XC6901D331PR-G - Torex Semiconductor

XC6901 Series
ETR03043-007
200mA Negative Voltage Regulator with ON/OFF Control
■GENERAL DESCRIPTION
The XC6901 Series is a negative voltage CMOS regulator which includes a reference voltage source, error amplifier, driver
transistor, current limiter and phase compensator.
The CE function enables the circuit to be in stand-by mode by inputting low level signal. In the stand-by mode, the electric
charge at the output capacitor (CL) will be discharged via the internal auto-discharge switch and as a result the -VOUT pin
quickly returns to the VSS level.
The over current protection circuit will operate when the output current reaches limit current. The thermal shutdown circuit will
operate when the junction temperature reaches limit temperature.
■FEATURES
■APPLICATIONS
Maximum Output Current
:
200mA
Input Voltage Range
:
-2.4V ~-12.4V(VCE=3.6V)
●Modules (Wireless LAN, Digital still cameras, etc)
Output Voltage Range
:
●Digital still cameras
Accuracy
:
Temperature Stability
:
-0.9V~-12.0V
±1.5%(VOUT<‐2.0V)
±0.03V(VOUT≧‐2.0V)
TYP. ±50ppm/℃
●Negative power supplies
●Mobile devices / terminals
CE High Level Voltage
:
+1.2V~+3.6V,(Active High)
Dropout Voltage
:
400mV@IOUT=100mA
Low Power Consumption
:
100μA MAX.
Stand-by Current
:
Less than 0.1μA
Protection Circuits
:
Output Capacitor
:
Current Limit 350mA TYP, Foldback
Overheat Protection TTSB=150℃
Ceramic Capacitor Compatible
Built-in Function
:
CL High-Speed Discharge
Operating Ambient Temperature
: -40℃~+85℃
Packages
:
SOT-25, SOT-89-5, USP-6C
Environmentally Friendly
:
EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUIT ■ TYPICAL PERFORMANCE
CHARACTERISTICS
XC6901x 501
CL:1.0μF
(ceramic)
IOUT =1⇔100mA,tr=tf=5μs,Ta=25℃,VCE=1.5V
VIN=-6V,CIN=1μF(ceramic),CL =1μF(ceramic)
CIN: 1. 0μF
(ceramic)
-VOUT
-VIN
NC
CE
SOT - 25
( TOP VIEW )
Output Voltage: VOUT [V]
-4.6
-4.8
300
250
Output Voltage
-5.0
-5.2
200
150
Output Current
-5.4
1mA
100
-5.6
100mA
50
-5.8
Output Current: IOUT [mA]
GND
0
Time(100μs/div)
1/28
XC6901 Series
■PIN CONFIGURATION
* The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking to enhance
mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the -VIN (No. 3) pin.
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTIONS
-VOUT
Negative Output
USP-6C
SOT-25
SOT-89-5
1
5
5
2,5
4
1
NC
No Connection
3
2
2
-VIN
Negative Supply Input
4
3
3
CE
ON/OFF Control
6
1
4
GND
Ground
■FUNCTION CHART
XC6901 Series D type
PIN NAME
CE
2/28
SIGNAL
STATUS
L
Stand-by
H
Active
OPEN
Stand-by
XC6901
Series
■PRODUCT CLASSIFICATION
●Ordering Information
XC6901①②③④⑤⑥-⑦(*1) ON/OFF Control Voltage Regulator (CE Active High)
DESIGNATOR
①
ITEM
Type
(*2)
②③
Output Voltage
④
Output Type
SYMBOL
D
09~C0
1
B
⑤⑥-⑦
Packages
(Order Unit)
DESCRIPTION
CE Pull-down resistor
CL Auto-discharge
-0.9V~-12V
e.g. -0.9V→②=0, ③=9, -12V→②=C, ③=0
A:10, B:11, C:12
0.10V Increments
e.g. -1.2V→②=1, ③=2, ④=1
0.05V Increments for -0.95V~-4.95V
e.g. -1.25V→②=1, ③=2, ④=B
ER-G
USP-6C (3,000/Reel)
MR-G
SOT-25 (3,000/Reel)
PR-G
SOT-89-5 (1,000/Reel)
(*1)
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
(*2)
For the type without CL auto-discharge, please contact your local Torex sales office or representative.
■STANDARD VOLTAGE
●Examples for standard voltage
VOUT
(V)
USP-6C
PACKAGES
SOT-25
SOT-89-5
-1.2V
XC6901D121ER-G
XC6901D121MR-G
XC6901D121PR-G
-2.5V
XC6901D251ER-G
XC6901D251MR-G
XC6901D251PR-G
-2.6V
XC6901D261ER-G
XC6901D261MR-G
XC6901D261PR-G
-3.0V
XC6901D301ER-G
XC6901D301MR-G
XC6901D301PR-G
-3.3V
XC6901D331ER-G
XC6901D331MR-G
XC6901D331PR-G
-4.0V
XC6901D401ER-G
XC6901D401MR-G
XC6901D401PR-G
-4.5V
XC6901D451ER-G
XC6901D451MR-G
XC6901D451PR-G
-5.0V
XC6901D501ER-G
XC6901D501MR-G
XC6901D501PR-G
-6.0V
XC6901D601ER-G
XC6901D601MR-G
XC6901D601PR-G
-12.0V
XC6901DC01ER-G
XC6901DC01MR-G
XC6901DC01PR-G
3/28
XC6901 Series
■ABSOLUTE MAXIMUM RATINGS
GND=0V, Ta=25℃
PARAMETER
SYMBOL
RATINGS
UNITS
Input Voltage
VIN
GND-18+VCE ~ GND+0.3
V
500
(*1)
Output Current
IOUT
Output Voltage
VOUT
-VIN-0.3 ~ GND+0.3
V
CE Input Voltage
VCE
GND-0.3 ~ VIN+18
V
Operating Ambient Temperature
Topr
120
1000 (PCB mounted)(*2)
250
600 (PCB mounted)(*2)
500
1300 (PCB mounted)(*2)
-40~+85
Storage Temperature
Tstg
-55~+125
USP-6C
Power
Dissipation
SOT-25
Pd
SOT-89-5
mA
mW
℃
℃
(*1): Please use within the range of IOUT≦Pd/( VOUT - VIN)
(*2) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to page 24~26 for details.
