...the world's most energy friendly microcontrollers EFM32ZG222 DATASHEET F32/F16/F8/F4 • ARM Cortex-M0+ CPU platform • High Performance 32-bit processor @ up to 24 MHz • Wake-up Interrupt Controller • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.5 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 48 µA/MHz @ 3 V Sleep Mode • 114 µA/MHz @ 3 V Run Mode, with code executed from flash • 32/16/8/4 KB Flash • 4/4/2/2 KB RAM • 37 General Purpose I/O pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 16 asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • 4 Channel DMA Controller • 4 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware AES with 128-bit keys in 54 cycles • Timers/Counters • 2× 16-bit Timer/Counter • 2×3 Compare/Capture/PWM channels • 1× 24-bit Real-Time Counter • 1× 16-bit Pulse Counter • Watchdog Timer with dedicated RC oscillator @ 50 nA • Communication interfaces • Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S • Triple buffered full/half-duplex operation • Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • I C Interface with SMBus support • Address recognition in Stop Mode • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s Analog to Digital Converter • 4 single ended channels/ differential channels • On-chip temperature sensor • Current Digital to Analog Converter • Selectable current range between 0.05 and 64 uA • 1× Analog Comparator • Capacitive sensing with up to 5 inputs • Supply Voltage Comparator • Ultra efficient Power-on Reset and Brown-Out Detector • 2-pin Serial Wire Debug interface • Pre-Programmed UART Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.98 to 3.8 V • TQFP48 package 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories • Alarm and security systems • Industrial and home automation ...the world's most energy friendly microcontrollers 1 Ordering Information Table 1.1 (p. 2) shows the available EFM32ZG222 devices. Table 1.1. Ordering Information Ordering Code Flash (kB) RAM (kB) Max Speed (MHz) Supply Voltage (V) Temperature (ºC) Package EFM32ZG222F4-QFP48 4 2 24 1.98 - 3.8 -40 - 85 TQFP48 EFM32ZG222F8-QFP48 8 2 24 1.98 - 3.8 -40 - 85 TQFP48 EFM32ZG222F16-QFP48 16 4 24 1.98 - 3.8 -40 - 85 TQFP48 EFM32ZG222F32-QFP48 32 4 24 1.98 - 3.8 -40 - 85 TQFP48 Visit www.silabs.com for information on global distributors and representatives. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 2 www.silabs.com ...the world's most energy friendly microcontrollers 2 System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M0+, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32ZG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32ZG222 devices. For a complete feature set and indepth information on the modules, the reader is referred to the EFM32ZG Reference Manual. A block diagram of the EFM32ZG222 is shown in Figure 2.1 (p. 3) . Figure 2.1. Block Diagram ZG222F32/ 16/ 8/ 4 Clock Managem ent Core and Mem ory ARM Cortex ™ M0+ processor Flash Program Mem ory RAM Mem ory Debug Interface DMA Controller Energy Managem ent High Freq Crystal Oscillator High Freq RC Oscillator Voltage Regulator Voltage Com parator Aux High Freq RC Oscillator Low Freq RC Oscillator Brown- out Detector Power- on Reset Low Freq Crystal Oscillator Ultra Low Freq RC Oscillator 32- bit bus Peripheral Ref lex Syst em Serial Interfaces USART Low Energy Uart™ 2 IC I/ O Ports Tim ers and Triggers Analog Interfaces Ex ternal Interrupts General Purpose I/ O Tim er/ Counter Real Tim e Counter ADC Pin Reset Pin Wakeup Pulse Counter Watchdog Tim er Current DAC Analog Com parator Security Hardware AES 2.1.1 ARM Cortex-M0+ Core The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M0+ is described in detail in ARM Cortex-M0+ Devices Generic User Guide. 2.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface . 2.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32ZG microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 2.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32ZG. 2.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32ZG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 2.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32ZG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 2.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 2.1.10 Inter-Integrated Circuit Interface (I2C) 2 2 The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. 2 The interface provided to software by the I C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 4 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.12 Pre-Programmed UART Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note. 2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) TM The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. 2.1.15 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.16 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 2.1.17 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.18 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.19 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals. 2.1.20 Current Digital to Analog Converter (IDAC) The current digital to analog converter can source or sink a configurable constant current, which can be output on, or sinked from pin or ADC. The current is configurable with several ranges of various step sizes. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 5 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.21 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.22 General Purpose Input/Output (GPIO) In the EFM32ZG222, there are 37 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. 2.2 Configuration Summary The features of the EFM32ZG222 is a subset of the feature set described in the EFM32ZG Reference Manual. Table 2.1 (p. 6) describes device specific implementation of the features. Table 2.1. Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL USART1 Full configuration with I2S and IrDA US1_TX, US1_RX, US1_CLK, US1_CS LEUART0 Full configuration LEU0_TX, LEU0_RX TIMER0 Full configuration TIM0_CC[2:0] TIMER1 Full configuration TIM1_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] ACMP0 Full configuration ACMP0_CH[4:0], ACMP0_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[3:0] IDAC0 Full configuration IDAC0_OUT AES Full configuration NA 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 6 www.silabs.com ...the world's most energy friendly microcontrollers Module Configuration Pin Connections GPIO 37 pins Available pins are shown in Table 4.3 (p. 55) 2.3 Memory Map The EFM32ZG222 memory map is shown in Figure 2.2 (p. 7) , with RAM and Flash sizes for the largest memory configuration. Figure 2.2. EFM32ZG222 Memory Map with largest RAM and Flash sizes 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 7 www.silabs.com ...the world's most energy friendly microcontrollers 3 Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 8) , by simulation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified. 3.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 8) . Table 3.1. Absolute Maximum Ratings Symbol Parameter Condition Min Typ Max -40 Unit 150 1 TSTG Storage temperature range TS Maximum soldering temperature VDDMAX External main supply voltage 0 3.8 V VIOPIN Voltage on any I/O pin -0.3 VDD+0.3 V Latest IPC/JEDEC J-STD-020 Standard °C 260 °C 1 Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 3.3 General Operating Conditions 3.3.1 General Operating Conditions Table 3.2. General Operating Conditions Symbol Parameter TAMB Ambient temperature range VDDOP Operating supply voltage fAPB Internal APB clock frequency 24 MHz fAHB Internal AHB clock frequency 24 MHz 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Min Typ -40 1.98 8 Max Unit 85 °C 3.8 V www.silabs.com ...the world's most energy friendly microcontrollers 3.4 Current Consumption Table 3.3. Current Consumption Symbol IEM0 IEM1 Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) EM1 current (Production test condition = 14 MHz) Condition Min Typ Max Unit 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 115 132 µA/ MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 117 136 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 114 128 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 116 132 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 117 131 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 118 133 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 118 133 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 120 135 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 124 139 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 125 142 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 155 177 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 162 181 µA/ MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 48 57 µA/ MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 49 59 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 48 52 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 49 53 µA/ MHz 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 9 www.silabs.com ...the world's most energy friendly