vincotech 100 120 140 °C 11,67 A 23 160 to 180 φ(º ) 200 0 Conditions: parameter: 175 A A 20 40 Tj= IoRMS 60 80 150 from in steps of 1 100 120 140 °C 11,67 A 23 160 to 180 φ(º ) 200 175 A A Revision: 4 F206NIA200SA-M105F preliminary datasheet flowNPC2 NPC Application Figure 5. Buck IGBT 600V/200A Figure 6. Buck FRED Typical average switching loss as a function of Typical average switching loss as a function of phase displacement φ Ploss=f(φ) phase displacement φ Ploss=f(φ) Ploss (W) 30 Ploss (W) 90 80 IoutRMS=Imax 25 70 20 60 IoutRMS=Imax 50 15 40 10 30 IoutRMS=6% Imax 20 5 10 IoutRMS=6% Imax 0 0 20 40 Conditions: parameter: 60 80 100 Tj= fsw= 150 16 °C kHz DC link= IoRMS 700 from V 120 140 φ(º ) 180 0 200 20 40 Conditions: 11,67 A in steps of 160 23 to 175 A parameter: 60 100 Tj= fsw= 150 16 °C kHz DC link= IoRMS 700 from V A Figure 7. 80 23 160 to 180 φ(º ) 200 175 A A Figure 8. Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) Buck FRED Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) 175 IoutR 175 P loss (W) P loss (W) 163 163 152 152 180-210 140 11,67 A in steps of Buck IGBT 120 IoutR 0 80-100 150-180 140 140 128 128 117 120-150 117 60-80 105 105 93 93 90-120 40-60 82 82 70 70 60-90 58 58 20-40 47 47 30-60 35 35 0-20 23 0-30 0 15 30 45 60 75 90 12 105 120 135 150 165 180 23 0 15 30 45 60 75 90 φ(º ) 12 105 120 135 150 165 180 φ(º ) Conditions: Tj= 150 °C DC link= fsw= 700 16 V kHz Copyright by Vincotech Conditions: 2 Tj= 150 °C DC link= fsw= 700 16 V kHz Revision: 4 F206NIA200SA-M105F preliminary datasheet NPC Application flowNPC2 Figure 9. for Buck IGBT+FRED 600V/200A Figure 10. for Buck IGBT+FRED Typical available output current as a function of phase displacement φ Typical available output current as a function of switching frequency fsw Iout=f(φ) Iout=f(fsw) 200 Iout (A) Iout (A) 200 Th=50°C 180 160 160 140 140 120 120 100 100 80 Th=50°C 180 80 Th=100°C Th=100°C 60 60 40 40 20 20 0 0 15 30 45 60 75 90 105 120 135 150 165 0 180 1 φ Conditions: Tj= Tjmax-25 °C fsw= parameter: 700 V Heatsink temp. Th from 50 °C to in 10 °C 16 kHz Conditions: DC link= parameter: 100 steps Figure 11. °C 10 fsw (kHz) φ= 0 ° Tj= Tjmax-25 °C DC link= Heatsink temp. Th from in 700 50 10 100 V °C to °C 100 steps °C for Buck IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement φ Iout=f(fsw,φ) 180 I out (A) φ 165 150 135 160-200 120 120-160 105 90 80-120 75 40-80 60 45 0-40 30 15 fsw (kHz) Conditions: 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= 700 80 Copyright by Vincotech V °C 3 Revision: 4 F206NIA200SA-M105F preliminary datasheet flowNPC2 NPC Application Figure 12. Boost IGBT 600V/200A Figure 13. Typical average static loss as a function of output current Ploss=f(Iout) Boost FRED Typical average static loss as a function of output current Ploss=f(Iout) 120 Ploss (W) Ploss (W) 160 φ=0º φ=180º 140 100 120 80 100 60 80 60 40 40 20 φ=180º 20 φ=0º 0 0 0 20 40 Conditions: parameter: 60 80 100 Tj= 150 °C φ from in 120 140 160 180 200 Iout (A) 0 20 40 Conditions: 0° 12 to steps Figure 14. 