4/28
XC6901
Series
■BLOCK DIAGRAM
XC6901 Series D type
*Diodes inside the circuit are an ESD protection diode and a parasitic diode.
5/28
XC6901 Series
■ELECTRICAL CHARACTERISTICS
●XC6901 Series
GND=0V,Ta=25℃
PARAMETER
SYMBOL
Output Voltage
VOUT(E)
Maximum Output
Current
(*4)
(*2)
IOUTMAX
Load Regulation
∆VOUT
Dropout Voltage
(*3)
CONDITIONS
IOUT=20mA
MIN.
VOUT(T)<-2.0V
×1.015
VOUT(T)≧-2.0V
-0.030
VIN=VOUT(T)-2.0V
VOUT(T)≦-2.4V
VIN=-4.4V
VOUT(T)>-2.4V
VIN=VOUT(T)-1.0V
VOUT(T)≦-3.0V
VIN=-4.0V
VOUT(T)>-3.0V
TYP.
VOUT(T)
(*1)
MAX.
×0.985
+0.030
UNITS
CIRCUIT
V
①
200
-
-
mA
①
-
20
60
mV
①
mV
①
1mA≦IOUT≦100mA
Vdif
-
VIN=-14.5V, VCE=1.5V, IOUT=0mA
-
100
200
μA
①
VIN=-14.5V, VCE=0V, IOUT=0mA
-
0.01
0.1
μA
①
-14.5V~VOUT(T)-1V
-14.5V~-2.4V
IOUT=20mA
-
0.01
0.20
%/V
①
-16+VCE
-
-2.4
V
①
-
±50
-
ppm/℃
①
-
45
-
dB
②
210
300
-
mA
①
VIN=VOUT(T)-2.0V Short -VOUT to GND level
-
80
-
mA
①
TTSD
IC Junction temperature
-
150
-
℃
①
Release Thermal
Shutdown
Temperature
TTSR
IC Junction temperature
-
125
-
℃
①
Hysteresis Width
THYS
TTSD-TTSR
-
25
-
℃
①
CE "H" Level Voltage
VCEH
1.2
-
3.6
V
①
CE "L" Level Voltage
VCEL
GND
-
0.4
V
①
1.8
4
7
μA
①
VCE=GND
-0.1
-
0.1
μA
①
VIN=-8V,VOUT=-2V,VCE=GND
0.7
1.2
1.8
kΩ
①
RL=3kΩ,Rise Time
VOUT(T)>-4.0V
0.15
0.4
1.2
ms
③
VOUT(T)≦-4.0V
0.3
0.7
2
ms
③
Supply Current
IBIAS
Stand-by Current
ISTB
Input Line
Regulation
∆VOUT/
(∆VIN・VOUT)
Input Voltage
Output Voltage
Temperature
Characteristics
∆VOUT/
Power Supply
Rejection Ratio
VOUT(T)≦-1.4V
VOUT(T)>-1.4V
VIN
(∆Topr・VOUT)
PSRR
Limit Current
ILIM
Short-Circuit Current
ISHORT
IOUT=20mA
-40℃≦Topr≦85℃
VIN={VOUT(T)-1.0}+0.5Vp-pAC, IOUT=20mA,
f=1kHz
VIN=VOUT(T)-2.0V
VOUT(T)≦-2.4V
VIN=-4.4V
VOUT(T)>-2.4V
E-1
(*5)
IOUT=20mA
Detect Thermal
Shutdown
Temperature
CE "H" Level
Current
CE "L" Level Current
CL Discharge
Resistor
Soft Start Time
ICEH
ICEL
RDCHG
tSS
VIN=-12.4V,
VCE=3.6V
CE="H" to
95% of VOUT(E)
XC6901D Series
NOTE: Unless otherwise stated regarding input voltage conditions VCE=1.5V、GND=0V、VIN=VOUT(T)-1.0V or -2.4V the one which bigger
absolute value.
*1) VOUT(T): Nominal output voltage
*2) VOUT(E): Effective output voltage (see the voltage chart)
(ie. The output voltage when “VOUT(T)-1.0V” or “-2.4V”is provided at the VIN pin while maintaining a certain IOUT value.
*3)Vdif=-{VIN1- VOUT1}
VIN1 is the input voltage when VOUT1 appears at the VOUT pin while input voltage is gradually increased
VOUT1 is the voltage equal to 98% of the normal output voltage when amply stabilized VOUT (T) -1.0V or -2.4V (the bigger absolute value one ) are input at
the VIN pin.
