XC9516 Series - torex semiconductor ltd.

XC9516 Series
ETR0707-009
Triple Output Power Supply for TFT-LCD
☆GreenOperation Compatible
■GENERAL DESCRIPTION
The XC9516 series can offer three different power supplies to TFT-LCD panels. These power supplies consist of a step-up
DC/DC converter for a source driver, positive and negative charge pumps for a gate driver.
This IC has power-on sequences to keep inrush current as small when output voltage rises. The step-up DC/DC output can
be used as power-on sequences with adding a P-channel FET as external component. Also, the FET can shut down a path
to the power input line when CE pin is low.
■APPLICATIONS
■FEATURES
●TFT-LCD panels
●LCD monitors
A Step-up DC/DC Converter and 2 of Charge Pumps (Positive/Negative)
Input Voltage Range
: 2.5V ~ 5.5V
Maximum Output Voltage
: 19V (DC/DC output)
Output Voltage Accuracy
: ±1.5%
Oscillation Frequency
: 300kHz ~ 1.2MHz (Adjustable)
External MOSFET Gate Signal Output
: N-Channel Open Drain
Switch Over-Current Protection
: 1.3A
Soft-Start Time
: Internally fixed
Protection
: Over Voltage Protection (Step-up DC/DC 21V)
Short-Circuit Protection (Step-up DC/DC)
Short-Circuit Protection (Positive and Negative Charge Pump)
Thermal Shutdown (150℃)
UVLO (1.87V)
Operating Ambient Temperature
: -40℃~+85℃
Package
: QFN-20
Environmentally Friendly
: EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUITS ■TYPICAL PERFORMANCE
CHARACTERISTICS
L1
D1(SD)
VOUT
VIN
CIN
VIN
LX
CFB
●Efficiency vs. Output Current
CL1
R1
FB
CDD
CE
CE
CVL
CVL
XC9516 Efficiency
R2
PGND
100
ROSC
(R9)
ROSC
80
CD
R8
Tr1
SWB
CL2
R10
CP2SWB
Tr2
VSRC
FB1
R4
D2
C2
C1
DRV1
VGL
D4
DRV2
D5
CLcp1
VGH
D3
R5
AGND
FB2
CLcp2
R6
e.g) Components List
VIN=2.5V
VIN=2.5V
VIN=3.3V
VIN=3.3V
70
Efficiency:EFFI(%)
VOUT
R3
VIN=5.5V
90
C5(R7)
CD
VOUT
VIN=VCE, VOUT=9.0V
FOSC=1MHz
Icp1=-1mA, Icp2=1mA
60
VIN=4.0V VIN=4.0V
50
VIN=5.5V
40
2.5V
30
3.3V
4.0V
20
5.5V
10
0
VOUT = 9.2V, VGL = -5.3V, VGH= 12V
R1 = 820 kΩ
CIN = 4.7μF
R2 = 100 kΩ
CL1,CL2 =4.7μF
R3 = 390 kΩ
C1, C2 = 0.01μF
R4 = 300 kΩ
CVL,CD = 0.1μF
R5 = 820 kΩ
CDD = 1μF
R6 = 75 kΩ
CLcp1,CLcp2 = 1μF
R8 = 300 kΩ
CFB = 22pF
ROSC(R9)= 130 kΩ
C5 = 0.01μF
R10 = 51 kΩ
1
10
100
1000
Iout[mA]
1/26
XC9516 Series
*1
17 LX
18 NC
19 PGND
20 PGND
NC 7
ROSC 6
AGND 10
VIN 8
17 LX
16 LX
CD 9
16 LX
18 NC
8
VIN
CD 9
19 PGND
NC 7
<TOP VIEW>
AGND 10
20 PGND
ROSC 6
■PIN CONFIGURATION
<BOTTOM VIEW>
The dissipation pad:AGND Level
(If the pad needs to be connected to other pins, it should be considered about the level of pad voltage.)
■PIN ASSIGNMENT
PIN NUMBER
QFN-20
PIN NAME
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
DRV1
CP2SWB
FB1
CE
FB
ROSC
NC
VIN
CD
AGND
FB2
CVL
SWB
VOUT
DRV2
LX
LX
NC
PGND
PGND
FUNCTIONS
Negative Charge Pump Driver Output
Positive Charge Pump for Output Control
FB Pin for Negative Charge Pump
Chip Enable Pin
FB Pin for Step-Up DC/DC Converter
Frequency Setting
No Connection
Power
Short Protection Delay Capacitor Connection
Analog Ground
FB Input for Positive Charge Pump
Internal Power Capacitor Connection
Step-Up DC/DC Converter Output Control
Step-Up DC/DC Converter Output Voltage
Positive Charge Pump Driver Output
Driver Output Pin for Step-Up DC/DC Converter
Driver Output Pin for Step-Up DC/DC Converter
No Connection
Power Ground Pin for Driver
Power Ground Pin for Driver
■LOGIC CONDITION
PIN NAME
CE PIN
LOGIC
CONDITION
L
GND≦VCE≦0.4V
H
1.2V≦VCE≦VIN
Voltage is based on VSS(GND=AGND=PGND)
■FUNCTION CHART
CONDITIONS
IC OPERATION
L
H
OFF(Stand-by)
ON
IC operation is unstable when CE opens so that these pins shall not be left open outside.
2/26
XC9516
Series
■PRODUCT CLASSIFICATION
●Ordering Information
XC9516①②③④⑤⑥-⑦
(*1)
⇒ XC9516A21AZR-G
DESIGNATOR
ITEM
SYMBOL
①
②③
④
UVLO Detect Voltage
Over Voltage Limit
Over Current Limit
A
21
A
⑤⑥-⑦ (*1)
Package (Order Unit)
ZR-G
DESCRIPTON
Detect Voltage: 1.87V, Hysteresis Width 0.44V
Over Voltage Detect Voltage: 21V
Over Current Detect Voltage: 1.3A
QFN-20 (1,000/Reel) (*2)
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.
(*2) The XC9516 reels are shipped in a moisture-proof packing.
■BLOCK DIAGRAM
PGND and AGND are externally connected to the same potential.
3/26
XC9516 Series
■ABSOLUTE MAXIMUM RATINGS
PARAMETER
VIN Voltage
CE Pin Voltage
FB Pin Voltage
FB1 Pin Voltage
FB2 Pin Voltage
ROSC Pin Voltage
CD Pin Voltage
CVL Pin Voltage
SWB Pin Voltage
CP2SWB Pin Voltage
VOUT Pin Voltage
LX Pin Voltage
DR1 Pin Voltage
DR2 Pin Voltage
LX Pin Current
Power Dissipation
Operating Ambient Temperature
SYMBOL
VIN
VCE
VFB
VFB1
VFB2
VROSC
VCD
VVL
VSWB
VCP2SWB
VOUT
VLX
VDRV1
VDRV2
ILX
Pd
Topr
RATINGS
-0.3~6.0
-0.3~VIN+0.3 or 6.0 (*1)
(*2)
-0.3~VCVL+0.3 or 6.0
-0.3~VCVL+0.3 or 6.0 (*2)
(*2)
-0.3~VCVL+0.3 or 6.0
-0.3~VCVL+0.3 or 6.0 (*2)
(*2)
-0.3~VCVL+0.3 or 6.0
-0.3~6.0
-0.3~22
-0.3~22
-0.3~22
-0.3~22
(*3)
-0.3~VOUT+0.3 or 22
-0.3~VOUT+0.3 or 22 (*3)
1650
300
-40 ~ +85
Storage Temperature
Tstg
-55 ~ +125
* All voltages are described based on GND. (GND=AGND=PGND)
(*1) The maximum value should be either VIN+0.3 or +6.0 in the lowest.
