F206NIA200SA-M105F NPC Application

F206NIA200SA-M105F
preliminary datasheet
NPC Application
flowNPC2
600V/200A
General conditions
BUCK
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
15 V
-15 V
4Ω
4Ω
Vout= 230 VAC
Figure 1.
Buck IGBT
BOOST
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
15 V
-15 V
4Ω
4Ω
Figure 2.
Typical average static loss as a function of
Buck FRED
Typical average static loss as a function of
output current IoRMS
Ploss=f(Iout)
120
●UPS
90
φ=90º
Ploss (W)
Ploss (W)
φ=0º
80
100
70
60
80
50
60
40
30
40
φ=0º
20
φ=180º
20
10
φ=180º
0
0
0
20
40
Conditions:
parameter:
60
Tj=
φ
80
100
150
from
120
140
160
180(A)
I out
0
200
°C
0°
in
to
12
20
40
Conditions:
parameter:
180°
60
Tj=
φ
80
100
150
from
°C
steps
Buck IGBT
140
0°
in
Figure 3.
120
12
160
to
200
180°
steps
Figure 4.
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
180
I out (A)
Buck FRED
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
120
IoutRMS=Imax
Ploss (W)
Ploss (W)
90
80
100
70
IoutRMS=Imax
80
60
50
60
40
40
30
20
20
10
IoutRMS=6% Imax
IoutRMS=6%Imin
0
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
150
from
in steps of
Copyright by Vincotech
100
120
140
°C
11,67 A
23
160
to
180
φ(º )
200
0
Conditions:
parameter:
175 A
A
20
40
Tj=
IoRMS
60
80
150
from
in steps of
1
100
120
140
°C
11,67 A
23
160
to
180
φ(º )
200
175 A
A
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
flowNPC2
NPC Application
Figure 5.
Buck IGBT
600V/200A
Figure 6.
Buck FRED
Typical average switching loss as a function of
Typical average switching loss as a function of
phase displacement φ
Ploss=f(φ)
phase displacement φ
Ploss=f(φ)
Ploss (W)
30
Ploss (W)
90
80
IoutRMS=Imax
25
70
20
60
IoutRMS=Imax
50
15
40
10
30
IoutRMS=6% Imax
20
5
10 IoutRMS=6% Imax
0
0
20
40
Conditions:
parameter:
60
80
100
Tj=
fsw=
150
16
°C
kHz
DC link=
IoRMS
700
from
V
120
140
φ(º )
180
0
200
20
40
Conditions:
11,67 A
in steps of
160
23
to
175 A
parameter:
60
100
Tj=
fsw=
150
16
°C
kHz
DC link=
IoRMS
700
from
V
A
Figure 7.
80
23
160
to
180
φ(º )
200
175 A
A
Figure 8.
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
Buck FRED
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
175
IoutR
175
P loss (W)
P loss (W)
163
163
152
152
180-210
140
11,67 A
in steps of
Buck IGBT
120
IoutR
0
80-100
150-180
140
140
128
128
117
120-150
117
60-80
105
105
93
93
90-120
40-60
82
82
70
70
60-90
58
58
20-40
47
47
30-60
35
35
0-20
23
0-30
0
15
30
45
60
75
90
12
105 120 135 150 165 180
23
0
15
30
45
60
75 90
φ(º )
12
105 120 135 150 165 180
φ(º )
Conditions:
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Copyright by Vincotech
Conditions:
2
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
NPC Application
flowNPC2
Figure 9.
for Buck IGBT+FRED
600V/200A
Figure 10.
for Buck IGBT+FRED
Typical available output current as a function of
phase displacement φ
Typical available output current as a function of
switching frequency fsw
Iout=f(φ)
Iout=f(fsw)
200
Iout (A)
Iout (A)
200
Th=50°C
180
160
160
140
140
120
120
100
100
80
Th=50°C
180
80
Th=100°C
Th=100°C
60
60
40
40
20
20
0
0
15
30
45
60
75
90
105
120
135
150
165
0
180
1
φ
Conditions:
Tj= Tjmax-25 °C
fsw=
parameter:
700
V
Heatsink temp.
Th from
50
°C to
in
10
°C
16 kHz
Conditions:
DC link=
parameter:
100
steps
Figure 11.
°C
10
fsw (kHz)
φ= 0 °
Tj= Tjmax-25 °C
DC link=
Heatsink temp.