*4) The maximum current may not be able to flow when thermal shutdown operates, it depends on power dissipation.
*5) E-1: Refer to dropout voltage chart.
6/28
XC6901
Series
■ELECTRICAL CHARACTERISTICS(Continued)
Dropout Voltage Chart (VOUT(T)=-0.9V~-5V)
NOMINAL
OUTPUT
VOLTAGE
E-1
DROPOUT VOLTAGE
Vdif (mV)
NOMINAL
OUTPUT
VOLTAGE
E-1
DROPOUT VOLTAGE
Vdif (mV)
NOMINAL
OUTPUT
VOLTAGE
E-1
DROPOUT VOLTAGE
Vdif (mV)
VOUT(T)
TYP.
MAX.
VOUT(T)
TYP.
MAX.
VOUT(T)
TYP.
MAX.
-0.90
800
1500
-2.85
116
157
-4.80
80
115
-0.95
750
1450
-2.90
114
155
-4.85
80
115
-1.00
700
1400
-2.95
112
153
-4.90
79
115
-1.05
650
1350
-3.00
110
151
-4.95
79
115
-1.10
600
1300
-3.05
109
150
-5.00
78
114
-1.15
550
1250
-3.10
108
148
-1.20
500
1200
-3.15
107
147
-1.25
450
1150
-3.20
105
145
-1.30
400
1100
-3.25
104
144
-1.35
350
1050
-3.30
102
142
-1.40
300
1000
-3.35
102
141
-1.45
270
950
-3.40
101
140
-1.50
230
900
-3.45
101
139
-1.55
220
850
-3.50
100
137
-1.60
210
800
-3.55
99
136
-1.65
205
750
-3.60
98
135
-1.70
200
700
-3.65
97
134
-1.75
195
650
-3.70
95
133
-1.80
190
600
-3.75
95
132
-1.85
183
550
-3.80
94
131
-1.90
176
500
-3.85
94
130
-1.95
171
450
-3.90
93
129
-2.00
165
400
-3.95
92
128
-2.05
161
350
-4.00
91
127
-2.10
156
300
-4.05
90
126
-2.15
152
250
-4.10
89
125
-2.20
148
200
-4.15
89
125
-2.25
144
187
-4.20
88
124
-2.30
140
185
-4.25
87
123
-2.35
138
183
-4.30
86
122
-2.40
135
181
-4.35
86
122
-2.45
132
178
-4.40
85
121
-2.50
129
174
-4.45
85
120
-2.55
127
172
-4.50
84
119
-2.60
125
169
-4.55
83
119
-2.65
123
166
-4.60
82
119
-2.70
121
163
-4.65
82
118
-2.75
119
161
-4.70
82
117
-2.80
117
159
-4.75
81
116
7/28
XC6901 Series
■ELECTRICAL CHARACTERISTICS(Continued)
Dropout Voltage Chart (VOUT(T)=-5.1V~-12V)
NOMINAL
OUTPUT
VOLTAGE
E-1
DROPOUT VOLTAGE
Vdif(mV)
NOMINAL
OUTPUT
VOLTAGE
E-1
DROPOUT VOLTAGE
Vdif(mV)
VOUT(T)
TYP.
MAX.
VOUT(T)
TYP.
MAX.
-5.1
77
113
-9.0
58
93
-5.2
77
112
-9.1
58
92
-5.3
76
111
-9.2
58
92
-5.4
75
110
-9.3
57
92
-5.5
74
110
-9.4
57
91
-5.6
73
109
-9.5
56
91
-5.7
73
108
-9.6
56
91
-5.8
72
107
-9.7
56
91
-5.9
71
106
-9.8
55
90
-6.0
70
105
-9.9
55
90
-6.1
70
105
-10.0
54
90
-6.2
69
104
-10.1
54
90
-6.3
69
104
-10.2
54
89
-6.4
68
103
-10.3
54
89
-6.5
67
102
-10.4
54
89
-6.6
66
102
-10.5
53
88
-6.7
66
101
-10.6
53
88
-6.8
65
101
-10.7
53
88
-6.9
65
100
-10.8
53
88
-7.0
65
100
-10.9
53
88
-7.1
64
99
-11.0
52
88
-7.2
64
99
-11.1
53
88
-7.3
63
98
-11.2
52
87
-7.4
63
98
-11.3
51
87
-7.5
62
98
-11.4
51
87
-7.6
62
98
-11.5
50
87
-7.7
62
97
-11.6
50
87
-7.8
61
96
-11.7
50
87
-7.9
61
96
-11.8
50
87
-8.0
60
96
-11.9
50
87
-8.1
60
96
-12.0
50
87
-8.2
60
95
-8.3
60
95
-8.4
60
94
-8.5
59
94
-8.6
59
94
-8.7
59
94
-8.8
59
93
-8.9
59
93
8/28
XC6901
Series
■TEST CIRCUITS
1) CIRCUIT①
V CE
A
SW1
V
CL=1μF
(ceramic)
CE GND
-V IN
IOUT
V
V
V OUT1
A
CIN =1μF(ceramic)
-VOUT
SW2
-V IN
A
2) CIRCUIT②
3) CIRCUIT③
9/28
XC6901 Series
■OPERATIONAL EXPLANATION
The voltage divided by resisters R1 and R2 is compared with the internal reference voltage based on ground by the
error amplifier. The driver transistor tied to the –VIN pin is then driven by the subsequent output signal. The output
voltage at the –VOUT pin is controlled and stabilized by a system of negative feedback.