microcontrollers Symbol IEM2 IEM3 IEM4 Parameter Condition Min Typ Max Unit 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 50 54 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 51 56 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 52 56 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 53 58 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 57 63 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 59 66 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 89 99 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 92 103 µA/ MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 0.9 1.25 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 1.7 2.35 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD= 3.0 V, TAMB=25°C 0.5 0.9 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD= 3.0 V, TAMB=85°C 1.3 2.0 µA VDD= 3.0 V, TAMB=25°C 0.02 0.035 µA VDD= 3.0 V, TAMB=85°C 0.29 0.700 µA EM2 current EM3 current EM4 current 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 10 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.1 EM0 Current Consumption Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24 MHz 2.84 2.80 Idd [m A] 2.78 2.82 2.80 2.78 Idd [m A] 2.82 2.84 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.76 2.76 2.74 2.74 2.72 2.72 2.70 2.70 2.68 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.68 –40 3.8 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 5 25 Tem perature [°C] 45 65 85 Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz 2.40 2.40 Idd [m A] 2.45 Idd [m A] 2.45 2.35 2.35 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.30 2.0 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 2.30 3.8 –40 11 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 1.68 1.68 1.66 1.66 1.64 1.64 1.62 1.62 Idd [m A] Idd [m A] Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz 1.60 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.58 1.56 1.54 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 1.60 1.58 1.56 1.54 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 1.34 1.34 1.32 1.32 1.30 1.30 Idd [m A] Idd [m A] Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz 1.28 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.26 1.24 1.22 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 1.28 1.26 1.24 1.22 –40 3.8 12 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 0.84 0.84 0.83 0.83 0.82 0.82 0.81 0.81 Idd [m A] Idd [m A] Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 6.6 MHz 0.80 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.79 0.78 0.77 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.80 0.79 0.78 0.77 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 3.4.2 EM1 Current Consumption Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 24 MHz 1.20 1.18 1.20 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.18 Idd [m A] 1.16 Idd [m A] 1.16 1.14 1.14 1.12 1.12 1.10 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 1.10 –40 3.8 13 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 1.04 1.04 1.03 1.03 1.02 1.02 1.01 1.01 Idd [m A] Idd [m A] Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz 1.00 0.99 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.98 0.97 0.96 0.95 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.00 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.99 0.98 0.97 0.96 0.95 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 Idd [m A] Idd [m A] Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz 0.69 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.68 0.67 0.66 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.69 0.68 0.67 0.66 –40 3.8 14 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 0.59 0.59 0.58 0.58 0.57 0.57 Idd [m A] Idd [m A] Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz 0.56 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.55 0.54 0.53 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.56 0.55 0.54 0.53 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 0.395 0.395 0.390 0.390 0.385 0.385 0.380 0.380 Idd [m A] Idd [m A] Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz 0.375 0.370 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.365 0.360 0.355 0.350 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 0.375 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.370 0.365 0.360 0.355 0.350 –40 3.8 15 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.3 EM2 Current Consumption Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. 2.0 2.0 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.8 1.6 1.4 Idd [uA] Idd [uA] 1.6 1.8 1.2 1.4 1.2 1.0 1.0 0.8 0.8 0.6 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.6 –40 3.8 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 5 25 Tem perature [°C] 45 65 85 5 25 Tem perature [°C] 45 65 85 3.4.4 EM3 Current Consumption Figure 3.12. EM3 current consumption. 1.6 1.6 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.4 1.2 Idd [uA] Idd [uA] 1.2 1.4 1.0 1.0 0.8 0.8 0.6 0.6 0.4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 0.4 –40 3.8 16 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.5 EM4 Current Consumption Figure 3.13. EM4 current consumption. 0.5 Idd [uA] 0.3 0.4 0.3 Idd [uA] 0.4 0.5 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.2 0.2 0.1 0.1 0.0 0.0 –0.1 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –0.1 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 3.5 Transition between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 3.4. Energy Modes Transitions Symbol Parameter Min Typ Max Unit tEM10 Transition time from EM1 to EM0 0 HFCORECLK cycles tEM20 Transition time from EM2 to EM0 2 µs tEM30 Transition time from EM3 to EM0 2 µs tEM40 Transition time from EM4 to EM0 163 µs 3.6 Power Management The EFM32ZG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations". 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 17 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.5. Power Management Symbol Parameter VBODextthr- BOD threshold on falling external supply voltage VBODextthr+ BOD threshold on rising external supply voltage tRESET Delay from reset is released until program execution starts CDECOUPLE Voltage regulator decoupling capacitor. Condition Min Typ Max 1.74 Unit 1.96 V 1.85 V Applies to Power-on Reset, Brown-out Reset and pin reset. 163 µs X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF 3.7 Flash Table 3.6. Flash Symbol Parameter ECFLASH Flash erase cycles before failure Condition Min TAMB<150°C RETFLASH Flash data retention Typ Max Unit 20000 cycles 10000 h TAMB<85°C 10 years TAMB<70°C 20 years µs tW_PROG Word (32-bit) programming time 20 tP_ERASE Page erase time 20 20.4 20.8 ms tD_ERASE Device erase time 40 40.8 41.6 ms IERASE Erase current 7 1 mA IWRITE Write current 7 1 mA VFLASH Supply voltage during flash erase and write 1.98 3.8 V 1 Measured at 25°C 3.8 General Purpose Input Output Table 3.7. GPIO Symbol Parameter VIOIL Input low voltage VIOIH Input high voltage VIOOH Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Condition Min Typ Max Unit 0.30VDD V 0.70VDD V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.80VDD V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.90VDD V 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 18 www.silabs.com ...the world's most energy friendly microcontrollers Symbol VIOOL Parameter Output low voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Condition Min Typ Max Unit Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.85VDD V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.90VDD V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75VDD V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85VDD V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60VDD V Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.80VDD V Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.20VDD V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.10VDD V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.10VDD V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.05VDD V Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.30VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.20VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.35VDD V Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.25VDD V IIOLEAK Input leakage current High Impedance IO connected to GROUND or Vdd RPU I/O pin pull-up resistor 40 kOhm RPD I/O pin pull-down resistor 40 kOhm RIOESD Internal ESD series resistor 200 Ohm tIOGLITCH Pulse width of pulses to be removed 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 ±0.1 10 19 ±100 nA 50 ns www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit by the glitch suppression filter tIOOF VIOHYST GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25pF. 20+0.1CL 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600pF 20+0.1CL 250 ns Output fall time I/O pin hysteresis (VIOTHR+ - VIOTHR-) VDD = 1.98 - 3.8 V 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 0.1VDD 20 V www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage 5 0.20 4 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.15 0.10 3 2 0.05 1 - 40°C 25°C 85°C 0.00 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] - 40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low- Level Output Current [m A] Low- Level Output Current [m A] 15 10 30 25 20 15 5 10 5 - 40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 - 40°C 25°C 85°C 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 21 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage 0.00 0.0 - 40°C 25°C 85°C - 40°C 25°C 85°C –0.5 High- Level Output Current [m A] High- Level Output Current [m A] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –2.5 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] High- Level Output Current [m A] –5 –10 –20 –30 –15 –40 –20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –50 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 22 www.silabs.com ...the world's most energy friendly microcontrollers 0.5 10 0.4 8 Low- Level Output Current [m A] Low- Level Output Current [m A] Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage 0.3 0.2 0.1 6 4 2 - 40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 40 50 35 40 Low- Level Output Current [m A] Low- Level Output Current [m A] 30 25 20 15 30 20 10 10 5 0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 23 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage 0.