Th from
in
700
50
10
100
V
°C to
°C
100
steps
°C
for Buck IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement φ
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
135
160-200
120
120-160
105
90
80-120
75
40-80
60
45
0-40
30
15
fsw (kHz)
Conditions:
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
700
80
Copyright by Vincotech
V
°C
3
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
flowNPC2
NPC Application
Figure 12.
Boost IGBT
600V/200A
Figure 13.
Typical average static loss as a function of
output current
Ploss=f(Iout)
Boost FRED
Typical average static loss as a function of
output current
Ploss=f(Iout)
120
Ploss (W)
Ploss (W)
160
φ=0º
φ=180º
140
100
120
80
100
60
80
60
40
40
20
φ=180º
20
φ=0º
0
0
0
20
40
Conditions:
parameter:
60
80
100
Tj=
150
°C
φ
from
in
120
140
160
180
200
Iout (A)
0
20
40
Conditions:
0°
12
to
steps
Figure 14.
180º
parameter:
Boost IGBT
60
80
Tj=
150
φ
from
in
120
140
160
180
Iout (A)
200
°C
0°
12
to
steps
Figure 15.
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
180º
Boost FRED
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
FRED D1
120
Ploss (W)
160
Ploss (W)
100
IoutRMS=Imax
140
IoutRMS=Imax
100
120
80
100
60
80
60
40
40
20
20
IoutRMS=6% Imax
IoutRMS=6% Imax
0
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
150
from
in steps of
Copyright by Vincotech
100
120
140
160
180
φ(º )
0
200
°C
12 A
to
Conditions:
parameter:
175 A
23 A
20
40
Tj=
IoRMS
60
80
150
from
in steps of
4
100
120
140
160
180
φ(º )
200
°C
12 A
to
175 A
23 A
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
flowNPC2
NPC Application
Figure 16.
Boost IGBT
600V/200A
Figure 17.
Boost FRED
Ploss (W)
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
Ploss (W)
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
90
IoutRMS=Imax
30
IoutRMS=Imax
80
25
70
20
60
50
15
40
10
30
20
IoutRMS=6% Imax
5
10
IoutRMS=6% Imax
0
0
40
80
100
Tj=
150
°C
DC link=
IoRMS
700
from
V
Conditions:
parameter:
60
in steps of
120
140
160
fsw=
12 A
to
23 A
A
Figure 18.
φ(º )
180
0
20
40
60
80
100
120
140
16 kHz
Conditions:
175 A
parameter:
Tj=
150
°C
DC link=
IoRMS
700
from
V
in steps of
Boost IGBT
180
φ(º )
200
fsw=
16 kHz
12 A
to
175 A
23 A
A
Figure 19.
Typical total loss as a function of phase displacement
and IoutRMS
Boost FRED
Typical total loss as a function of phase displacement
and IoutRMS
Ploss=f(IoRMS;φ)
Ploss=f(IoRMS;φ)
163
P loss (W)
175
IoutR
175
163
P loss (W)
152
152
140
140
128
128
120-150
120-150
117
117
105
90-120
105
90-120
93
93
82
60-90
82
60-90
70
70
58
58
47
30-60
47
30-60
35
35
23
0-30
0
Conditions:
160
200
MS
20
IoutR
0
15
30
45
60
75
90
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Copyright by Vincotech
23
0-30
12
105 120 135 150 165 180
φ(º )
0
15
Conditions:
5
30
45
60
75 90
φ(º )
12
105 120 135 150 165 180
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
NPC Application
flowNPC2
Figure 20.
Boost IGBT+FRED
Figure 21.
Typical available output current as a function of
of phase displacement
Iout=f(φ)
Th=50°C
200
Iout (A)
Iout (A)
Boost IGBT+FRED
Typical available output current
as a function of switching frequency
Iout=f(fsw)
200
180
Th=50°C
180
160
160
140
140
120
600V/200A
Th=100°C
120
100
100
80
Th=100°C
80
60
60
40
40
20
20
0
0
15
30
45
60
75
90
105
120
135
150
165
0
180
1
φ(º )
Conditions:
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
Th from
in
fsw=
Heatsink temp.
50
°C to
10
°C
16 kHz
Conditions:
10
Figure 22.
°C
f sw (kHz)
Th from
in
Heatsink temp.
50
°C to
10
°C
1000
φ= 90°
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
100
steps
100
100
steps
°C
Boost IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
150-180
135
120
120-150
105
90-120
90
75
60-90
60
45
30-60
30
0-30
15
2
Conditions:
4
8
16
32
64
0
128
fsw (kHz)
Tj= Tjmax-25 °C
DC link=
Th=
700
80
Copyright by Vincotech
V
°C
6
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
NPC Application
flowNPC2
Figure 23.
per MODULE
Figure 24.