<Soft Start Function>
XC6901 Series includes soft-start circuit. During power start-up, the inrush current from -VIN pin to VOUT pin to
charge CL capacitor can be reduced and it makes the VIN stable. Soft-start time (tSS) is optimized internally.
Figure1:Soft Start Time and Inrush Current
<Current Limit, Short-Circuit Protection>
The XC6901 series’ fold-back circuit operates as an output current limiter and a short protection circuit for the output pin. When the
output current reaches the current limit level, output voltage drops with the decrease of the output current. There are no parasitic diode
between the –VOUT pin and GND pin. The minimized short-circuit current is maintained even if the –VOUT pin voltage is pulled up toward
positive.
<Thermal Shutdown>
The XC6901 Series has an internal thermal Shutdown(TSD) circuit for protection against overheating.
When the junction temperature reaches the detection temperature, the driver transistor is forcibly turned off. When the junction
temperature falls to the release temperature with the driver transistor still in the off state, the driver transistor turns on (automatic
recovery) and restarts regulator operation.
<CE Pin>
The XC6901 Series is able to shut down the regulator circuit using the CE pin signal. CE pin can be controlled with positive voltage due
to P-channel transistor source input (Gate is grounded). A current flow of a few micro amperes. The regulator is turned on when CE input
voltage is positive, the regulator is turned off when CE input is GND.
When CE pin is open, IC is turned OFF, due to the built-in Pull-down resistor. When the IC is turned OFF with low input voltage to the
CE pin,-VOUT pin voltage goes into GND level by R1,R2 and CL discharge resistance(RDCHG).
10/28
XC6901
Series
■OPERATIONAL EXPLANATION(Continued)
<CL High Speed Discharge>
The XC6901D type is capable of high-speed discharge of the charge that collects on the output capacitor (CL below). This is
accomplished by the P-channel MOSFET and CL discharge resistance connected between the -VOUT and GND pins in the block
diagram, and takes place when the L-level signal (IC internal circuit shutdown signal) of the CE pin is input so that it could avoids
malfunction.
The CL discharge time is determined by this CL discharge resistance and CL. Letting the time constant of the CL discharge
resistance RDCHG and CL be τ (τ = C × R), the output voltage after discharge by the P-channel MOSFET can be obtained from
the CR discharge equation below. Please be noted that RDCHG various with supply voltage and VDS(drain-source voltage) since it
consists of P-channel MOSFET.
t = τln(VOUT(E) / V)
V:Output voltage during discharge
VOUT(E):Output voltage
t:Discharge time
τ:CL auto-discharge resistance RDCHG × CL Output capacitor value CL
<Low ESR Capacitor>
With the XC6901 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation
circuit is built-in. The output capacitor (CL) should be connected as close to -VOUT pin and GND pin to obtain stable phase
compensation. Values required for the phase compensation are as the table below.
For a stable power input, please connect an input capacitor (CIN) near power supply. In order to ensure the stable phase
compensation while avoiding run-out of values, please use the capacitor (CIN, CL) which does not depend on bias or
temperature too much. The table below shows recommended values of CIN, CL for all environment conditions.
CHART 1:Recommended Values of CIN, CL (MIN.)
OUTPUT VOLTAGE RANGE
INPUT CAPACITOR
OUTPUT CAPACITOR
VOUT(T)
CIN
CL
-0.9V~-12V
1.0μF~
1.0μF~100μF
11/28
XC6901 Series
■NOTE ON USE
1) For temporary, transitional voltage drop or voltage rising phenomenon.
The IC is liable to malfunction should the ratings be exceeded.
2) Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output
current. Please enforce wiring –VIN and GND.
3) Please wire the CIN and CL as close to the IC as possible.
4) Capacitances of these capacitors (CIN, CL) are decreased by the influences of bias voltage and ambient temperature.
Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
5) Torex places an importance on improving our products and its reliability. However, by any possibility, we would
request user fail-safe design and post-aging treatment on system or equipment.