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –1 High- Level Output Current [m A] High- Level Output Current [m A] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 2.5 3.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –50 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 24 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 14 0.7 12 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.6 0.5 0.4 0.3 10 8 6 4 0.2 2 0.1 0.0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 50 50 40 40 30 20 10 30 20 10 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low- Level Output Current [m A] Low- Level Output Current [m A] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 25 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 –0.1 0 - 40°C 25°C 85°C –1 - 40°C 25°C 85°C –2 High- Level Output Current [m A] High- Level Output Current [m A] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –50 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 26 www.silabs.com ...the world's most energy friendly microcontrollers 3.9 Oscillators 3.9.1 LFXO Table 3.8. LFXO Symbol Parameter Condition Min Typ Max fLFXO Supported nominal crystal frequency ESRLFXO Supported crystal equivalent series resistance (ESR) CLFXOL Supported crystal external load range ILFXO Current consumption for core and buffer after startup. ESR=30 kOhm, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 190 nA tLFXO Start- up time. ESR=30 kOhm, CL=10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 1100 ms 32.768 Unit kHz 30 120 kOhm 5 25 pF For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration". 3.9.2 HFXO Table 3.9. HFXO Symbol Parameter fHFXO Supported nominal crystal Frequency ESRHFXO The transconductance of the HFXO input transistor at crystal startup CHFXOL Supported crystal external load range tHFXO Min Typ Current consumption for HFXO after startup Startup time Max 4 Supported crystal Crystal frequency 24 MHz equivalent series reCrystal frequency 4 MHz sistance (ESR) gmHFXO IHFXO Condition HFXOBOOST in CMU_CTRL equals 0b11 Unit 24 MHz 30 100 Ohm 400 1500 Ohm 20 mS 5 25 pF 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 85 µA 24 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 165 µA 24 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 785 µs 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 27 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.3 LFRCO Table 3.10. LFRCO Symbol Parameter fLFRCO Oscillation frequency , VDD= 3.0 V, TAMB=25°C tLFRCO Startup time not including software calibration 150 µs ILFRCO Current consumption 190 nA TUNESTEPL- Frequency step for LSB change in TUNING value 1.5 % FRCO Condition Min Typ 31.29 Max 32.768 Unit 34.28 kHz 42 42 40 40 38 38 Frequency [MHz] Frequency [MHz] Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage - 40°C 25°C 85°C 36 34 34 32 32 30 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 30 –40 3.8 28 2.0 V 3.0 V 3.8 V 36 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.4 HFRCO Table 3.11. HFRCO Symbol Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C fHFRCO tHFRCO_settling Settling time after start-up Current consumption (Production test condition = 14 MHz) IHFRCO TUNESTEPHFRCO Condition Min Typ Max Unit 21 MHz frequency band 20.37 21.0 21.63 MHz 14 MHz frequency band 13.58 14.0 14.42 MHz 11 MHz frequency band 10.67 11.0 11.33 MHz 7 MHz frequency band 6.40 6.60 6.80 MHz 1 MHz frequency band 1.15 1.20 1.25 MHz fHFRCO = 14 MHz 0.6 Cycles fHFRCO = 21 MHz 93 175 µA fHFRCO = 14 MHz 77 140 µA fHFRCO = 11 MHz 72 125 µA fHFRCO = 6.6 MHz 63 105 µA fHFRCO = 1.2 MHz 22 40 µA 1 Frequency step for LSB change in TUNING value 0.3 % 1 The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 1.45 1.45 1.40 1.40 1.35 1.35 Frequency [MHz] Frequency [MHz] Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 1.30 - 40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 1.05 –40 3.8 29 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 6.70 6.70 6.65 6.65 6.60 6.60 Frequency [MHz] Frequency [MHz] Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature 6.55 6.50 6.45 6.40 6.50 6.45 6.40 - 40°C 25°C 85°C 6.35 6.30 2.0 6.55 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 6.30 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 11.2 11.2 11.1 11.1 11.0 11.0 Frequency [MHz] Frequency [MHz] Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 10.9 10.8 10.8 10.7 10.6 2.0 10.9 10.7 - 40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 10.6 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 14.2 14.2 14.1 14.1 14.0 14.0 Frequency [MHz] Frequency [MHz] Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature 13.9 13.8 13.7 13.6 13.8 13.7 13.6 - 40°C 25°C 85°C 13.5 13.4 2.0 13.9 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 3.4 3.6 2.0 V 3.0 V 3.8 V 13.5 13.4 –40 3.8 30 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 21.2 21.2 21.0 21.0 Frequency [MHz] Frequency [MHz] Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 20.8 20.6 20.4 20.8 20.6 20.4 - 40°C 25°C 85°C 20.2 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 20.2 –40 3.8 –15 5 25 Tem perature [°C] 45 Typ Max 65 85 3.9.5 AUXHFRCO Table 3.12. AUXHFRCO Symbol fAUXHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C tAUXHFRCO_settlingSettling time after start-up Condition Min Unit fAUXHFRCO = 21 MHz 20.37 21.0 21.63 MHz fAUXHFRCO = 14 MHz 13.58 14.0 14.42 MHz fAUXHFRCO = 11 MHz 10.67 11.0 11.33 MHz fAUXHFRCO = 6.6 MHz 6.40 6.60 6.80 MHz fAUXHFRCO = 1.2 MHz 1.15 1.20 1.25 MHz fAUXHFRCO = 14 MHz TUNESTEPAUX- Frequency step for LSB change in HFRCO TUNING value 0.6 Cycles 0.3 % 3.9.6 ULFRCO Table 3.13. ULFRCO Symbol Parameter Condition Min Typ Max fULFRCO Oscillation frequency 25°C, 3V TCULFRCO Temperature coefficient 0.05 %/°C VCULFRCO Supply voltage coefficient -18.2 %/V 0.70 Unit 1.75 kHz 3.10 Analog Digital Converter (ADC) Table 3.14. ADC Symbol Parameter Condition VADCIN Input voltage range Single ended 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Min Typ 0 31 Max Unit VREF V www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Differential VADCREFIN Input range of external reference voltage, single ended and differential Typ Max Unit -VREF/2 VREF/2 V 1.25 VDD V VADCREFIN_CH7 Input range of external negative reference voltage on channel 7 See VADCREFIN 0 VDD - 1.1 V VADCREFIN_CH6 Input range of external positive reference voltage on channel 6 See VADCREFIN 0.625 VDD V 0 VDD V VADCCMIN Common mode input range IADCIN Input current CMRRADC Analog input common mode rejection ratio IADC Average active current IADCREF Current consumption of internal voltage reference CADCIN Input capacitance RADCIN Input ON resistance RADCFILT Input RC filter resistance CADCFILT Input RC filter/decoupling capacitance fADCCLK ADC Clock Frequency tADCCONV Conversion time 2pF sampling capacitors <100 nA 65 dB 1 MSamples/s, 12 bit, external reference 351 500 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b00 67 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01 63 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10 64 µA Internal voltage reference 65 127 µA 2 pF 1 MOhm 10 250 kOhm fF 13 MHz 6 bit 7 ADCCLK Cycles 8 bit 11 ADCCLK Cycles 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 32 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min 12 bit tADCACQ Acquisition time tADCACQVDD3 Required acquisition time for VDD/3 reference tADCSTART SNRADC Programmable Typ Max Unit 13 ADCCLK Cycles 1 256 ADCCLK Cycles 2 µs Startup time of reference generator and ADC core in NORMAL mode 5 µs Startup time of reference generator and ADC core in KEEPADCWARM mode 1 µs 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 59 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 1 