(*2) The maximum value should be either VCVL+0.3 or +6.0 in the lowest.
(*3) The maximum value should be either VOUT+0.3 or +22.0 in the lowest.
4/26
UNITS
V
V
V
V
V
V
V
V
V
V
V
V
V
V
mA
mW
o
C
o
C
XC9516
Series
■ELECTRICAL CHARACTERISTICS
Unless otherwise stated, VIN=VCE=3.3V, VOUT=9.0V, fOSC=300kHz, Ta=25℃
PARAMETER
SYMBOL
Power Input Voltage Range
VIN
CONDITIONS
(*1)
Input Voltage Rise Time
tVIN
VIN=VCE=0.2V→2.5V
Supply Current
IDD1
VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V
Stand-by Current
ISTB
VCE=0V
Oscillation Frequency
fOSC
UVLO Detect Voltage
(VIN falls down)
MIN.
TYP.
2.5
-
MAX. UNITS CIRCUIT
5.5
V
-
-
-
15
ms
⑳
0.8
2.0
4.0
μA
①
-
0.1
8.0
μA
②
VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V, ROSC Open
255
300
345
kHz
③
VUVLO1
VIN=VCE, VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V
1.77
1.87
1.97
V
④
UVLO Feedback Voltage
(VIN rises)
VUVLO2
VIN=VCE, VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V
2.22
2.31
2.40
V
④
CE "High" Voltage
VCEH
VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V
1.2
-
VIN
V
⑤
CE "Low" Voltage
VCEL
VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V
AGND
-
0.4
V
⑤
CE Input Current
ICE
VIN=5.5V, VCE=0V or 5.5V
-0.1
-
0.1
μA
⑥
CD Pin Charge Current
ICD1
VFB=0.9V→0.4V, VFB1= VFB2=0.9V
2.6
5.5
8.4
μA
⑦
CD Pin Discharge Current
ICD2
VFB=VFB1=VFB2=0.9V, VCD=0.1V
0.20
0.38
0.56
mA
⑧
CD Pin Detect Voltage
VCD
VFB= VFB1= VFB2=0V
0.95
1.0
1.05
V
⑨
CP2SWB ”L” Output Voltage
VSWB2
Input Current=1mA
0.55
0.65
0.80
V
⑩
SWB ”L” Output Voltage
VSWB
Input Current=1mA
0.26
0.33
0.40
V
⑩
CP2SWB Pull up Resistance
RCP2
VCE=0V,VOUT=5.5V,CP2SWB=1.0V
350
800
2500
kΩ
⑪
SWB Pull up Resistance
RSWB
VCE=0V,VOUT=5.5V,SWB=1.0V
350
800
2500
kΩ
⑪
Thermal Shutdown Temperature
TTSD
-
150
-
o
Hysteresis Width
THYS
-
20
-
o
0.985
1
1.015
V
⑫
5.5
-
19
V
-
92
95
98
%
⑬
C
-
C
-
●Step-Up DC/DC Converter Block
FB Voltage
VFB
Setting Output Voltage Range
VOUTSET
VFB1=1.2V, VFB2=0.8V, VCD=0V
Maximum Duty Cycle
DMAX
Soft-Start Time
tSS
2.0
4.0
5.0
ms
⑲
LX “N-ch” ON Resistance
RLXN
100
190
400
mΩ
-
LX Current Limit
ILIM
⑱
VOUT Over Voltage Limit
VOVP
Short Protection Voltage
VSHORT
FB Input Current
IFB
VFB=VFB1=VFB2=0V, VCD=0V,
ROSC Open
1.1
1.3
1.5
A
19.5
21
22
V
⑰
VFB1=VFB2=0.9V, CD=0.1μF
0.40
0.48
0.55
V
⑮
VIN=5.5V, VCE=0V, VFB=0V, 5.5V
-0.1
-
0.1
μA
⑭
0.985
1
1.015
V
⑫
fOSC=1.0MHz
●Negative Charge Pump Block
FB1 Voltage
VFB1
VFB=VFB2=0.8V, VCD=0V
VFB1=1.2V, IDRV1=20mA
Output Impedance 1
ROUT1
Short Protection Voltage 1
VSHORT1
-
15
45
Ω
⑯
VFB=VFB2=0.9V, CD=0.1μF
1.2
2.4
2.8
V
⑮
FB1 Input Current
IFB1
VIN=5.5V, VCE=0V , VFB1=0V, 5.5V
-0.1
-
0.1
μA
⑭
FB2 Voltage
VFB2
VFB=0.8V, VFB1=1.2V, VCD=0V
0.985
1.0
1.015
V
⑫
Output Impedance 2
ROUT2
-
15
45
Ω
⑯
Short Protection Voltage 2
VSHORT2
VFB=VFB1=0.9V, CD=0.1μF
0.40
0.48
0.55
V
⑮
FB2 Input Current
IFB2
VIN=5.5V, VCE=0V , VFB2=0V, 5.5V
-0.1
-
0.1
μA
⑭
●Positive Charge Pump Block
VFB2=0.8V, IDRV2=20mA
(*1)Test Condition for input voltage rise time
When used at VIN=VCE, input voltage should rise from 0.2V to 2.5V within 15ms.
Please also note input voltage before rise should be less than 0.2V.
Please see test circuit 20 for test condition, and for the detail of recommended
input wave form, please see NOTES ON USE.
5/26
XC9516 Series
■TEST CIRCUITS
<Circuit1 Supply Current>
<Circuit2 Stand-by Current>
A
PGND
LX
DRV1
DRV2
CP2SWB
VOUT
FB1
SWB
CE
CVL
FB
FB2
VIN
CD
A
VOUT=9.0V
ROSC
VIN=3.3V
AGND
①VFB=0.8V→1.2V→0.8V LX oscillation is checked
②VFB1=1.2V→0.8V→1.2V DRV1 Oscillation is checked.
③VFB2=0.8V→1.2V
→0.8V DRV2 Oscillation is checked.
After ①~③, supply current is measured at both VIN and VOUT.
<Circuit3 Oscillation Frequency>
LX Oscillation period is measured.
<Circuit5 CE H/L Voltage>
CE H Voltage Measurement: VCE is increased(0.4V→1.2V), VCE is measured
when LX oscillation started.
CE L Voltage Measurement: VCE is decreased(1.2V→0.4V), VCE is measured
when LX oscillation stopped.
6/26
VCE=0V, supply current is measured at both VIN and VOUT.
<Circuit4 UVLO Detect/Release Voltage>
UVLO Detect Voltage Measurement: VIN is decreased (2.5V→1.5V), VIN is
measured when LX oscillation stopped.
UVLO Release Voltage Measurement: VIN is increased (1.5V→2.5V) when
LX oscillation started,
<Circuit6 CE H/L Input Current>
CE H Input Current: Current is measured when CE pin Voltage is 5.5V.
CE L Input Current: Current is measured when CE pin Voltage is 0V.
XC9516
Series
■TEST CIRCUITS (Continued)
< Circuit7 CDCD端子充電電流>
pin Charge Current>
<測定回路7
After
FB=0.9V→0.4V, CD pin output current is measured.
VFBV=0.9V→0.4V後にCD端子出力電流を測定
< Circuit8 CD CD端子放電電流>
pin Discharge Current>
<測定回路8
Input current
is measured when CD pin Voltage is 0.1V.