12/28
XC6901
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Output Voltage vs. Output Current
XC6901x 331
XC6901x 331
VIN = -5.3V,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
Ta=25℃,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
0.0
Ta=-40℃
-1.0
Ta=25℃
Ta=85℃
-1.5
-2.0
-2.5
-3.0
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
0.0
-0.5
-3.5
VIN=-4.3V
-0.5
VIN=-5.3V
-1.0
VIN=-6.3V
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
-4.0
0
50 100 150 200 250 300 350 400 450
0
50 100 150 200 250 300 350 400 450
Output Current: IOUT [mA]
Output Current: IOUT [mA]
XC6901x 501
XC6901x 501
VIN = -7.0V,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
Ta=25℃,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
0.0
0.0
-1.0
Ta=25℃
Ta=85℃
-2.0
-3.0
-4.0
-5.0
VIN=-6V
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
Ta=-40℃
-1.0
VIN=-7V
VIN=-8V
-2.0
-3.0
-4.0
-5.0
-6.0
-6.0
0
0
50 100 150 200 250 300 350 400 450
Output Current: IOUT [mA]
Output Current: IOUT [mA]
XC6901x C01
XC6901x C01
VIN = -14V,VCE=1.5V
Ta=25℃,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
0.0
Ta=-40℃
-2.0
Ta=25℃
-4.0
Ta=85℃
-6.0
-8.0
-10.0
-12.0
-14.0
Output Voltage: VOUT [V]
0.0
Output Voltage: VOUT [V]
50 100 150 200 250 300 350 400 450
-2.0
VIN=-14V
VIN=-14.5V
-4.0
-6.0
-8.0
-10.0
-12.0
-14.0
0
50 100 150 200 250 300 350 400 450
Output Current: IOUT [mA]
0
50 100 150 200 250 300 350 400 450
Output Current: IOUT [mA]
13/28
XC6901 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Input Voltage
XC6901x 331
XC6901x 331
IO UT=20mA,VCE =1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
Ta=25℃,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
0.0
0.0
Ta=25℃
-1.0
IOUT=1mA
-0.5
Ta=-40℃
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
-0.5
Ta=85℃
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
IOUT=20mA
-1.0
IOUT=50mA
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
0.0
-3.0
-6.0
-9.0
-12.0
-15.0
0.0
-3.0
Input Voltage: VIN [V]
XC6901x 501
-15.0
0.0
Ta=-40℃
-1.0
Ta=25℃
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
-12.0
Ta=25℃,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
0.0
Ta=85℃
-2.0
-3.0
-4.0
-5.0
-6.0
IOUT=1mA
-1.0
IOUT=20mA
IOUT=100mA
-2.0
-3.0
-4.0
-5.0
-6.0
0.0
-3.0
-6.0
-9.0
-12.0
-15.0
0.0
-3.0
Input Voltage: VIN [V]
XC6901x C01
-6.0
-9.0
-12.0
Input Voltage: VIN [V]
-15.0
XC6901x C01
IO UT=20mA,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
Ta=25℃,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
0.0
0.0
Ta=-40℃
-2.0
Ta=25℃
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
-9.0
XC6901x 501
IOUT=20mA,VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
Ta=85℃
-4.0
-6.0
-8.0
-10.0
-12.0
IOUT=1mA
-2.0
IOUT=20mA
-4.0
IOUT=100mA
-6.0
-8.0
-10.0
-12.0
-14.0
-14.0
0.0
-3.0
-6.0
-9.0
Input Voltage: VIN [V]
14/28
-6.0
Input Voltage: VIN [V]
-12.0
-15.0
0.0
-3.0
-6.0
-9.0
Input Voltage: VIN [V]
-12.0
-15.0
XC6901
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Dropout Voltage vs. Output Current
XC6901x 331
XC6901x 501
VCE=1.5V
VCE=1.5V
2000
1800
1600
Ta=-40℃
Ta=25℃
1400
1200
1000
800
600
Ta=85℃
400
200
0
0
50
2000
1800
Dropout Voltage: Vdif [mV]
Dropout Voltage: Vdif [mV]
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
100
150
Ta=-40℃
Ta=25℃
1600
1400
Ta=85℃
1200
1000
800
600
400
200
0
200
0
50
Output Current: IOUT [mA]
100
150
200
Output Current: IOUT [mA]
XC6901x C01
VCE=1.5V
CIN = 1.0μF (ceramic), CL = 1.0μF (ceramic)
Dropout Voltage: Vdif [mV]
2000
1800
Ta=-40℃
1600
1400
1200
Ta=25℃
Ta=85℃
1000
800
600
400
200
0
0
50
100
150
200
Output Current: IOUT [mA]
(4) Supply Current vs. Input Voltage
XC6901x 331
XC6901x 501
VCE=1.5V
0
Ta=-40℃
-20
Supply Current: ISS [μA]
Supply Current: ISS [μA]
0
Ta=25℃
-40
Ta=85℃
-60
-80
-100
-120
Ta=-40℃
-20
Ta=25℃
-40
Ta=85℃
-60
-80
-100