MSamples/s, 12 bit, single ended, VDD reference 65 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 65 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 67 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 69 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 200 kSamples/s, 12 bit, single ended, VDD reference 67 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 66 dB Signal to Noise Ratio (SNR) 200 kSamples/s, 12 bit, differential, VDD reference 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 33 63 www.silabs.com ...the world's most energy friendly microcontrollers Symbol SINADADC Parameter SIgnal-to-Noise And Distortion-ratio (SINAD) Condition Min SFDRADC Max Unit 200 kSamples/s, 12 bit, differential, 2xVDD reference 70 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 62 dB 1 MSamples/s, 12 bit, single ended, VDD reference 64 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 64 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 66 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 68 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 61 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 65 dB 200 kSamples/s, 12 bit, single ended, VDD reference 66 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 66 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 69 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 64 dBc 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 76 dBc 1 MSamples/s, 12 bit, single ended, VDD reference 73 dBc 1 MSamples/s, 12 bit, differential, internal 1.25V reference 66 dBc 1 MSamples/s, 12 bit, differential, internal 2.5V reference 77 dBc 1 MSamples/s, 12 bit, differential, VDD reference 76 dBc 200 kSamples/s, 12 bit, differential, VDD reference Spurious-Free Dynamic Range (SFDR) Typ 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 34 62 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ 75 dBc 1 MSamples/s, 12 bit, differential, 5V reference 69 dBc 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 75 dBc 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 75 dBc 200 kSamples/s, 12 bit, single ended, VDD reference 76 dBc 200 kSamples/s, 12 bit, differential, internal 1.25V reference 79 dBc 200 kSamples/s, 12 bit, differential, internal 2.5V reference 79 dBc 200 kSamples/s, 12 bit, differential, 5V reference 78 dBc 79 dBc 79 dBc 0.3 4 mV 0.3 mV 68 200 kSamples/s, 12 bit, differential, 2xVDD reference After calibration, single ended -4 Offset voltage After calibration, differential TGRADADCTH Unit 1 MSamples/s, 12 bit, differential, 2xVDD reference 200 kSamples/s, 12 bit, differential, VDD reference VADCOFFSET Max Thermometer output gradient DNLADC Differential non-linearity (DNL) VDD= 3.0 V, external 2.5V reference INLADC Integral non-linearity (INL), End point method VDD= 3.0 V, external 2.5V reference MCADC No missing codes -1 11.999 1 -1.92 mV/°C -6.3 ADC Codes/ °C ±0.7 4 LSB ±1.2 ±3 LSB 12 bits 1 On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue. The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.26 (p. 36) and Figure 3.27 (p. 36) , respectively. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 35 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.26. Integral Non-Linearity (INL) Digital ouput code INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1 4095 4094 Actual ADC tranfer function before offset and gain correction 4093 4092 Actual ADC tranfer function after offset and gain correction INL Error (End Point INL) Ideal transfer curve 3 2 1 VOFFSET 0 Analog Input Figure 3.27. Differential Non-Linearity (DNL) Digital ouput code DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2 Full Scale Range 4095 4094 Example: Adjacent input value VD+ 1 corrresponds to digital output code D+ 1 4093 4092 Actual transfer function with one m issing code. Example: Input value VD corrresponds to digital output code D Code width = 2 LSB DNL= 1 LSB Ideal transfer curve 5 0.5 LSB Ideal spacing between two adjacent codes VLSBIDEAL= 1 LSB 4 3 2 1 Ideal 50% Transition Point Ideal Code Center 0 Analog Input 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 36 www.silabs.com ...the world's most energy friendly microcontrollers 3.10.1 Typical performance Figure 3.28. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 37 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.29. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 38 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.30. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 39 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.31. ADC Absolute Offset, Common Mode = Vdd /2 5 2.0 Vref= 1V25 Vref= 2V5 Vref= 2XVDDVSS Vref= 5VDIFF Vref= VDD 4 1.5 2 Actual Offset [LSB] Actual Offset [LSB] 3 VRef= 1V25 VRef= 2V5 VRef= 2XVDDVSS VRef= 5VDIFF VRef= VDD 1 0 –1 1.0 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 –1.0 –40 3.8 Offset vs Supply Voltage, Temp = 25°C –15 5 25 Tem p (C) 45 65 85 Offset vs Temperature, Vdd = 3V Figure 3.32. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [dB] SNR [dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 25 Tem perature [°C] 45 65 5VDIFF 1V25 85 78.0 –40 Signal to Noise Ratio (SNR) 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 –15 5 25 Tem perature [°C] 45 65 85 Spurious-Free Dynamic Range (SFDR) 40 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.33. ADC Temperature sensor readout 2800 Vdd = 2.0 Vdd = 3.0 Vdd = 3.8 2700 2600 Sensor readout 2500 2400 2300 2200 2100 2000 1900 –40 –15 5 25 Tem perature [°C] 45 65 85 3.11 Current Digital Analog Converter (IDAC) Table 3.15. IDAC Range 0 Source Symbol Parameter Condition Min Active current with STEPSEL=0x10 EM0, default settings IIDAC Typ Duty-cycled I0x10 Nominal IDAC output current with STEPSEL=0x10 ISTEP Step size ID Current drop at high impedance load VIDAC_OUT = VDD - 100mV TCIDAC Temperature coefficient VDD = 3.0V, STEPSEL=0x10 VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 Max Unit 11.7 µA 10 nA 0.84 µA 0.049 µA 0.73 % 0.3 nA/°C 11.7 nA/V Table 3.16. IDAC Range 0 Sink Symbol Parameter Condition IIDAC Active current with STEPSEL=0x10 EM0, default settings I0x10 Nominal IDAC output current with STEPSEL=0x10 ISTEP Step size ID Current drop at high impedance load VIDAC_OUT = 200 mV TCIDAC Temperature coefficient VDD = 3.0 V, STEPSEL=0x10 VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Min 41 Typ Max Unit 13.7 µA 0.84 µA 0.050 µA 0.16 % 0.2 nA/°C 12.5 nA/V www.silabs.com ...the world's most energy friendly microcontrollers Table 3.17. IDAC Range 1 Source Symbol Parameter Condition Min Active current with STEPSEL=0x10 EM0, default settings IIDAC Typ Duty-cycled I0x10 Nominal IDAC output current with STEPSEL=0x10 ISTEP Step size ID Current drop at high impedance load VIDAC_OUT = VDD - 100mV TCIDAC Temperature coefficient VDD = 3.0 V, STEPSEL=0x10 VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 Max Unit 13.0 µA 10 nA 3.17 µA 0.097 µA 0.79 % 0.7 nA/°C 38.4 nA/V Table 3.18. IDAC Range 1 Sink Symbol Parameter Condition Min IIDAC Active current with STEPSEL=0x10 EM0, default settings I0x10 Nominal IDAC output current with STEPSEL=0x10 ISTEP Step size ID Current drop at high impedance load VIDAC_OUT = 200 mV TCIDAC Temperature coefficient VDD = 3.0 V, STEPSEL=0x10 VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 Typ Max Unit 17.9 µA 3.18 µA 0.098 µA 0.20 % 0.7 nA/°C 40.9 nA/V Table 3.19. IDAC Range 2 Source Symbol Parameter Condition Min Active current with STEPSEL=0x10 EM0, default settings IIDAC Typ Duty-cycled I0x10 Nominal IDAC output current with STEPSEL=0x10 ISTEP Step size ID Current drop at high impedance load VIDAC_OUT = VDD - 100mV TCIDAC Temperature coefficient VDD = 3.0 V, STEPSEL=0x10 VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 Max Unit 16.2 µA 10 nA 8.40 µA 0.493 µA 1.26 % 2.8 nA/°C 96.6 nA/V Table 3.20. IDAC Range 2 Sink Symbol Parameter Condition IIDAC Active current with STEPSEL=0x10 EM0, default settings 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Min 42 Typ Max 28.4 Unit µA www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min I0x10 Nominal IDAC output current with STEPSEL=0x10 ISTEP Step size ID Current drop at high impedance load VIDAC_OUT = 200 mV TCIDAC Temperature coefficient VDD = 3.0 V, STEPSEL=0x10 VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 Typ Max Unit 8.44 µA 0.495 µA 0.55 % 2.8 nA/°C 94.4 nA/V Table 3.21. IDAC Range 3 Source Symbol Parameter Condition Min Active current with STEPSEL=0x10 EM0, default settings IIDAC Typ Duty-cycled Max Unit 18.3 µA 10 nA I0x10 Nominal IDAC output current with STEPSEL=0x10 34.03 µA ISTEP Step size 1.996 µA ID Current drop at high impedance load VIDAC_OUT = VDD - 100 mV 3.18 % TCIDAC Temperature coefficient VDD = 3.0 V, STEPSEL=0x10 10.9 nA/°C VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 159.5 nA/V Table 3.22. IDAC Range 3 Sink Symbol Parameter Condition Min IIDAC Active current with STEPSEL=0x10 EM0, default settings I0x10 Typ Max Unit 62.9 µA Nominal IDAC output current with STEPSEL=0x10 34.16 µA ISTEP Step size 2.003 µA ID Current drop at high impedance