CD端子に0.1V入力時の入力電流を測定
<測定回路9
<Circuit9 CD CD端子検出電圧>
pin Detect Voltage>
VCD=0.1V→0.2 VCD is measured when LX oscillation stopped.
VCD=0V→1.2V、LX端子が発振停止するVCD電圧を測定
<Circuit10 CP2SWB/SWB
Output Voltage>
<測定回路10
CP2SWB/SWBL L出力電圧>
CP2SWB
L Output Voltage: Voltage is measured when 1.0mA is flow in
CP2SWB“L”出力電圧:CP2SWB端子に1.0mA入力し電圧を測定
CP2SWB
pin.
SWB“L”出力電圧
:SWB端子に1.0mA入力し電圧を測定
SWB L Output Voltage Voltage is measured when 1.0mA is flow in SWB
pin.
<Circuit11
CP2SWB/SWB
pins Pull-up
Resistance>
<測定回路11
CP2SWB/SWB
プルアップ抵抗>
CP2SWB Pull-up Resistance Measurement: Output current is measured when
CP2SWB pin is 1.0V.R=(5.5-1.0)/I
CP2SWB and SWB pins are internally pulled-up to VOUT
SWB Pull-up Resistance Measurement: Output Current is measured when SWB pin
voltage is 1.0V.R=(5.5-1.0)/I
*CP2SWB and SWB pins are internally pulled-up to VOUT
7/26
XC9516 Series
■TEST CIRCUITS (Continued)
< Circuit12 FB/FB1/FB2 Voltage Test>
< Circuit13 Maximum Duty Cycle>
FB Voltage Measurement: VFB=1.1V→0.9V, VFB is measured when LX oscillation started.
FB1 Voltage Measurement: VFB1=0.9V→1.1V, VFB1 is measured when DRV1 oscillation started.
FB2 Voltage Measurement: VFB2=1.1V→0.9V, VFB2 is measured when DRV2 oscillation started.
< Circuit14 FB/FB1/FB2 H/L Input Current>
FB Input Current Measurement: Input Current is measured when FB Voltage is 5.5V/0V.
FB1 Input Current Measurement: Input Current is measured when FB1 Voltage is 5.5V/0V.
FB2 Input Current Measurement: Input Current is measured when FB2 Voltage is 5.5V/0V.
< Circuit16 Output Impedance 1/2>
Output Impedance1: A load current of 20mA is applied to DRV1,
DRV1 voltage is measured when a load is applied or not applied R=V/0.02.
Output Impedance2: A load current of 20mA is applied to DRV2,
DRV2 voltage is measured when a load is applied or not applied R=V/0.02.
8/26
Duty cycle of LX oscillation is measured.
< Circuit15 FB/FB1/FB2 Short Circuit Protection>
FB Short Protection Measurement: VFB=0.9V→0.4V, VFB is measured when VFB oscillation stopped.
FB1 Short Protection Measurement: VFB1=1.2V→2.8V, VFB1 is measured when DRV1 oscillation stopped.
FB2 Short Protection Measurement: VFB2=0.9V→0.4V, VFB2 is measured when DRV2 oscillation stopped.
< Circuit17 VOUT Over Voltage Limit Measurement>
VOUT=18V→22V, VOUT is measured when Lx oscillation stopped.
XC9516
Series
■TEST CIRCUITS (Continued)
< Circuit18 L Current Limit>
<測定回路18 X LX電流制限>
VSRCload
に負荷電流(可変抵抗)を接続
・A
current (Variable Resistor) is connected to
電流プローブを使用しV
IN-L1間のコイルピークを確認
VSRC.
過電流制限がかかるまで負荷電流を増加
Coil peak current at VIN-L1 is monitored by the
過電流制限時のコイルピークを測定する。
current probe. A coil peak current is measured.
< ・測定回路図18
Circuit18 LX External
Components List>
外付け部品使用例
NAME
名称
L1
L1
SD
SD
D2-5
D2-5
Tr1
Tr1
Tr2
Tr2
CCIN
IN
CCDD,C
,CVL
VL
CCDD
DD
CCL1L1,C
,CL2
L2
CCLcp1
,CLcp2
Lcp1,C
Lcp2
CCFB
FB
CC11,C
,C22
RR11
RR22
RR33
RR44
RR55
RR66
CC55
RR88
RR99
R
R1010
MODEL NAME
型番
LTF5022T-4R7N2R0
LTF5022T-4R7N2R0
XBS204S17
XBS204S17
XBS104S13
XBS104S13
XP152A11E5MR
XP152A11E5MR
CPH3109
CPH3109
LMK212BJ475KG
LMK212BJ475KG
TMK107BJ104KA
TMK107BJ104KA
TMK107BJ105KA
TMK107BJ105KA
C3216X5R1E475M
C3216X5R1E475M
TMK107BJ105KA
TMK107BJ105KA
C1608JB1H220J
C1608JB1H220J
C1608JB1H103K
C1608JB1H103K
RMC1/16K824FTP
RMC1/16K824FTP
RMC1/16K104FTP
RMC1/16K104FTP
RMC1/16K394FTP
RMC1/16K394FTP
RMC1/16K304FTP
RMC1/16K304FTP
RMC1/16K824FTP
RMC1/16K824FTP
RMC1/16K753FTP
RMC1/16K753FTP
C1608JB1H103K
C1608JB1H103K
RMC1/16K304FTP
RMC1/16K304FTP
RMC1/16K134FTP
RMC1/16K134FTP
RMC1/16K513FTP
RMC1/16K513FTP
CHARACTERISTIC
特性
Coil, 4.7μH
コイル, 4.7uH
Schottky diode, 2A/40V
ショットキーダイオード, 2A/40V
Schottky diode, 1A/40V
ショットキーダイオード, 1A/40V
Pch
MOSFET
Pch MOSFET
PNPトランジスタ
transistor
PNP
ceramic condenser, 4.7μF/10V
4.7μF/10V
セラミックコンデンサ,
ceramic condenser, 0.1μF/25V
0.1μF/25V
セラミックコンデンサ,
MANUFACTURER
メーカ
TDK
TDK
TOREX
TOREX
TOREX
TOREX
TOREX
TOREX
SANYO
三洋
TAIYO YUDEN
太陽誘電
TAIYO YUDEN
太陽誘電
ceramic condenser, 1μF/25V
1μF/25V
セラミックコンデンサ,
ceramic condenser, 4.7μF/25V
4.7μF/25V
セラミックコンデンサ,
TAIYO YUDEN
太陽誘電
TDK
TDK
ceramic condenser, 1μF/25V
1μF/25V
セラミックコンデンサ,
ceramic condenser, 22pF/50V
22pF/50V
セラミックコンデンサ,
TAIYO YUDEN
太陽誘電
TDK
TDK
ceramic condenser, 0.01μF/50V
0.01μF/50V TDK
TDK
セラミックコンデンサ,
チップ抵抗,
820kΩ820kΩ
chip resistance,
チップ抵抗,
100kΩ100kΩ
chip resistance,
釜屋電機
KAMAYA
釜屋電機
KAMAYA
チップ抵抗,
390kΩ390kΩ
chip resistance,
チップ抵抗,
300kΩ300kΩ
chip resistance,
釜屋電機
KAMAYA
釜屋電機
KAMAYA
チップ抵抗,
820kΩ820kΩ
chip resistance,
チップ抵抗,
75kΩ75kΩ
chip resistance,
釜屋電機
KAMAYA
釜屋電機
KAMAYA
セラミックコンデンサ,
ceramic condenser, 0.01μF/50V
0.01μF/50V
チップ抵抗,
300kΩ300kΩ
chip resistance,
チップ抵抗, 130kΩ
chip resistance, 130kΩ
チップ抵抗, 51kΩ
chip resistance, 51kΩ
TDK
TDK
釜屋電機
KAMAYA
釜屋電機
KAMAYA
釜屋電機
KAMAYA
< Setting
values when the above parts are used>
各設定電圧(上記部品使用時)
VOUT=VSRC=9.2V
VGL=-5.3V
VGH=12.0V
fOSC=1.0MHz
9/26
XC9516 Series
■TEST CIRCUITS (Continued)
< Circuit19 Soft
start/Start-up Sequence>
<測定回路19
ソフトスタート/立ち上がりシーケンス>
・Soft start Measurement
・ソフトスタート測定
CE voltage is triggered
on rising edge (0V→VIN).