180º parameter: Boost IGBT 60 80 Tj= 150 φ from in 120 140 160 180 Iout (A) 200 °C 0° 12 to steps Figure 15. Typical average static loss as a function of phase displacement Ploss=f(φ) 180º Boost FRED Typical average static loss as a function of phase displacement Ploss=f(φ) FRED D1 120 Ploss (W) 160 Ploss (W) 100 IoutRMS=Imax 140 IoutRMS=Imax 100 120 80 100 60 80 60 40 40 20 20 IoutRMS=6% Imax IoutRMS=6% Imax 0 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 150 from in steps of Copyright by Vincotech 100 120 140 160 180 φ(º ) 0 200 °C 12 A to Conditions: parameter: 175 A 23 A 20 40 Tj= IoRMS 60 80 150 from in steps of 4 100 120 140 160 180 φ(º ) 200 °C 12 A to 175 A 23 A Revision: 4 F206NIA200SA-M105F preliminary datasheet flowNPC2 NPC Application Figure 16. Boost IGBT 600V/200A Figure 17. Boost FRED Ploss (W) Typical average switching loss as a function of phase displacement Ploss=f(φ) Ploss (W) Typical average switching loss as a function of phase displacement Ploss=f(φ) 90 IoutRMS=Imax 30 IoutRMS=Imax 80 25 70 20 60 50 15 40 10 30 20 IoutRMS=6% Imax 5 10 IoutRMS=6% Imax 0 0 40 80 100 Tj= 150 °C DC link= IoRMS 700 from V Conditions: parameter: 60 in steps of 120 140 160 fsw= 12 A to 23 A A Figure 18. φ(º ) 180 0 20 40 60 80 100 120 140 16 kHz Conditions: 175 A parameter: Tj= 150 °C DC link= IoRMS 700 from V in steps of Boost IGBT 180 φ(º ) 200 fsw= 16 kHz 12 A to 175 A 23 A A Figure 19. Typical total loss as a function of phase displacement and IoutRMS Boost FRED Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ) Ploss=f(IoRMS;φ) 163 P loss (W) 175 IoutR 175 163 P loss (W) 152 152 140 140 128 128 120-150 120-150 117 117 105 90-120 105 90-120 93 93 82 60-90 82 60-90 70 70 58 58 47 30-60 47 30-60 35 35 23 0-30 0 Conditions: 160 200 MS 20 IoutR 0 15 30 45 60 75 90 Tj= 150 °C DC link= fsw= 700 16 V kHz Copyright by Vincotech 23 0-30 12 105 120 135 150 165 180 φ(º ) 0 15 Conditions: 5 30 45 60 75 90 φ(º ) 12 105 120 135 150 165 180 Tj= 150 °C DC link= fsw= 700 16 V kHz Revision: 4 F206NIA200SA-M105F preliminary datasheet NPC Application flowNPC2 Figure 20. Boost IGBT+FRED Figure 21. Typical available output current as a function of of phase displacement Iout=f(φ) Th=50°C 200 Iout (A) Iout (A) Boost IGBT+FRED Typical available output current as a function of switching frequency Iout=f(fsw) 200 180 Th=50°C 180 160 160 140 140 120 600V/200A Th=100°C 120 100 100 80 Th=100°C 80 60 60 40 40 20 20 0 0 15 30 45 60 75 90 105 120 135 150 165 0 180 1 φ(º ) Conditions: Tj= Tjmax-25 °C DC link= 700 V parameter: Th from in fsw= Heatsink temp. 50 °C to 10 °C 16 kHz Conditions: 10 Figure 22. °C f sw (kHz) Th from in Heatsink temp. 50 °C to 10 °C 1000 φ= 90° Tj= Tjmax-25 °C DC link= 700 V parameter: 100 steps 100 100 steps °C Boost IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 I out (A) φ 165 150 150-180 135 120 120-150 105 90-120 90 75 60-90 60 45 30-60 30 0-30 15 2 Conditions: 4 8 16 32 64 0 128 fsw (kHz) Tj= Tjmax-25 °C DC link= Th= 700 80 Copyright by Vincotech V °C 6 Revision: 4 F206NIA200SA-M105F preliminary datasheet NPC Application flowNPC2 Figure 23. per MODULE Figure 24. Typical available output current as a function of heat sink temperature Iout=f(Th) per MODULE Typical available output