load VIDAC_OUT = 200 mV 1.65 % TCIDAC Temperature coefficient VDD = 3.0 V, STEPSEL=0x10 10.9 nA/°C VCIDAC Voltage coefficient T = 25 °C, STEPSEL=0x10 148.6 nA/V Table 3.23. IDAC Symbol Parameter tIDACSTART Start-up time, from enabled to output settled 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Min 43 Typ Max 40 Unit µs www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.34. IDAC Source Current as a function of voltage on IDAC_OUT 101 101 100 100 99 Percentage of nom inal current [%] Percentage of nom inal current [%] 99 98 97 96 95 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 94 93 92 98 97 96 95 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 94 93 92 91 91 90 –2.0 90 –2.0 –1.5 –1.0 V(IDAC_OUT) - Vdd [V] –0.5 0.0 –1.5 101 101 100 100 99 99 98 97 96 95 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 94 93 96 95 0.0 93 91 –0.5 90 –2.0 0.0 Range 2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 94 91 –1.0 V(IDAC_OUT) - Vdd [V] –0.5 97 92 –1.5 0.0 98 92 90 –2.0 –0.5 Range 1 Percentage of nom inal current [%] Percentage of nom inal current [%] Range 0 –1.0 V(IDAC_OUT) - Vdd [V] –1.5 –1.0 V(IDAC_OUT) - Vdd [V] Range 3 44 www.silabs.com ...the world's most energy friendly microcontrollers 101 101 100 100 Percentage of nom inal current [%] Percentage of nom inal current [%] Figure 3.35. IDAC Sink Current as a function of voltage from IDAC_OUT 99 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 97 99 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 97 96 96 95 0.0 0.5 1.0 V(IDAC_OUT) [V] 1.5 95 0.0 2.0 0.5 1.0 V(IDAC_OUT) [V] 2.0 Range 1 101 101 100 100 Percentage of nom inal current [%] Percentage of nom inal current [%] Range 0 1.5 99 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 97 96 99 - 40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 97 96 95 0.0 0.5 1.0 V(IDAC_OUT) [V] 1.5 95 0.0 2.0 0.5 1.0 V(IDAC_OUT) [V] Range 2 1.5 2.0 Range 3 Figure 3.36. IDAC linearity 5 70 60 4 50 Idd [uA] Idd [uA] 3 Range 0 Range 1 2 40 Range 2 Range 3 30 20 1 10 0 0 5 10 15 Step 20 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 25 0 30 45 0 5 10 15 Step 20 25 30 www.silabs.com ...the world's most energy friendly microcontrollers 3.12 Analog Comparator (ACMP) Table 3.24. ACMP Symbol Parameter VACMPIN Input voltage range 0 VDD V VACMPCM ACMP Common Mode voltage range 0 VDD V IACMP IACMPREF Active current Current consumption of internal voltage reference Condition Min Typ Max Unit BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register 0.1 0.4 µA BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register 2.87 15 µA BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register 195 520 µA Internal voltage reference off. Using external voltage reference 0 µA Internal voltage reference 5 µA 0 12 mV VACMPOFFSET Offset voltage BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register VACMPHYST ACMP hysteresis Programmable 17 mV CSRESSEL=0b00 in ACMPn_INPUTSEL 39 kOhm CSRESSEL=0b01 in ACMPn_INPUTSEL 71 kOhm CSRESSEL=0b10 in ACMPn_INPUTSEL 104 kOhm CSRESSEL=0b11 in ACMPn_INPUTSEL 136 kOhm RCSRES tACMPSTART Capacitive Sense Internal Resistance Startup time -12 10 µs The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 46) . IACMPREF is zero if an external voltage reference is used. Total ACMP Active Current IACMPTOTAL = IACMP + IACMPREF 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 46 (3.1) www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 20 2.5 HYSTSEL= 0 HYSTSEL= 2 HYSTSEL= 4 HYSTSEL= 6 2.0 Response Tim e [us] Current [uA] 15 1.5 1.0 10 5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 0 12 Current consumption, HYSTSEL = 4 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response time , Vcm = 1.25V, CP+ to CP- = 100mV 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12.0 Hysteresis [m V] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 47 www.silabs.com ...the world's most energy friendly microcontrollers 3.13 Voltage Comparator (VCMP) Table 3.25. VCMP Symbol Parameter VVCMPIN Input voltage range VDD V VVCMPCM VCMP Common Mode voltage range VDD V IVCMP Condition Min Typ Max Unit BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register 0.1 0.8 µA BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. 14.7 35 µA NORMAL 10 µs Single ended 10 mV Differential 10 mV 17 mV Active current tVCMPREF Startup time reference generator VVCMPOFFSET Offset voltage VVCMPHYST VCMP hysteresis tVCMPSTART Startup time 10 µs The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VCMP Trigger Level as a Function of Level Setting VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL (3.2) 3.14 I2C Table 3.26. I2C Standard-mode (Sm) Symbol Parameter Min Typ 0 Max Unit fSCL SCL clock frequency tLOW SCL clock low time 4.7 µs tHIGH SCL clock high time 4.0 µs tSU,DAT SDA set-up time 250 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 4.7 µs tHD,STA (Repeated) START condition hold time 4.0 µs tSU,STO STOP condition set-up time 4.0 µs tBUF Bus free time between a STOP and START condition 4.7 µs 8 100 1 2,3 3450 kHz ns 1 For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32ZG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 5). 2 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 48 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.27. I2C Fast-mode (Fm) Symbol Parameter Min Typ Max fSCL SCL clock frequency tLOW SCL clock low time 1.3 µs tHIGH SCL clock high time 0.6 µs tSU,DAT SDA set-up time 100 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 0.6 µs tHD,STA (Repeated) START condition hold time 0.6 µs tSU,STO STOP condition set-up time 0.6 µs tBUF Bus free time between a STOP and START condition 1.3 µs 0 Unit 1 400 2,3 8 900 kHz ns 1 For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32ZG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 5). 2 Table 3.28. I2C Fast-mode Plus (Fm+) Symbol Parameter Min Typ Max Unit fSCL SCL clock frequency tLOW SCL clock low time 0.5 µs tHIGH SCL clock high time 0.26 µs tSU,DAT SDA set-up time 50 ns tHD,DAT SDA hold time 8 ns tSU,STA Repeated START condition set-up time 0.26 µs tHD,STA (Repeated) START condition hold time 0.26 µs tSU,STO STOP condition set-up time 0.26 µs tBUF Bus free time between a STOP and START condition 0.5 µs 1 0 1000 kHz 1 For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32ZG Reference Manual. 3.15 Digital Peripherals Table 3.29. Digital Peripherals Symbol Parameter Condition IUSART USART current USART idle current, clock enabled 7.5 µA/ MHz ILEUART LEUART current LEUART idle current, clock enabled 150 nA II2C I2C current I2C idle current, clock enabled 6.25 µA/ MHz ITIMER TIMER current TIMER_0 idle current, clock enabled 8.75 µA/ MHz IPCNT PCNT current PCNT idle current, clock enabled 100 nA IRTC RTC current RTC idle current, clock enabled 100 nA 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Min 49 Typ Max Unit www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min IAES AES current AES idle current, clock enabled IGPIO GPIO current IPRS IDMA Typ Max Unit 2.5 µA/ MHz GPIO idle current, clock enabled 5.31 µA/ MHz PRS current PRS idle current 2.81 µA/ MHz DMA current Clock enable 8.12 µA/ MHz 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 50 www.silabs.com ...the world's most energy friendly microcontrollers 4 Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32ZG222. 4.1 Pinout The EFM32ZG222 pinout is shown in Figure 4.1 (p. 51) and Table 4.1 (p. 51). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 4.1. EFM32ZG222 Pinout (top view, not to scale) Table 4.1. Device Pinout Pin Alternate Functionality / Description Pin # QFP48 Pin# and Name Pin Name Analog 1 PA0 TIM0_CC0 #0/1/4 LEU0_RX #4 I2C0_SDA #0 PRS_CH0 #0 GPIO_EM4WU0 2 PA1 TIM0_CC1 #0/1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Timers Communication Other 51 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # QFP48 Pin# and Name Pin Name Analog Timers Communication 3 PA2 4 IOVDD_0 5 VSS 6 PC0 ACMP0_CH0 TIM0_CC1 #4 PCNT0_S0IN #2 US1_TX #0 I2C0_SDA #4 PRS_CH2 #0 7 PC1 ACMP0_CH1 TIM0_CC2 #4 PCNT0_S1IN #2 US1_RX #0 I2C0_SCL #4 PRS_CH3 #0 8 PC2 ACMP0_CH2 9 PC3 ACMP0_CH3 10 PC4 ACMP0_CH4 11 PB7 LFXTAL_P TIM1_CC0 #3 US1_CLK #0 12 PB8 LFXTAL_N TIM1_CC1 #3 US1_CS #0 13 PA8 14 PA9 15 PA10 16 RESETn 17 PB11 18 VSS 19 AVDD_1 20 PB13 HFXTAL_P LEU0_TX #1 21 PB14 HFXTAL_N LEU0_RX #1 22 IOVDD_3 Digital IO power supply 3. 23 AVDD_0 Analog power supply 0. 24 PD4 ADC0_CH4 LEU0_TX #0 25 PD5 ADC0_CH5 LEU0_RX #0 26 PD6 ADC0_CH6 TIM1_CC0 #4 PCNT0_S0IN #3 US1_RX #2/3 I2C0_SDA #1 ACMP0_O #2 27 PD7 ADC0_CH7 TIM1_CC1 #4 PCNT0_S1IN #3 US1_TX #2/3 I2C0_SCL #1 CMU_CLK0 #2 28 VDD_DREG Power supply for on-chip voltage regulator. 29 DECOUPLE Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. 30 PC8 31 PC9 32 PC10 33 PC11 34 PC13 TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0 35 PC14 TIM1_CC1 #0 PCNT0_S1IN #0 US1_CS #3 PRS_CH0 #2 36 PC15 TIM1_CC2 #0 US1_CLK #3 PRS_CH1 #2 37 PF0 TIM0_CC0 #5 US1_CLK #2 DBG_SWCLK #0 TIM0_CC2 #0/1 Other CMU_CLK0 #0 Digital IO power supply 0. Ground. Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. IDAC0_OUT TIM1_CC2 #3 Ground. Analog power supply 1. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 GPIO_EM4WU2 52 www.silabs.com ...the world's most energy friendly microcontrollers Pin # QFP48 Pin# and Name Pin Alternate Functionality / Description Pin Name Analog Timers Communication Other LEU0_TX #3 I2C0_SDA #5 BOOT_TX 38 PF1 TIM0_CC1 #5 US1_CS #2 LEU0_RX #3 I2C0_SCL #5 DBG_SWDIO #0 GPIO_EM4WU3 BOOT_RX 39 PF2 TIM0_CC2 #5 LEU0_TX #4 GPIO_EM4WU4 40 PF3 PRS_CH0 #1 41 PF4 PRS_CH1 #1 42 PF5 PRS_CH2 #1 43 IOVDD_5 44 VSS 45 PE10 TIM1_CC0 #1 PRS_CH2 #2 46 PE11 TIM1_CC1 #1 PRS_CH3 #2 47 PE12 TIM1_CC2 #1 48 PE13 Digital IO power supply 5. Ground. I2C0_SDA #6 CMU_CLK1 #2 I2C0_SCL #6 ACMP0_O #0 GPIO_EM4WU5 4.2 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 53) . The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 4.2. Alternate functionality overview Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description ACMP0_CH0 PC0 Analog comparator ACMP0, channel 0. ACMP0_CH1 PC1 Analog comparator ACMP0, channel 1. ACMP0_CH2 PC2 Analog comparator ACMP0, channel 2. ACMP0_CH3 PC3 Analog comparator ACMP0, channel 3. ACMP0_CH4 PC4 Analog comparator ACMP0, channel 4. ACMP0_O PE13 ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOT_RX PF1 Bootloader RX. BOOT_TX PF0 Bootloader TX. CMU_CLK0 PA2 PD6 Analog comparator ACMP0, digital output. PD7 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 Clock Management Unit, clock output number 0. 53 www.silabs.com ...the world's most energy friendly microcontrollers Alternate Functionality LOCATION 0 1 2 3 4 5 6 PE12 Description CMU_CLK1 PA1 Clock Management Unit, clock output number 1. DBG_SWCLK PF0 DBG_SWDIO PF1 Note that this function is enabled to pin out of reset, and has a built-in pull up. GPIO_EM4WU0 PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU2 PC9 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 PE13 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. I2C0_SCL PA1 PD7 PC1 PF1 PE13 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PC0 PF0 PE12 I2C0 Serial Data input / output. IDAC0_OUT PB11 LEU0_RX PD5 PB14 PF1 PA0 LEUART0 Receive input. LEU0_TX PD4 PB13 PF0 PF2 LEUART0 Transmit output. Also used as receive input in half duplex communication. LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. PCNT0_S0IN PC13 PC0 PD6 Pulse Counter PCNT0 input number 0. PCNT0_S1IN PC14 PC1 PD7 Pulse Counter PCNT0 input number 1. PRS_CH0 PA0 PF3 PC14 Peripheral Reflex System PRS, channel 0. PRS_CH1 PA1 PF4 PC15 Peripheral Reflex System PRS, channel 1. PRS_CH2 PC0 PF5 PE10 Peripheral Reflex System PRS, channel 2. PRS_CH3 PC1 PE11 Peripheral Reflex System PRS, channel 3. TIM0_CC0 PA0 PA0 PA0 PF0 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 PA1 PA1 PC0 PF1 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 PA2 PA2 PC1 PF2 Timer 0 Capture Compare input / output channel 2. TIM1_CC0 PC13 PE10 PB7 PD6 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 PC14 PE11 PB8 PD7 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 PC15 PE12 PB11 PC13 Timer 1 Capture Compare input / output channel 2. US1_CLK PB7 PF0 PC15 USART1 clock input / output. US1_CS PB8 PF1 PC14 USART1 chip select input / output. US1_RX PC1 PD6 PD6 Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. IDAC0 output. USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. US1_TX PC0 PD7 PD7 USART1 Synchronous mode Master Output / Slave Input (MOSI). 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 54 www.silabs.com ...the world's most energy friendly microcontrollers 4.3 GPIO Pinout Overview The specific GPIO pins available in EFM32ZG222 is shown in Table 4.3 (p. 55) . Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0. Table 4.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port A - - - - - PA10 PA9 PA8 - - - - - PA2 PA1 PA0 Port B - PB14 PB13 - PB11 - - PB8 PB7 - - - - - - - Port C PC15 PC14 PC13 - PC11 PC10 PC9 PC8 - - - PC4 PC3 PC2 PC1 PC0 Port D - - - - - - - - PD7 PD6 PD5 PD4 - - - - Port E - - PE13 PE12 PE11 PE10 - - - - - - - - - - Port F - - - - - - - - - - PF5 PF4 PF3 PF2 PF1 PF0 4.4 TQFP48 Package Figure 4.2. TQFP48 Note: 1. Dimensions and tolerance per ASME Y14.5M-1994 2. Control dimension: Millimeter. 3. Datum plane AB is located at bottom of lead and is coincident with the lead where the lead exists from the plastic body at the bottom of the parting line. 4. Datums T, U and Z to be determined at datum plane AB. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 55 www.silabs.com ...the world's most energy friendly microcontrollers 5. Dimensions S and V to be determined at seating plane AC. 6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimensions A and B do include mold mismatch and are determined at datum AB. 7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimension to exceed 0.350. 8. Minimum solder plate thickness shall be 0.0076. 9. Exact shape of each corner is optional. Table 4.4. QFP48 (Dimensions in mm) DIM MIN NOM MAX DIM MIN NOM MAX A - 7.000 BSC - M - 12DEG REF - A1 - 3.500 BSC - N 0.090 - 0.160 B - 7.000 BSC - P - 0.250 BSC - B1 - 3.500 BSC - R 0.150 - 0.250 C 1.000 - 1.200 S - 9.000 BSC - D 0.170 - 0.270 S1 - 4.500 BSC - E 0.950 - 1.050 V - 9.000 BSC - F 0.170 - 0.230 V1 - 4.500 BSC - G - 0.500 BSC - W - 0.200 BSC - H 0.050 - 0.150 AA - 1.000 BSC - J 0.090 - 0.200 K 0.500 - 0.700 L 0DEG - 7DEG The TQFP48 Package is 7 by 7 mm in size and has a 0.5 mm pin pitch. The TQFP48 Package uses Nickel-Palladium-Gold preplated leadframe. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 56 www.silabs.com ...the world's most energy friendly microcontrollers 5 PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. TQFP48 PCB Land Pattern a p8 p7 p6 p1 b e c p2 p5 p3 p4 d Table 5.1. QFP48 PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dim. (mm) Symbol Pin number Symbol Pin number a 1.60 P1 1 P6 36 b 0.30 P2 12 P7 37 c 0.50 P3 13 P8 48 d 8.50 P4 24 - - e 8.50 P5 25 - - 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 57 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.2. TQFP48 PCB Solder Mask a b e c d Table 5.2. QFP48 PCB Solder Mask Dimensions (Dimensions in mm) Symbol Dim. (mm) a 1.72 b 0.42 c 0.50 d 8.50 e 8.50 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 58 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.3. TQFP48 PCB Stencil Design a b e c d Table 5.3. QFP48 PCB Stencil Design Dimensions (Dimensions in mm) 1. 2. 3. 4. 5. 6. Symbol Dim. (mm) a 1.50 b 0.20 c 0.50 d 8.50 e 8.50 The drawings are not to scale. All dimensions are in millimeters. All drawings are subject to change without notice. The PCB Land Pattern drawing is in compliance with IPC-7351B. Stencil thickness 0.125 mm. For detailed pin-positioning, see Figure 4.2 (p. 55) . 5.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 59 www.silabs.com ...the world's most energy friendly microcontrollers 6 Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking (top view) 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 60) . 6.3 Errata Please see the errata document for EFM32ZG222 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 60 www.silabs.com ...the world's most energy friendly microcontrollers 7 Revision History 7.1 Revision 1.10 March 6th, 2015 Updated ADC data, updated temperature sensor graph and added clarification on conditions for INLADC and DNLADC parameters. Updated Max ESRHFXO value for Crystal Frequency of 24 MHz. Updated current consumption. Updated LFXO and HFXO data. Updated LFRCO and HFRCO data. Updated ACMP data. Updated VCMP data. Updated Memory Map. Added DMA current in Digital Peripherals section. Added AUXHFRCO to block diagram and Electrical Characteristics. Updated block diagram. 7.2 Revision 1.00 July 2nd, 2014 Corrected single power supply voltage minimum value from 1.85V to 1.98V. Removed "Preliminary" markings. Updated current consumption. Updated transition between energy modes. Updated power management data. Updated GPIO data. Updated LFXO, HFXO, HFRCO and ULFRCO data. Updated LFRCO and HFRCO plots. Updated ADC data. Updated ACMP data. 7.3 Revision 0.61 November 21st, 2013 Updated figures. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 61 www.silabs.com ...the world's most energy friendly microcontrollers Updated errata-link. Updated chip marking. Added link to Environmental and Quality information. 7.4 Revision 0.60 October 9th, 2013 Added I2C characterization data. Added IDAC characterization data. Updated current consumption table and figures in Electrical characteristics section. Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. Removed Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections. 7.5 Revision 0.50 April 22nd, 2013 Updated HFCORE max frequency from 32 MHz to 24 MHz. Updated pinout. Other minor corrections. 7.6 Revision 0.40 September 11th, 2012 Updated CPU core from Cortex M0 to Cortex M0+. Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Corrected operating voltage from 1.8 V to 1.85 V. Other minor corrections. 7.7 Revision 0.30 July 16th, 2011 Updated the Electrical Characteristics section. 