CE端子に0V→V
IN入力でCEをトリガにして測定
LX oscillation
start from 1.0V≦VCE.OUTの
1.0V≦V
CEからLXの発振開始時間、V
V
rising
time
is
measured.
OUT
起動完了時間を測定する。
・Start-up Sequence Measurement
・立ち上がりシーケンス測定
Trigger on CE start-up. Sequence is checked in
CE起動をトリガにして測定
order of VOUT
, VCL, VGH and
VSRC.
Vthe
OUT出力完了、V
GL出力完了、V
GH出力完了、
VSRC出力完了を確認する。
<・測定回路図19
Circuit19 LX External
Components List>
外付け部品使用例
NAME
L1
SD
L1
MODEL NAME
CHARACTERISTIC
名称 LTF5022T-4R7N2R0
型番
Coil, 4.7μH
LTF5022T-4R7N2R0
コイル, 4.7uH
特性
XBS204S17
Schottky diode, 2A/40V
D2-5
XBS104S13
Schottky diode, 1A/40V
Tr1
XP152A11E5MR
Pch MOSFET
CPH3109
PNP transistor
SD
XBS204S17
D2-5
XBS104S13
Tr1
XP152A11E5MR
TOREX
TOREX
Pch MOSFET
TOREX
LMK212BJ475KG
ceramic condenser, 4.7μF/10V
TMK107BJ104KA
ceramic condenser, 0.1μF/25V
CPH3109
CD,CVL
CDDC
TMK107BJ104KA
TOREX
TOREX
SANYO
PNP トランジスタ
三洋
セラミックコンデンサ, 4.7μF/10V
太陽誘電
セラミックコンデンサ, 0.1μF/25V
太陽誘電
TAIYO YUDEN
TAIYO YUDEN
TMK107BJ105KA
TMK107BJ105KA
ceramic
condenser, 1μF/25V
セラミックコンデンサ,
1μF/25V
C3216X5R1E475M
C3216X5R1E475M
ceramic
condenser, 4.7μF/25V
セラミックコンデンサ,
4.7μF/25V
TDK
TDK
CLcp1
Lcp2
,CLcp2 TMK107BJ105KA
C,C
TMK107BJ105KA
Lcp1
ceramic
condenser, 1μF/25V
セラミックコンデンサ,
1μF/25V
TAIYO YUDEN
太陽誘電
CFBCFB
C1608JB1H220J
C1608JB1H220J
ceramic
condenser, 22pF/50V
セラミックコンデンサ,
22pF/50V
TDK
TDK
C1,CC21,C2
C1608JB1H103K
C1608JB1H103K
ceramic
condenser, 0.01μF/50V
セラミックコンデンサ,
0.01μF/50V
TDK
TDK
R 1 R1
R 2 R2
RMC1/16K824FTP
RMC1/16K824FTP
chip
resistance,
820kΩ
チップ抵抗,
820kΩ
KAMAYA
釜屋電機
RMC1/16K104FTP
RMC1/16K104FTP
チップ抵抗,
100kΩ
chip
resistance,
100kΩ
釜屋電機
KAMAYA
R 3 R3
RMC1/16K394FTP
RMC1/16K394FTP
チップ抵抗,
390kΩ
chip
resistance,
390kΩ
釜屋電機
KAMAYA
R 4 R4
RMC1/16K304FTP
RMC1/16K304FTP
チップ抵抗,
300kΩ
chip
resistance,
300kΩ
釜屋電機
KAMAYA
R 5 R5
RMC1/16K824FTP
RMC1/16K824FTP
チップ抵抗,
820kΩ
chip
resistance,
820kΩ
釜屋電機
KAMAYA
RMC1/16K753FTP
RMC1/16K753FTP
チップ抵抗,
75kΩ
chip
resistance,
75kΩ
釜屋電機
KAMAYA
C1608JB1H103K
C1608JB1H103K
セラミックコンデンサ, 0.01μF/50V
ceramic
condenser, 0.01μF/50V
RMC1/16K304FTP
chip resistance, 300kΩ
RMC1/16K134FTP
chip resistance, 130kΩ
RMC1/16K513FTP
chip resistance, 51kΩ
DD
CL1,C
C L2,C
L1
R 6 R6
C 5 C5
R8
R8
R9
R9
R10
R10
L2
RMC1/16K304FTP
RMC1/16K134FTP
RMC1/16K513FTP
TAIYO YUDEN
太陽誘電
TDK
TDK
チップ抵抗, 300kΩ
釜屋電機
チップ抵抗, 130kΩ
釜屋電機
チップ抵抗, 51kΩ
釜屋電機
< Setting
values when the above parts are used>
各設定電圧(上記部品使用時)
VOUT=VSRC=9.2V
VGL=-5.3V
VGH=12.0V
fOSC=1.0MHz
10/26
TOREX
ショットキーダイオード, 2A/40V
CD,CVL
LMK212BJ475KG
TDK メーカ
TDK
ショットキーダイオード, 1A/40V
Tr2
Tr2
CIN
CIN
MANUFACTURER
KAMAYA
KAMAYA
KAMAYA
XC9516
Series
■TEST CIRCUITS (Continued)
< Circuit20 Input
Voltage Start-up Time>
<測定回路20
入力電圧立ち上げ時間>
・Input Voltage Start-up Time
・入力電圧立ち上げ時間
VSRC is measured after rising VIN and VCE within
VINless
=VCEthan
を15ms以下で起動しV
SRCの出力を確認。
15ms.