-120
-140
-140
-160
-160
0.0
-3.0
-6.0
-9.0
Input Voltage: VIN [V]
-12.0
-15.0
0.0
-3.0
-6.0
-9.0
-12.0
-15.0
Input Voltage: VIN [V]
15/28
XC6901 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Supply Current vs. Input Voltage (Continued)
XC6901x C01
VCE=1.5V
0
Ta=-40℃
Supply Current: ISS [μA]
-20
Ta=25℃
-40
Ta=85℃
-60
-80
-100
-120
-140
-160
0.0
-3.0
-6.0
-9.0
-12.0
-15.0
Input Voltage: VIN [V]
(5) Output Voltage vs. Ambient Temperature
XC6901x 331
XC6901x 501
VIN =-6.0V,IO UT=20mA,VCE=1.5V
VIN =-4.3V,IO UT=20mA,VCE=1.5V
CIN=1μF(ceramic),CL =1μF(ceramic)
CIN=1μF(ceramic),CL =1μF(ceramic)
-4.95
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
-3.27
-3.28
-3.29
-3.30
-3.31
-3.32
-50
-25
0
25
50
75
100
-5.03
XC6901x C01
VIN =-13V,IO UT=20mA,VCE=1.5V
CIN=1μF(ceramic),CL =1μF(ceramic)
-11.88
-11.92
-11.96
-12.00
-12.04
-12.08
-12.12
-50
-25
0
25
50
75
Ambient Temperature: Ta [℃]
-50
-25
0
25
50
75
Ambient Temperature: Ta [℃]
Ambient Temperature: Ta [℃]
Output Voltage: VOUT [V]
-5.00
-5.05
-3.33
16/28
-4.98
100
100
XC6901
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(6) CE Pin Threshold Voltage vs Ambient Temperature
XC6901 Seri es
VIN =-14.5V
0.95
CE Threshold Voltage: VCE [V]
CE"H"
0.90
CE"L"
0.85
0.80
0.75
0.70
-50
-25
0
25
50
75
100
Ambient Temperature: Ta [℃]
(7) CE Input Current vs CE Voltage
XC6901 Seri es ,Ty pe A /B
( Wi thout CE Pul l -dow n)
XC6901 Seri es ,Ty pe C/D
( Wi th CE Pul l -dow n)
VIN =-12.4V
5.0
Ta=-40℃
CE Input Current: ICE [μA]
CE Input Current: ICE [μA]
VIN =-12.4V
5.0
4.5
Ta=25℃
4.0
3.5
Ta=85℃
3.0
2.5
2.0
1.5
1.0
0.5
0.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
Ta=-40℃
1.0
0.5
Ta=25℃
Ta=85℃
0.0
0.0
0.6
1.2
1.8
2.4
3.0
3.6
CE Voltage: VCE [V]
0.0
0.6
1.2
1.8
2.4
3.0
3.6
CE Voltage: VCE [V]
(8) CE Input Current vs Ambient Temperature
XC6901 Seri es
VIN =-12.4V, VCE=3.6V
CE Input Current: ICE [uA]
4.7
A/B TYPE
4.2
C/D TYPE
3.7
3.2
2.7
2.2
1.7
1.2
0.7
-50
-25
0
25
50
75
100
Ambient Temperature: Ta [℃]
17/28
XC6901 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(9) Input Rising Response Time
XC6901x 501
XC6901x 331
VIN=0⇒-6.0V,tr=5μs,Ta=25℃
VCE=1.5V,IO UT=20mA,CL =1μF(ceramic)
-3.0
-4.0
-5.0
-6.0
-7.0
Output Voltage
0.0
-0.5
-1.0
Input Voltage
-1.5
-2.0
-2.5
-3.0
-3.5
-8.0
-9.0
-10.0
0.0
-4.0
-4.5
-5.0
Output Voltage: VOUT [V]
0.0
-1.0
-2.0
Input Voltage: VIN [V]
Output Voltage: VOUT [V]
VCE=1.5V,IO UT=20mA,CL =1μF(ceramic)
0.0
-2.0
-1.0
Output Voltage
-4.0
-2.0
-6.0
-3.0
-8.0
-4.0
-10.0
Input Voltage
-12.0
-6.0
-14.0
-7.0
Time(200μs/div)
Time(200μs/div)
XC6901x C01
VIN=0⇒-13V,tr=5μs,Ta=25℃
VCE=1.5V,IOUT=20mA,CL =1μF(ceramic)
0.0
-6.0
-3.0
Output Voltage
-12.0
-6.0
-18.0
-9.0
-24.0
Input Voltage
-30.0
Input Voltage: VIN [V]
Output Voltage: VOUT [V]
0.0
-12.0
-15.0
Time(200μs/div)
(10) CE Rising Response Time
XC6901x 501
XC6901x 331
VIN=-4.3V,IO UT=20mA,Ta=25℃
VCE=0⇒1.5V,tr=5μs,CL =1μF(ceramic)
VIN=-6.0V,IOUT=20mA,Ta=25℃
VCE=0⇒1.5V,tr=5μs ,CL =1μF(ceramic)
2.0
CE Voltage
0.0
-1.0
-2.0
Output Voltage
-3.0
1.0
0.0
CE Voltage
-1.0
-2.0
-3.0
Output Voltage
-4.0
-5.0
-6.0
-4.0
Time(200μs/div)
18/28
CE Voltage: VCE [V]
1.0
Output Voltage: VOUT [V]
CE Voltage: VCE [V]
Output Voltage: VOUT [V]
2.0
-5.0
Time(200μs/div)
Input Voltage: VIN [V]
VIN=0⇒-4.3V,tr=5μs,Ta=25℃
XC6901
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) CE Rising Response Time (Continued)
XC6901x C01
VIN=-13V,IO UT=20mA,Ta=25℃
CE Voltage: VCE [V]
Output Voltage: VOUT [V]
VCE=0⇒1.5V,tr=5μs,CL=1μF(ceramic)
4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0
-10.0
-12.0
-14.0
CE Voltage
Output Voltage
Time(200μs/div)
(11) Input Transient Response
X C6 9 0 1 x3 3 1
XC6901x 501
VIN =-6V⇔-7V,tr=tf=5μs,Ta=25℃,VCE=1.5V
IO UT=20mA,CL =1μF(ceramic)
IO UT=20mA,CL =1μF(ceramic)
Output Voltage
-3.30
-4.90
-1.0
-4.95
-2.0
-3.35
-3.40
0.0