7.8 Revision 0.20 June 8th, 2011 Corrected all current values in Electrical Characteristics section. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 62 www.silabs.com ...the world's most energy friendly microcontrollers Updated Cortex M0 related items in the memory map. 7.9 Revision 0.10 June 7th, 2011 Initial preliminary release. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 63 www.silabs.com ...the world's most energy friendly microcontrollers A Disclaimer and Trademarks A.1 Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. A.2 Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 64 www.silabs.com ...the world's most energy friendly microcontrollers B Contact Information Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 65 www.silabs.com ...the world's most energy friendly microcontrollers Table of Contents 1. Ordering Information .................................................................................................................................. 2 2. System Summary ...................................................................................................................................... 3 2.1. System Introduction ......................................................................................................................... 3 2.2. Configuration Summary .................................................................................................................... 6 2.3. Memory Map ................................................................................................................................. 7 3. Electrical Characteristics ............................................................................................................................. 8 3.1. Test Conditions .............................................................................................................................. 8 3.2. Absolute Maximum Ratings .............................................................................................................. 8 3.3. General Operating Conditions ........................................................................................................... 8 3.4. Current Consumption ....................................................................................................................... 9 3.5. Transition between Energy Modes .................................................................................................... 17 3.6. Power Management ....................................................................................................................... 17 3.7. Flash .......................................................................................................................................... 18 3.8. General Purpose Input Output ......................................................................................................... 18 3.9. Oscillators .................................................................................................................................... 27 3.10. Analog Digital Converter (ADC) ...................................................................................................... 31 3.11. Current Digital Analog Converter (IDAC) .......................................................................................... 41 3.12. Analog Comparator (ACMP) .......................................................................................................... 46 3.13. Voltage Comparator (VCMP) ......................................................................................................... 48 3.14. I2C ........................................................................................................................................... 48 3.15. Digital Peripherals ....................................................................................................................... 49 4. Pinout and Package ................................................................................................................................. 51 4.1. Pinout ......................................................................................................................................... 51 4.2. Alternate Functionality Pinout .......................................................................................................... 53 4.3. GPIO Pinout Overview ................................................................................................................... 55 4.4. TQFP48 Package .......................................................................................................................... 55 5. PCB Layout and Soldering ........................................................................................................................ 57 5.1. Recommended PCB Layout ............................................................................................................ 57 5.2. Soldering Information ..................................................................................................................... 59 6. Chip Marking, Revision and Errata .............................................................................................................. 60 6.1. Chip Marking ................................................................................................................................ 60 6.2. Revision ...................................................................................................................................... 60 6.3. Errata ......................................................................................................................................... 60 7. Revision History ...................................................................................................................................... 61 7.1. Revision 1.10 ............................................................................................................................... 61 7.2. Revision 1.00 ............................................................................................................................... 61 7.3. Revision 0.61 ............................................................................................................................... 61 7.4. Revision 0.60 ............................................................................................................................... 62 7.5. Revision 0.50 ............................................................................................................................... 62 7.6. Revision 0.40 ............................................................................................................................... 62 7.7. Revision 0.30 ............................................................................................................................... 62 7.8. Revision 0.20 ............................................................................................................................... 62 7.9. Revision 0.10 ............................................................................................................................... 63 A. Disclaimer and Trademarks ....................................................................................................................... 64 A.1. Disclaimer ................................................................................................................................... 64 A.2. Trademark Information ................................................................................................................... 64 B. Contact Information ................................................................................................................................. 65 B.1. ................................................................................................................................................. 65 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 66 www.silabs.com ...the world's most energy friendly microcontrollers List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32ZG222 Memory Map with largest RAM and Flash sizes ........................................................................ 7 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24 MHz ........................................................................................................................................................ 11 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz ........................................................................................................................................................ 11 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz ........................................................................................................................................................ 12 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz ........................................................................................................................................................ 