VINV=V
CE=0.2V→2.5V、t
VIN≦15ms
tVIN≦15ms
IN=V
CE=0.2V→2.5V,
・推奨入力波形
・Recommended Input Waveform
VINStart-up
=VCE≦0.2Vで起動
with VIN=VCE≦0.2V
立ち上げ時間
≦15ms
Start-up timetVIN
tVIN
≦15ms
Input Waveform
入力電圧立ち上げ時間波形
< Circuit20 LX External Components List>
・測定回路図20
外付け部品使用例
NAME
MODEL
NAME
CHARACTERISTIC
L1
MANUFACTURER
D2-5
SD
LTF5022T-4R7N2R0
Coil, 4.7μH 特性
型番
XBS204S17
Schottky
diode, 2A/40V
LTF5022T-4R7N2R0
コイル,
4.7uH
XBS104S13
Schottky diode, 1A/40V
XBS204S17
ショットキーダイオード,
2A/40V
TOREX
TOREX
D2-5
Tr1
XBS104S13
XP152A11E5MR
ショットキーダイオード,
1A/40V
Pch MOSFET
TOREX
TOREX
Tr1
Tr2
CTr2
IN
XP152A11E5MR
CPH3109
CPH3109
LMK212BJ475KG
Pch
MOSFET
PNP
transistor
TOREX
SANYO
CCDIN
,CVL
CCDDD,CVL
LMK212BJ475KG
TMK107BJ104KA
PNP
トランジスタ
ceramic
condenser, 4.7μF/10V 三洋TAIYO YUDEN
セラミックコンデンサ,
ceramic condenser,4.7μF/10V
0.1μF/25V 太陽誘電
TAIYO YUDEN
TMK107BJ104KA
TMK107BJ105KA
セラミックコンデンサ,
ceramic condenser,0.1μF/25V
1μF/25V
,CL2
CL1DD
C3216X5R1E475M
C3216X5R1E475M
TMK107BJ105KA
TMK107BJ105KA
セラミックコンデンサ, 1μF/25V
太陽誘電
TAIYO YUDEN
太陽誘電
TMK107BJ105KA
セラミックコンデンサ, 1μF/25V
太陽誘電
C1608JB1H220J
名称
SD
L1
C
C ,C
L1 L2
,CLcp2
CLcp1
CLcp1,CLcp2
CFB
CFB
C1,C2
C1608JB1H220J
TDK
メーカ
TDKTOREX
ceramic condenser, 4.7μF/25V
TDK
セラミックコンデンサ, 4.7μF/25V
TDK
ceramic condenser, 1μF/25V
TAIYO YUDEN
ceramic condenser, 22pF/50V
TDK
C1608JB1H103K
C1608JB1H103K
RMC1/16K824FTP
RMC1/16K824FTP
セラミックコンデンサ, 22pF/50V
ceramic condenser, 0.01μF/50V
TDK
セラミックコンデンサ, 0.01μF/50V TDK
chip resistance, 820kΩ
KAMAYA
チップ抵抗, 820kΩ
釜屋電機
TDK
RMC1/16K104FTP
RMC1/16K104FTP
chip resistance,
チップ抵抗,
100kΩ100kΩ
KAMAYA
釜屋電機
RMC1/16K394FTP
RMC1/16K394FTP
chip resistance,
チップ抵抗,
390kΩ390kΩ
KAMAYA
釜屋電機
RMC1/16K304FTP
RMC1/16K304FTP
RMC1/16K824FTP
RMC1/16K824FTP
chip resistance,
チップ抵抗,
300kΩ300kΩ
KAMAYA
釜屋電機
chip resistance,
チップ抵抗,
820kΩ820kΩ
KAMAYA
釜屋電機
RR6 6
CC5 5
RMC1/16K753FTP
RMC1/16K753FTP
チップ抵抗,
75kΩ 75kΩ
chip resistance,
釜屋電機
KAMAYA
C1608JB1H103K
C1608JB1H103K
セラミックコンデンサ,
ceramic condenser,0.01μF/50V
0.01μF/50V TDKTDK
RR8 8
RMC1/16K304FTP
RMC1/16K304FTP
RMC1/16K134FTP
RMC1/16K134FTP
チップ抵抗,
300kΩ300kΩ
chip resistance,
釜屋電機
KAMAYA
RR9 9
チップ抵抗,
130kΩ130kΩ
chip resistance,
釜屋電機
KAMAYA
RR1010
RMC1/16K513FTP
RMC1/16K513FTP
チップ抵抗,
51kΩ 51kΩ
chip resistance,
釜屋電機
KAMAYA
C1,C2
RR1
1
RR2
2
RR3 3
RR4 4
RR5 5
< Setting
values when the above parts are used>
各設定電圧(上記部品使用時)
VOUT=VSRC=9.2V
VGL=-5.3V
VGH=12.0V
fOSC=1.0MHz
11/26
XC9516 Series
■OPERATIONAL EXPLANATION
XC9516 series includes following blocks which are a reference voltage source, an oscillation circuit connecting to an external
ROSC register, a UVLO circuit to prevent malfunction in low voltage operation, internal power supply regulator connecting external
CVL capacitor, a step-up DC/DC converter, step-up charge pump and inverting charge pump, a short circuit protection circuit, an
over current sensing circuit, an over voltage sensing circuit and a thermal shutdown circuit.
L1
D1(SD)
VOUT
VIN
CIN
VIN
CDD
CE
CE
CVL
CVL
LX
CFB
CL1
R1
FB
R2
PGND
ROSC
(R9)
ROSC
C5(R7)
CD
CD
VOUT
R8
VOUT
Tr1
SWB
CP2SWB
R3
CL2
R10
Tr2
VSRC
FB1
R4
D2
C2
C1
DRV1
VGL
D4
DRV2
D5
CLcp1
VGH
D3
R5
AGND
FB2
CLcp2
R6
The step-up DC/DC converter consists of a ramp wave circuit created from the above mentioned oscillation circuit, an error
amplifier to compare feedback voltage through external resistor network from VOUT output voltage and internal reference voltage,
a PWM comparator to decide duty cycle by comparing ramp wave form created by the above mentioned ramp wave circuit and
error amplifier output, a phase compensation circuit and current feedback circuit for output voltage stabilization, a N-channel
MOS driver transistor to provide duty cycle on-time from LX pin, a current limit circuit to limit the current to flow the N-channel
MOS driver transistor, a over-voltage protection circuit operated at 1.3 typical to protect the devices connecting to the VOUT output
voltage pin.
A multi-loop feedback control by feedback voltage and N-channel MOS driver transistor provides stable output voltage
operation so that low ESR ceramic capacitor can be used.
The inverting voltage charge pump consists of an error amplifier to compare internal voltage reference and the feedback
voltage thorough external resistor network from VOUT output voltage, output impedance control circuit to adjust output impedance
by output level of the error amplifier, driver circuit for charge pump operation.
The step-up charge pump consists of an error amplifier to compare internal voltage reference and the feedback voltage
thorough external resistor network from VOUT output voltage, output impedance control circuit to adjust output impedance by
output level of the error amplifier, driver circuit for charge pump operation.
<Reference Voltage Source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the IC.
<Oscillation Circuit >
The oscillation circuit determines switching frequency. The frequency can be changed by external resistance ROSC in a range
of 300 kHz to 1.2MHz. When ROSC pin is left open, the frequency is fixed at 300kHz.
When the frequency is low, efficiency is high at light load. When the frequency is high, “L” value of coil will be low and makes
space saving.
The oscillation frequency is calculated by the following formula (Equation 1).
ROSC = 95 x 109 / (fOCS - 300 x 103)・・・(Equation 1)
where fOSC denotes a setting frequency.
< Ramp Wave Circuit >
This circuit is used to produce ramp waveforms needed for PWM operation.
< Error Amplifier for DC/DC>
The error amplifier is designed to monitor output voltage. The error amplifier compares the reference voltage with the feedback
voltage through the external divider resistors. When a feedback voltage is lower than the reference voltage, the output voltage
of the error amplifier is increased.
12/26
XC9516
Series
■OPERATIONAL EXPLANATION (Continued)
<External Resistors for setting Output Voltages>
A setting output voltage VOUT for the step-up DC/DC is calculated by the following formula (Equation 2).
VOUT = VFB×( R1 + R2 ) / R2・・・(Equation 2)
VFB=1.0V, R1 + R2 < 1000kΩ
A setting output voltage VGL for the negative charge pump is calculated by the following formula (Equation 3).
VGL = VFB1-( VOUT - VFB1 ) x R4 / R3・・・(Equation 3)
VFB1=1.0V, R3 + R4 < 1000kΩ
A setting output voltage VGH for the step-up charge pump is calculated by the following formula (Equation 4).