-3.0
-4.0
Input Voltage
-3.45
-5.0
-3.50
-6.0
-3.55
-7.0
-3.60
-8.0
Output Voltage: VOUT [V]
-3.25
Input Voltage: VIN [V]
Output Voltage: VOUT [V]
-3.20
-3.5
Output Voltage
-4.5
-5.05
-5.0
-5.10
-5.5
-5.15
Input Voltage
-6.0
-5.20
-6.5
-5.25
-7.0
-5.30
Time(100μs/div)
-4.0
-5.00
Input Voltage: VIN [V]
VIN =-4.3V⇔-5.3V,tr=tf=5μs,Ta=25℃,VCE=1.5V
-7.5
Time(100μs/div)
XC6901x C01
VIN =-13V⇔-14V,tr=tf=5μs,Ta=25℃,VCE=1.5V
IO UT=20mA,CL =1μF(ceramic)
-11.95
-11.0
Output Voltage
-11.5
-12.00
-12.0
-12.05
-12.5
-12.10
-13.0
-12.15
Input Voltage
-12.20
-13.5
Input Voltage: VIN [V]
Output Voltage: VOUT [V]
-11.90
-14.0
-12.25
-14.5
Time(100μs/div)
19/28
XC6901 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) Load Transient Response
XC6901x 501
XC6901x 331
IOUT =1⇔100mA,tr=tf=5μs,Ta=25℃,VCE=1.5V
IO UT =1⇔100mA,tr=tf=5μs,Ta=25℃,VCE=1.5V
VIN=-4.3V,CIN=1μF(ceramic),CL =1μF(ceramic)
VIN=-6V,CIN=1μF(ceramic),CL =1μF(ceramic)
250
Output Voltage
-3.3
200
-3.6
150
Output Current
-3.9
1mA
100
-4.2
100mA
50
-4.5
Output Voltage: VOUT [V]
-3.0
300
-4.8
250
Output Voltage
-5.0
200
-5.2
150
Output Current
-5.4
1mA
100
-5.6
100mA
50
-5.8
0
0
Time(100μs/div)
Time(100μs/div)
XC6901x C01
IO UT =1⇔100mA,tr=tf=5μs,Ta=25℃,VCE=1.5V
VIN=-13V,CIN=1μF(ceramic),CL =1μF(ceramic)
300
-11.8
250
Output Voltage
-12.0
200
-12.2
150
Output Current
-12.4
1mA
100
-12.6
100mA
50
-12.8
Output Current: IOUT [mA]
Output Voltage: VOUT [V]
-11.6
0
Time(200μs/div)
(13) Ripple Rejection Rate
XC6901x 331
XC6901x 501
Ta=25℃,VIN=-4.3V+0.5Vp-pAC
Ta=25℃,VIN=-6V+0.5Vp- pAC
VCE=1.5V,CL =1μF(ceramic)
VCE=1.5V,CL =1μF(ceramic)
70
Ripple Rejection Rate: RR [dB]
Ripple Rejection Rate: RR [dB]
70
60
50
40
30
20
Iout=1mA
10
Iout=20mA
50
40
30
20
Iout=1mA
10
Iout=20mA
0
0
10
100
1k
10k
Ripple Frequency: f [Hz]
20/28
60
100k
10
100
1k
10k
Ripple Frequency: f [Hz]
100k
Output Current: IOUT [mA]
-4.6
300
Output Current: IOUT [mA]
Output Voltage: VOUT [V]
-2.7
XC6901
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13) Ripple Rejection Rate (Continued)
XC6901x C01
Ripple Rejection Rate: RR [dB]
Ta=25℃,VIN=-13V+0.5Vp-pAC
VCE=1.5V,CL =1μF(ceramic)
60
50
40
30
20
Iout=1mA
10
Iout=20mA
0
10
100
1k
10k
100k
Ripple Frequency: f [Hz]
21/28
XC6901 Series
■PACKAGING INFORMATION
●USP-6C
●SOT-25
●SOT-89-5
4.5±0.1
+0.15
1.6
-0.2
0.42±0.06
0.42±0.06
0.42±0.06
2
5
0.4
+0.03
-0.02
0.4
+0.03
-0.02
4
Φ1.0
1
0.42±0.06
2
3
0.47±0.06
8°
8°
1.5±0.1
22/28
0.42±0.06
1.5±0.1
XC6901
Series
■PACKAGING INFORMATION (Continued)
●USP-6C Reference Pattern Layout
●USP-6C Reference Metal Mask Design
2.4
6
2
5
0.25
3
4
0.5
0.05
1.8
1
0.25
0.25
0.45
0.5
0.225
0.45
0.05
1.0
●SOT-25 Reference Pattern Layout
●SOT-89-5 Reference Pattern Layout
2.0
1.0
1.5
0.7
1.5
23/28
XC6901 Series
■PACKAGING INFORMATION (Continued)
● SOT-25 Power Dissipation
Power dissipation data for the SOT-25 is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1.
Measurement Condition (Reference data)
Condition:
Mount on a board
Ambient:
Natural convection
Soldering:
Lead (Pb) free
Board:
Dimensions 40 x 40 mm (1600 mm in one side)
2
Copper (Cu) traces occupy 50% of the board area
In top and back faces
Package heat-sink is tied to the copper traces
(Board of SOT-26 is used.)
Material:
Glass Epoxy (FR-4)
Thickness:
1.6 mm
Through-hole: 4 x 0.8 Diameter
2.
Power Dissipation vs. Ambient temperature
Evaluation Board (Unit: mm)
Board Mount (Tj max = 125℃)
Ambient Temperature(℃)
Power Dissipation Pd(mW)
25
600
85
240
Thermal Resistance (℃/W)
166.67
Power
Dissipation Pd (mW)
許容損失Pd(mW)
Pd-Ta特性グラフ
Pd vs. Ta
700
600
500
400
300
200
100
0
25
24/28
45
65
85
Ambient
Temperature Ta (℃)
周辺温度Ta(℃)
105
125
XC6901
Series
■PACKAGING INFORMATION (Continued)
● SOT-89-5 Power Dissipation
Power dissipation data for the SOT-89-5 is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
2.