current as a function of phase displacement Iout=f(φ) 200 Th=50°C 200 2kHz Iout (A) Iout (A) 600V/200A 180 180 160 160 140 140 120 120 100 100 80 80 60 60 Th=100°C 128kHz 40 40 20 20 0 0 φ 60 65 70 Conditions: 75 80 85 90 o 95T h ( C) 100 0 Tj= Tjmax-25 °C DC link= φ= parameter: Conditions: 700 V 0° Switching freq. 15 30 45 parameter: kHz to 128 Figure 25. kHz Th from in per MODULE 75 90 105 120 135 50 10 °C to °C 180 100 steps per MODULE Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 200 I out (A) Th=50°C 180 165 700 V 16 kHz Heatsink temp. Figure 26. Typical available output current as a function of switching frequency Iout=f(fsw) Iout (A) 150 Tj= Tjmax-25 °C DC link= fsw= fsw from 2 in steps of factor 2 60 φ 165 150 160 Th=100°C 150-180 135 140 120-150 120 120 105 90-120 100 90 60-90 80 75 30-60 60 60 45 0-30 40 30 20 15 0 1 10 Conditions: Tj= Tjmax-25 °C DC link= parameter: Th from in 50 10 f sw (kHz) φ= 100 f sw (kHz) 0° Conditions: 700 V Heatsink temp. °C to °C Copyright by Vincotech 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= 700 80 V °C 100 steps 7 Revision: 4 F206NIA200SA-M105F preliminary datasheet NPC Application flowNPC2 Figure 27. per MODULE Figure 28. per MODULE Typical efficiency as a function of output power η=f(Pout) efficiency (%) Typical efficiency as a function of output power η=f(Pout) efficiency (%) 600V/200A 100,0 99,5 100,0 2kHz 99,0 98,0 99,0 φ=180º 98,5 97,0 96,0 98,0 φ=0º 97,5 95,0 97,0 94,0 96,5 93,0 96,0 92,0 128kHz 91,0 95,5 Pout (kVA) Pout (kVA) 95,0 90,0 0,0 5,0 Conditions: 10,0 15,0 20,0 25,0 30,0 35,0 40,0 45,0 0,0 Tj= Tjmax-25 °C fsw= 16 kHz Conditions: DC link= parameter: 5,0 700 V phase displacement φ from 0° in steps of 30 ° Figure 29. 20,0 25,0 Figure 30. 40,0 45,0 128 kHz per MODULE Typical loss distribution as a function of heat sink temperature Pout=f(Th) output current Pout=f(Th) Pout (kW) 35,0 φ= 0 ° Typical available output power as a function of 45 30,0 Switching freq. fsw from 2 kHz to in steps of factor 2 180 ° per MODULE 15,0 Tj= Tjmax-25 °C DC link= 700 V parameter: to 10,0 400,0 2kHz Loss distribution 40 350,0 Boost IGBT static 35 300,0 30 Buck Diode switch 25 Buck Diode static 20 250,0 200,0 150,0 15 128kHz Buck IGBT switch 100,0 Buck IGBT static 50,0 10 5 0,0 0 60 Conditions: parameter: 65 70 75 80 Tj= Tjmax-25 °C DC link= 700 φ= 0 Switching freq. fsw from 2 kHz to in steps of factor 2 Copyright by Vincotech 85 90 95 12 100 T h ( C) 23 35 58 70 82 93 105 117 128 140 152 163 175 Iout (A) Conditions: V ° Tj= Tjmax-25 °C fsw= 16 kHz DC link= φ= 128 47 o 700 0° V kHz 8 Revision: 4 F206NIA200SA-M105F preliminary datasheet NPC Application flowNPC2 Figure 31. Typical relativ loss distribution as a function of output current Pout=f(Th) 600V/200A per MODULE 1,0 Loss distribution Boost IGBT static 0,8 Buck Diode switch 0,6 Buck Diode static 0,4 Buck IGBT switch 0,2 Buck IGBT static 0,0 12 23 35 47 58 70 82 93 105 117 128 140 152 163 175 Iout (A) Conditions: Tj= Tjmax-25 °C 16 kHz fsw= DC link= 700 V φ= 0° Copyright by Vincotech 9 Revision: 4 F206NIA200SA-M105F preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 10 Revision: 4