VGH = VFB2×( R5 + R6 ) / R6・・・(Equation 4)
VFB2=1.0V, R5 + R6 < 1000kΩ
<Regulator for Internal Power Circuit >
The XC9516 series includes a regulator for internal power circuit in order to stabilize operation. Its power source is taken from
VIN and VOUT. An external capacitor CVL=0.1μF is required to stabilize this internal power supply.
<UVLO Circuit >
When the input voltage VIN falls below a threshold voltage 1.87V (TYP.), all driver transistors will be forced off to prevent
malfunction. When the VIN voltage becomes 2.31V (TYP.) or higher, the UVLO function is released and the IC performs the
soft-start function to initiate startup operation.
< Current Limit >
The current limiter monitors the current flowing through the N-channel MOS driver transistor connected to the Lx pin, and
features a combination of the current limit and latch function.
①When the driver current is greater than a specific level (a peak current of inductor), the constant-current type current limit
function operates to turn off the pulses from the Lx pin at any given timing.
②When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.
③At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an
over-current state.
④When the over-current state is eliminated, the IC resumes its normal operation.
The IC waits for the over-current state to end by repeating the steps ①~③. During a latch delay time which was set by an
external capacitor with CD pin, if the ①~③ over-current sate is repeated, all driver transistors in the step-up DC/DC converter,
the step-up charge pump and the voltage inverting charge pump will be maintained to turn off. Once the IC is in suspension mode,
operations can be resumed by either turning the IC off via the CE pin, or by restoring power to the VIN pin.
Depending on the state of a substrate, it may result in the case where the latch delay time may become longer or the operation
may not be latched. Please locate an input capacitor to the CD pin as close as possible.
Limit < td
Limit > td
ILIM Level
ILX
0mA
VOUT
0V
LX
VCE
VCE Restart
VIN
Current Limit Timing Chart
13/26
XC9516 Series
■OPERATIONAL EXPLANATION (Continued)
<Short-circuit Detection Circuit >
When either output voltage falls below the set voltage while monitoring each feedback voltage of a step-up DC/DC converter,
step-up charge pump and inverting charge pump it is allowed as short-circuit so that latch delay circuit starts operation. If the
output voltage goes back in the range of the set voltage within the latch delay time, the start of the latch delay circuit will be
released. When output voltage is not recovered, all of the driver transistors will be turned off and latched after the latch delay
time.
<Latch Delay Circuit >
Where each short-circuit detection circuit detects output voltage short-circuit or when the over-current detection circuit detects
over-current of the LX pin, All driver transistors in a step-up DC/DC converter, step-up charge pump and inverting charge pump.
will be tuned off and latched after the delay time which was set by an external capacitor to the CD pin. In order to release the
latch, either turning the IC off and on via the CE pin or restoring power supply (VIN pin) should be selected. A setting delay time
tD is calculated by the following formula (Equation 5).
CD = td x 5.5 x 10-6/ 1.0・・・(Equation 5)
5.5 x 10-6 (CD Pin Charge Current, Typical)
1.0 (CD Pin Detect Voltage, TYP.)
<Thermal Shutdown>
For protection against heat damage of the ICs, thermal shutdown function monitors chip temperature. The thermal shutdown
circuit starts operating and all of the driver transistors will be turned off when the chip’s temperature reaches 150OC. When the
temperature drops to 130OC or less after shutting of the current flow, the IC performs the soft start function to initiate output
startup operation.
<Over-voltage Protection>
The over-voltage limit monitors the voltage of VOUT pin. All of the driver transistors will be turned off when the voltage of VOUT pin
elevates and beyond 21V (TYP.). In order to release the latch, either turning the IC off and on via the CE pin or restoring power
supply (VIN pin) should be selected.
14/26
XC9516
Series
■OPERATIONAL EXPLANATION (Continued)
<Start-up Sequence>
After VIN input with CE same time, the DC/DC starts to operate to set VOUT voltage. After the DC/DC start-up, a negative
inverting charge pump starts to operate to see VGL voltage. After the negative charge pump, CP2SWB low signal output turns
Tr2 on to make a positive charge pump starts to operate to see VGH voltage. After VGH output, SWB low signal output turn Tr1 on
for VSRC output. The CP2SWB and SWB pins are internally pulled up to VOUT, therefore, this VOUT level is kept until a low signal
come out. When falling, VOUT, VGL, and VGH outputs go off after VIN and VCE goes to ground. The VSRC output will be turned off
when the Tr2 goes off.
When Rising
①VIN=VCE input
②VOUT Rising completed
③VGL Operation started
④CP2SWB Low output, VGH rising started
⑤SWB Low output, VSRC output
When Falling
⑥VIN=VCE=0V, VOUT, VGL, VGH, VSRC output is OFF
Rising/Falling Sequence
①
TSS
⑥
VIN=CE
0V
0V
VOUT Level
②
VIN Level
VOUT
0V
0V
0V
0V
VGL
③
VGL Level
VGH Level
VOUT Level
VGH
0V
0V
④
VOUT Level
VOUT Level
CP2SWB
Low Level
0V
0V
VOUT Level
SWB
VOUT Level
⑤
Low Level
0V
0V
VOUT Level
VSRC
0V
0V
15/26
XC9516 Series
■NOTES ON USE
1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be
exceeded.
2. Switching regulators like step-up DC/DC converters may cause spike noise and/or ripple voltage. These amounts are greatly
affected by peripheral components (coil inductance values, capacitor value and substrate layout of peripheral circuit). Test and
inspect the actual circuits thoroughly before use.
3. An input capacitor should be placed near the IC VIN pin as much as possible.
4. As for power-on, when CE pin is used with connecting to VIN pin, VIN-VCE voltage should begin rising from below 2.0V. Rise
time should be less than 15ms. (Please refer to Figure 1.)
On the other hand, when CE pin is used independently from VIN pin, CE pin voltage should be started to rise after VIN pin
voltage rising. (Please refer to Figure 2.)
5. GND pattern should be layouted to get a same level of voltage for AGND pin, PGND pin, and package heatsink.
6. When current over limited value (peak current) flows for a specified period, current limit circuit will turn off a built-in driver
transistor (integral latch circuit). Until the circuit detects the latch delay time and turns off the build-in driver transistor, current of
limited level continues to flow, so please take full care of rating of coils.
7. In case of VGL voltage, VGH voltage may overshoots or undershoots when power supply rise, please put speed-up capacitor
(CFB1, CFB2) between FB1 pin and VGL, FB2 pin and VGH. (Please refer to figure 3 and 4.)
8. When load of inverting charge pump and step-up charge pump are with no load and load current of step-up DC/DC converter
is large, the output of the each charge pump may become unstable by switch of step-up DC/DC converter. In case of that,
please put a ferrite bead (L2) into a driver output (DRV1 pin and DRV2 pin) of the each charge pump. (Please refer to figure 4.)
9. Torex places an importance on improving our products and its reliability.
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.
VIN
0V
VCE
0V
Figure 1. (Recommended for input wave form for VIN=VCE)
Figure 2. (Recommended for input wave form for VIN pin and CE pin are input separately.)
Rising is recommended from less than 0.2V.
CE should be rising after VIN rising.
Rise time should be within 15ms.
VOUT
L2
D4
DRV2
R3
CFB1
C2
D5
FB1
VGH
R4 D2
VGL
CFB2
DRV1
CLcp1
R5
FB2
C1
CLcp2
R6
D3
Figure 3.