Measurement Condition (Reference data)
Condition:
Mount on a board
Ambient:
Natural convection
Soldering:
Lead (Pb) free
Board:
Dimensions 40 x 40 mm (1600 mm in one side)
2
て
Copper (Cu) traces occupy 50% of the board area
In top and back faces
Package heat-sink is tied to the copper traces
Material:
Glass Epoxy (FR-4)
Thickness:
1.6 mm
Through-hole: 5 x 0.8 Diameter
2.
Power Dissipation vs. Ambient temperature
Evaluation Board (Unit: mm)
Board Mount (Tj max = 125℃)
Ambient Temperature(℃)
Power Dissipation Pd(mW)
25
1300
85
520
Thermal Resistance (℃/W)
76.92
Power
Dissipation Pd (mW)
許容損失Pd(mW)
Pd-Ta特性グラフ
Pd vs. Ta
1400
1200
1000
800
600
400
200
0
25
45
65
85
105
125
Ambient Temperature
Ta (℃)
周辺温度Ta(℃)
25/28
XC6901 Series
■PACKAGING INFORMATION (Continued)
USP-6C Power Dissipation
●
Power dissipation data for the USP-6C is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
3.
Measurement Condition (Reference data)
Condition:
Mount on a board
Ambient:
Natural convection
Soldering:
Lead (Pb) free
Board:
Dimensions 40 x 40 mm (1600 mm in one side)
2
Copper (Cu) traces occupy 50% of the board area
て
In top and back faces
Package heat-sink is tied to the copper traces
Material:
Glass Epoxy (FR-4)
Thickness:
1.6 mm
Through-hole: 4 x 0.8 Diameter
2.
Power Dissipation vs. Ambient temperature
Evaluation Board (Unit: mm)
Board Mount (Tj max = 125℃)
Ambient Temperature(℃)
Power Dissipation Pd(mW)
25
1000
85
400
Thermal Resistance (℃/W)
100.00
Power
Dissipation Pd (mW)
許容損失Pd(mW)
Pd-Ta特性グラフ
Pd vs. Ta
1200
1000
800
600
400
200
0
25
26/28
45
65
85
Ambient周辺温度Ta(℃)
Temperature Ta (℃)
105
125
XC6901
Series
■MARKING RULE
SOT-25(Under dot)
USP-6C
SOT89-5
※A dot is marked below the mark of ①
2
5
③
④ ⑤
① ② ③
⑤
3
2
1
3
5
③
②
2
④
6
②
③
2
①
②
1
①
1
⑤
①
4
4
④
5
4
3
represents product series
MARK
PRODUCT SERIES
F
XC6901******-G
represents output voltage range and product types
MARK
OUTPUT
VOLTAGE (V)
R
S
T
U
-0.9 ~ -3.8
-3.9 ~ -6.8
-6.9 ~ -9.8
-9.9 ~ -12.0
PRODUCT SERIES
TYPE
XC6901D091**-G
XC6901D391**-G
XC6901D691**-G
XC6901D991**-G
D
~
~
~
~
XC6901D381**-G
XC6901D681**-G
XC6901D981**-G
XC6901DC01**-G
represents output voltage
MARK
MARK
OUTPUT VOLTAGE(V)
MARK
OUTPUT VOLTAGE(V)
OUTPUT VOLTAGE(V)
0
-0.9
-3.9
-6.9
-9.9
A
-1.9
-4.9
-7.9
-10.9
N
-2.9
-5.9
-8.9
-11.9
1
-1.0
-4.0
-7.0
-10.0
B
-2.0
-5.0
-8.0
-11.0
P
-3.0
-6.0
-9.0
-12.0
2
-1.1
-4.1
-7.1
-10.1
C
-2.1
-5.1
-8.1
-11.1
R
-3.1
-6.1
-9.1
-
3
-1.2
-4.2
-7.2
-10.2
D
-2.2
-5.2
-8.2
-11.2
S
-3.2
-6.2
-9.2
-
4
-1.3
-4.3
-7.3
-10.3
E
-2.3
-5.3
-8.3
-11.3
T
-3.3
-6.3
-9.3
-
5
-1.4
-4.4
-7.4
-10.4
F
-2.4
-5.4
-8.4
-11.4
U
-3.4
-6.4
-9.4
-
6
-1.5
-4.5
-7.5
-10.5
H
-2.5
-5.5
-8.5
-11.5
V
-3.5
-6.5
-9.5
-
7
-1.6
-4.6
-7.6
-10.6
K
-2.6
-5.6
-8.6
-11.6
X
-3.6
-6.6
-9.6
-
8
-1.7
-4.7
-7.7
-10.7
L
-2.7
-5.7
-8.7
-11.7
Y
-3.7
-6.7
-9.7
-
9
-1.8
-4.8
-7.8
-10.8
M
-2.8
-5.8
-8.8
-11.8
Z
-3.8
-6.8
-9.8
-
④,⑤ represents production lot number
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ repeated
(G,I,J,O,Q,W excluded)
*No character inversion used.
27/28
XC6901 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
28/28