12 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 6.6 MHz ........................................................................................................................................................ 13 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 24 MHz .............................. 13 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz ........................... 15 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ....................................................... 16 3.12. EM3 current consumption. ................................................................................................................... 16 3.13. EM4 current consumption. ................................................................................................................... 17 3.14. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21 3.15. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22 3.16. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23 3.17. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25 3.19. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31 3.26. Integral Non-Linearity (INL) ................................................................................................................... 36 3.27. Differential Non-Linearity (DNL) .............................................................................................................. 36 3.28. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 37 3.29. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 38 3.30. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 39 3.31. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 40 3.32. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 40 3.33. ADC Temperature sensor readout ......................................................................................................... 41 3.34. IDAC Source Current as a function of voltage on IDAC_OUT ....................................................................... 44 3.35. IDAC Sink Current as a function of voltage from IDAC_OUT ........................................................................ 45 3.36. IDAC linearity .................................................................................................................................... 45 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 47 4.1. EFM32ZG222 Pinout (top view, not to scale) .............................................................................................. 51 4.2. TQFP48 .............................................................................................................................................. 55 5.1. TQFP48 PCB Land Pattern ..................................................................................................................... 57 5.2. TQFP48 PCB Solder Mask ..................................................................................................................... 58 5.3. TQFP48 PCB Stencil Design ................................................................................................................... 59 6.1. Example Chip Marking (top view) ............................................................................................................. 60 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 67 www.silabs.com ...the world's most energy friendly microcontrollers List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 6 3.1. Absolute Maximum Ratings ...................................................................................................................... 8 3.2. General Operating Conditions ................................................................................................................... 8 3.3. Current Consumption ............................................................................................................................... 9 3.4. Energy Modes Transitions ...................................................................................................................... 17 3.5. Power Management ............................................................................................................................... 18 3.6. Flash .................................................................................................................................................. 18 3.7. GPIO .................................................................................................................................................. 18 3.8. LFXO .................................................................................................................................................. 27 3.9. HFXO ................................................................................................................................................. 27 3.10. LFRCO .............................................................................................................................................. 28 3.11. HFRCO ............................................................................................................................................. 29 3.12. AUXHFRCO ....................................................................................................................................... 31 3.13. ULFRCO ............................................................................................................................................ 31 3.14. ADC .................................................................................................................................................. 31 3.15. IDAC Range 0 Source ......................................................................................................................... 41 3.16. IDAC Range 0 Sink ............................................................................................................................. 41 3.17. IDAC Range 1 Source ......................................................................................................................... 42 3.18. IDAC Range 1 Sink ............................................................................................................................. 42 3.19. IDAC Range 2 Source ......................................................................................................................... 42 3.20. IDAC Range 2 Sink ............................................................................................................................. 42 3.21. IDAC Range 3 Source ......................................................................................................................... 43 3.22. IDAC Range 3 Sink ............................................................................................................................. 43 3.23. IDAC ................................................................................................................................................. 43 3.24. ACMP ............................................................................................................................................... 46 3.25. VCMP ............................................................................................................................................... 48 3.26. I2C Standard-mode (Sm) ...................................................................................................................... 48 3.27. I2C Fast-mode (Fm) ............................................................................................................................ 49 3.28. I2C Fast-mode Plus (Fm+) .................................................................................................................... 49 3.29. Digital Peripherals ............................................................................................................................... 49 4.1. Device Pinout ....................................................................................................................................... 51 4.2. Alternate functionality overview ................................................................................................................ 53 4.3. GPIO Pinout ........................................................................................................................................ 55 4.4. QFP48 (Dimensions in mm) .................................................................................................................... 56 5.1. QFP48 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 57 5.2. QFP48 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 58 5.3. QFP48 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 59 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 68 www.silabs.com ...the world's most energy friendly microcontrollers List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 46 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 48 2015-03-06 - EFM32ZG222FXX - d0066_Rev1.10 69 www.silabs.com