Figure 4.
Connection diagram for speed-up capacitor (CFB1)
Connection diagram for a ferrite bead / speed-up capacitor (CFB2)
CFB1 is connected to between FB1 pin and VGL
L2 (ferrite bead) is connected to between DRV2 pin and C2.
CFB2 is connected to between FB2 pin and VGH.
16/26
XC9516
Series
■NOTES ON USE (Continued)
TOP VIEW (Layout example)
LX
L
VIN
GND
CL2
SD
CIN
CLcp2
SD
D4
VOUT
NC
ROSC
AGND
FB_CP2
CD
CVL
FB
VIN
CE
CE
D3
CVL
SWB
FB_CP1
R6
R2
FB
CP1
R5
FB
CP2
R1
R9
CDD
R3
VOUT
CP1
FB R1
CFB
CD
R7
CL1
CFB
CLcp1
TR2
DR-CP2
RDYB
R4
VOUT
CP2 R10
R8
DR-CP1
D5
DR_CP2
LX
LX
NC
PGND
PGND
PGND
C1
Tr
TR1
D2
DR_CP1
Tr
C2
*Notes for Board
VOUTCP1=VGL
GND
VOUTCP2=VGH
VOUT
Components List
DESIGNATOR
PRODUCT
NOTE
MAKER
TOREX
QTY
IC
XC9516A21AZR-G
L
LTF5022T-4R7N2R0
Coil, 4.7μH
TDK
1
1
SD
XBS204S17
Schottky Barrie Diodes, 2A/40V
TOREX
1
D2, D3, D4,
XBS104S13
Schottky Barrie Diodes, 1A/40V
TOREX
4
Tr1
XP152A11E5MR
P-ch MOS FET
TOREX
1
Tr2
CPH3109
PNP Transistor
SANYO
1
CIN
LMK212BJ475KG
Ceramic Capacitor, 4.7μF/10V
TAIYO UDEN
1
CD, CVL
TMK107BJ104KA
Ceramic Capacitor, 0.1μF/25V
TAIYO UDEN
2
CDD
TMK107BJ105KA
Ceramic Capacitor, 1μF/25V
TAIYO UDEN
1
CL1, CL2
C3216X5R1E475M
Ceramic Capacitor, 4.7μF/25V
TDK
2
CLcp1, CLcp2
TMK107BJ105KA
Ceramic Capacitor, 1μF/25V
TAIYO UDEN
2
CFB
C1608JB1H220J
Ceramic Capacitor, 22pF/50V
TDK
1
C1, C2
C1608JB1H103K
Ceramic Capacitor, 0.01μF/50V
TDK
2
R1
RMC1/16K824FTP
Chip Resistor, 820kΩ
KAMAYA ELECTRIC
1
R2
RMC1/16K104FTP
Chip Resistor, 100kΩ
KAMAYA ELECTRIC
1
R3
RMC1/16K394FTP
Chip Resistor, 390kΩ
KAMAYA ELECTRIC
1
R4
RMC1/16K304FTP
Chip Resistor, 300kΩ
KAMAYA ELECTRIC
1
R5
RMC1/16K824FTP
Chip Resistor, 820kΩ
KAMAYA ELECTRIC
1
R6
RMC1/16K753FTP
Chip Resistor, 75kΩ
KAMAYA ELECTRIC
1
R7
C1608JB1H103K
Ceramic Capacitor, 0.01μF/50V
TDK
1
R8
RMC1/16K304FTP
Chip Resistor, 300kΩ
KAMAYA ELECTRIC
1
R9
RMC1/16K134FTP
Chip Resistor, 130kΩ
KAMAYA ELECTRIC
1
R10
RMC1/16K513FTP
Chip Resistor, 51kΩ
KAMAYA ELECTRIC
1
L2
MMZ1608S400A
Ferrite bead, 40Ω@100MHz
TDK
1
TOP VIEW
BOTTOM VIEW (Flip horizontal)
LX
L
GND
CL2
VIN
CIN
CLcp2
SD
DR_CP2
TR2
D5
CE
R9
CDD
VOUT
CP1
R3
CLcp1
R5
FB
CP2
R6
R2
FB
CP1
CD
FB R1
CFB
GND
R7
CL1
D3
CVL
R4
TR1
D2
PGND
C1
VOUT
CP2 R10
R8
D4
C2
DR_CP1
VOUT
17/26
XC9516 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Efficiency vs. Output Current
XC9516 Efficiency
VIN=VCE, VOUT=9.0V
FOSC=1MHz
Icp1=-1mA, Icp2=1mA
XC9516 Efficiency
100
100
VIN=5.5V
90
VIN=5.5V
90
80
80
VIN=2.5V
VIN=2.5V
VIN=3.3V
VIN=3.3V
60
70
Efficiency:EFFI(%)
70
Efficiency:EFFI(%)
VIN=VCE, VOUT=9.0V
FOSC=1MHz
Icp1=-10mA, Icp2=10mA
VIN=4.0V VIN=4.0V
50
VIN=5.5V
40
2.5V
30
20
VIN=3.3V
60
VIN=4.0V
VIN=2.5V
50
40
3.3V
30
4.0V
20
2.5V
3.3V
4.0V
5.5V
10
10
0
5.5V
0
1
10
100
1000
1
10
100
1000
Iout[mA]
Iout[mA]
(2) Output Voltage vs. Output Current
9.6
-5.10
9.4
-5.20
9.2
-5.30
9.0
8.8
DC/DC VOUT
0
20
40
60
80
100 120 140
IOUT(mA)
LOAD REG CP2 VGH
160
180
200
220
VIN=VCE=2.5V, VGH=12V
IOUT=100mA, Icp1=-10mA
12.3
12.2
12.1
12.0
VGH
11.9
11.8
0
18/26
5
10
15
ICP2(mA)
20
25
30
VIN=VCE=2.5V, VGL=-5.3V
IOUT=100mA, Icp2=10mA
-5.40
-5.50
8.6
VGH(V)
LOAD REG CP1 VGL
VIN=VCE=2.5V, VOUT=9V
Icp1=-10mA, Icp2=10mA
VGL(V)
VOUT(V)
LOAD REG DC/DC VOUT
240
VGL
-5.60
0
5
10
15
ICP1(mA)
20
25
XC9516
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Frequency vs. Ambient Temperature
XC9516 FOSC
VIN=VCE, VOUT=9.0V
FOSC=OPEN
400
350
VIN=4.0V
FOSC (kHz)
VIN=2.5V
300
250
VIN=2.5V
VIN=4.0V
VIN=5.5V
VIN=5.5V
200
-50
-25
0
25
50
75
100
125
Temperature (℃)
(5) Stand-by Current vs. Ambient Temperature
(4) Supply Current vs. Ambient Temperature
IDD1
XC9516 ISTB
VIN=VCE, VOUT=9.0V
4000.0
3500.0
VIN=5.5V
2500.0
ISTB(μA)
IDD1(μA)
3000.0
2000.0
1500.0
1000.0
VIN=4.0V
VIN=2.5V
500.0
3.50
VIN=2.5V
3.00
VIN=4.0V
2.50
VIN=5.5V
2.00
1.50
VIN=5.5V
VIN=2.5V
1.00
VIN=4.0V
VIN=5.5V
0.50
VIN=4.0V
0.00
VIN=2.5V
-0.50
0.0
-50
-25
0
25
50
Temperature(℃)
75
100
-50
125
(6) FB Voltage vs. Ambient Temperature
XC9516 FB-V
-25
VIN=VCE, VOUT=9.0V
FOSC=OPEN
1.030
1.025
1.025
1.020
1.020
1.015
VIN=5.5V
FB1 (V)
1.000
0.995
VIN=2.5V
VIN=4.0V
VIN=5.5V
0.980
0.975
100
125
VIN=VCE, VOUT=9.0V
FOSC=OPEN
1.005
1.000
0.995
0.990
VIN=2.5V
VIN=4.0V
0.985
75
VIN=4.0V
VIN=2.5V
1.010
1.005
0.990
25