Typical available output current as a function of
heat sink temperature
Iout=f(Th)
per MODULE
Typical available output current
as a function of phase displacement
Iout=f(φ)
200
Th=50°C
200
2kHz
Iout (A)
Iout (A)
600V/200A
180
180
160
160
140
140
120
120
100
100
80
80
60
60
Th=100°C
128kHz
40
40
20
20
0
0
φ
60
65
70
Conditions:
75
80
85
90
o
95T h ( C) 100
0
Tj= Tjmax-25 °C
DC link=
φ=
parameter:
Conditions:
700
V
0°
Switching freq.
15
30
45
parameter:
kHz to
128
Figure 25.
kHz
Th from
in
per MODULE
75
90
105
120
135
50
10
°C to
°C
180
100
steps
per MODULE
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
200
I out (A)
Th=50°C
180
165
700
V
16
kHz
Heatsink temp.
Figure 26.
Typical available output current as a function of
switching frequency
Iout=f(fsw)
Iout (A)
150
Tj= Tjmax-25 °C
DC link=
fsw=
fsw from
2
in steps of factor 2
60
φ
165
150
160
Th=100°C
150-180
135
140
120-150
120
120
105
90-120
100
90
60-90
80
75
30-60
60
60
45
0-30
40
30
20
15
0
1
10
Conditions:
Tj= Tjmax-25 °C
DC link=
parameter:
Th from
in
50
10
f sw (kHz)
φ=
100
f sw (kHz)
0°
Conditions:
700
V
Heatsink temp.
°C to
°C
Copyright by Vincotech
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
700
80
V
°C
100
steps
7
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
NPC Application
flowNPC2
Figure 27.
per MODULE
Figure 28.
per MODULE
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
600V/200A
100,0
99,5
100,0
2kHz
99,0
98,0
99,0
φ=180º
98,5
97,0
96,0
98,0
φ=0º
97,5
95,0
97,0
94,0
96,5
93,0
96,0
92,0
128kHz
91,0
95,5
Pout (kVA)
Pout (kVA)
95,0
90,0
0,0
5,0
Conditions:
10,0
15,0
20,0
25,0
30,0
35,0
40,0
45,0
0,0
Tj= Tjmax-25 °C
fsw=
16
kHz
Conditions:
DC link=
parameter:
5,0
700
V
phase displacement
φ
from
0°
in steps of 30 °
Figure 29.
20,0
25,0
Figure 30.
40,0
45,0
128
kHz
per MODULE
Typical loss distribution as a function of
heat sink temperature
Pout=f(Th)
output current
Pout=f(Th)
Pout (kW)
35,0
φ= 0 °
Typical available output power as a function of
45
30,0
Switching freq.
fsw from
2
kHz to
in steps of factor 2
180 °
per MODULE
15,0
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
to
10,0
400,0
2kHz
Loss distribution
40
350,0
Boost
IGBT
static
35
300,0
30
Buck
Diode
switch
25
Buck
Diode
static
20
250,0
200,0
150,0
15
128kHz
Buck
IGBT
switch
100,0
Buck
IGBT
static
50,0
10
5
0,0
0
60
Conditions:
parameter:
65
70
75
80
Tj= Tjmax-25 °C
DC link=
700
φ=
0
Switching freq.
fsw from
2
kHz to
in steps of factor 2
Copyright by Vincotech
85
90
95
12
100
T h ( C)
23
35
58
70
82
93
105 117 128 140 152 163 175
Iout (A)
Conditions:
V
°
Tj= Tjmax-25 °C
fsw=
16
kHz
DC link=
φ=
128
47
o
700
0°
V
kHz
8
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
NPC Application
flowNPC2
Figure 31.
Typical relativ loss distribution as a function of
output current
Pout=f(Th)
600V/200A
per MODULE
1,0
Loss distribution
Boost
IGBT static
0,8
Buck
Diode
switch
0,6
Buck
Diode
static
0,4
Buck IGBT
switch
0,2
Buck IGBT
static
0,0
12
23
35
47
58
70
82
93
105 117 128 140 152 163 175
Iout (A)
Conditions:
Tj= Tjmax-25 °C
16
kHz
fsw=
DC link=
700
V
φ=
0°
Copyright by Vincotech
9
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
10
Revision: 4