50
Temperature(℃)
XC9516 FB1-V
1.030
1.010
0
(7) FB1 Voltage vs. Ambient Temperature
1.015
FB (V)
VCE=0V, VOUT=9.0V
4.00
VIN=5.5V
0.985
0.980
VIN=2.5V
VIN=4.0V
0.975
VIN=5.5V
0.970
0.970
-50
-20
10
40
Temperature (℃)
70
100
-50
-20
10
40
70
100
Temperature (℃)
19/26
XC9516 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) FB2 Voltage vs. Ambient Temperature
VIN=VCE, VOUT=9.0V
FOSC=OPEN
XC9516 FB2-V
1.030
1.025
1.020
1.015
VIN=2.5V
FB2 (V)
1.010
VIN=4.0V
1.005
1.000
0.995
VIN=5.5V
0.990
0.985
0.980
VIN=2.5V
VIN=4.0V
0.975
VIN=5.5V
0.970
-50
-20
10
40
70
100
Temperature (℃)
(9) CE ”H” Voltage vs. Ambient Temperature
(10) CE ”L” Voltage vs. Ambient Temperature
XC9516 CE-L
XC9516 CE-H
VOUT=9.0V, FOSC=OPEN
VOUT=9.0V, FOSC=OPEN
1.40
1.40
1.30
1.30
1.20
1.20
1.10
CE-L (V)
1.10
CE-H (V)
VIN=2.5V
VIN=4.0V
VIN=5.5V
VIN=2.5V
1.00
VIN=4.0V
0.90
VIN=5.5V
0.70
VIN=2.5V
0.90
VIN=2.5V
VIN=4.0V
VIN=5.5V
0.80
1.00
VIN=4.0V
0.80
VIN=5.5V
0.70
0.60
0.60
-50
-25
0
25
50
75
100
125
-50
Temperature (℃)
XC9516 LX Nch On resistance
CVL=4.0V, FOSC=OPEN
400
350
LX Nch ON-R (mΩ)
300
250
200
150
100
50
0
-25
0
25
50
Temperature (℃)
20/26
0
25
50
Temperature (℃)
(11) LX Pin N-ch Driver ON Resistance vs. Ambient Temperature
-50
-25
75
100
125
75
100
125
XC9516
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13) Maximum Duty Cycle vs. Ambient Temperature
(12) LX Current Limit vs. Ambient Temperature
VIN=2.5V, VOUT=9.0V, FOSC=1MHz
100
Maximum Duty Cycle: DMAX (%)
2.0
Lx Current Limit: ILIM (A)
1.8
1.6
1.4
1.2
1.0
0.8
0.6
-50
-25
0
25
50
75
98
96
94
VIN = 2.5V
92
VIN = 4.0V
VIN = 5.5V
90
-50
100
-25
0
25
50
75
100
Temperature.(゚C)
Temperature.(゚C)
(14) Load Transient Response 1 vs. DC/DC Output (VOUT)
IOUT=0mA→100mA
VIN=VCE=2.5V, VOUT=9.0V
IOUT=100mA→0mA
VIN=VCE=2.5V, VOUT=9.0V
Ta=25℃
Ta=25℃
VOUT
VOUT
200mV/div
200mV/div
IOUT
IOUT SW
IOUT=100mA
IOUT=0mA
2.0V/div
IOUT=100mA
IOUT=0mA
50mA/div
100μs/div
100μs/div
(15) Load Transient Response 2 vs. CP1 Output (VGL)
VIN=VCE=2.5V, VGL=-5.0V
ICP1=-1mA→-10mA
VIN=VCE=2.5V, VGL=-5.0V
ICP1=-10mA→-1mA
Ta=25℃
Ta=25℃
VGL
VGL
200mV/div
200mV/div
ICP1 SW
2.0V/div
ICP1 SW OFF
=-1mA
100μs/div
ICP1 SW ON
ICP1 SW
ICP1 SW ON
=-10mA
2.0V/div
=-10mA
ICP1 SW OFF
=-1mA
100μs/div
21/26
XC9516 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(16) Load Transient Response 3 vs. CP2 Output (VGH)
VIN=VCE=2.5V, VGH=12V
ICP2=1mA→10mA
VIN=VCE=2.5V, VGH=12V
ICP2=10mA→1mA
Ta=25℃
Ta=25℃
VGH
VGH
200mV/div
200mV/div
ICP2 SW
ICP1 SW OFF
ICP2 SW
2.0V/div
=1mA
2.0V/div
ICP1 SW ON
ICP1 SW OFF
ICP2 SW ON
=1mA
=10mA
=10mA
100μs/div
100μs/div
(17) Ripple Rejection Rat vs. Output Current
VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V
VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V
Ta=25℃,
Ta=25℃,
IOUT=0mA, ICP1=0mA, ICP2=0mA
VOUT
VOUT
20mV/div
20mV/div
VGL
VGL
20mV/div
20mV/div
VGH
VGH
20mV/div
20mV/div
1μs/div
VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V
Ta=25℃,
IOUT=100mA, ICP1=-10mA, ICP2=10mA
VOUT
20mV/div
VGL
20mV/div
VGH
20mV/div
1μs/div
22/26
IOUT=50mA, ICP1=-5mA, ICP2=5mA
1μs/div
XC9516
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(18) Start-up Sequence
VSRC Monitor
VOUT Monitor
VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V
VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V
Ta=25℃,
Ta=25℃,
IOUT=1mA, ICP1=-1mA, ICP2=1mA
IOUT=1mA, ICP1=-1mA, ICP2=1mA
VGH 3.0V/div
VGH 3.0V/div
VOUT 3.0V/div
VSRC 3.0V/div
VIN 3.0V/div
VIN 3.0V/div
VGL 3.0V/div
2.0ms/div
VGL 3.0V/div
2.0ms/div
23/26
XC9516 Series
■PACKAGING INFORMATION
●QFN-20 (Unit: mm)
(0.2)
4.00±0.10
1 PIN INDENT
+0.03
0.02 -0.02
4.00±0.10
0.75±0.05
7
8
9
10
5
11
4
12
3
13
2
14
1
15
*The side of pins are not gilded, but nickel is used.
(0.5)
2.70±0.05
6
0.20±0.05
0.40±0.05
2.70±0.05
19
18
17
16
●QFN-20 Reference Pattern Layout (Unit: mm)
●QFN-20
Reference Metal Mask Design (Unit: mm)
4.6
3.2
0.3
3.3
4.6
3.2
2.7
0.3
1.1
4.5
3.3
4.5
20
2.7
0.5
0.3
0.5
0.3
1.1
Solder Thickness:120μm (reference)
24/26
XC9516
Series
■MARKING RULE
QFN20
① represents product series
MARK
PRODUCT SERIES
1pin
①②③④⑤⑥
0
XC9516******-G
② represents UVLO setting voltage and LX detect over current
LX DETECT
MARK
UVLO VOLTAGE
OVER CURRENT
A
Detect:1.87V, Hysteresis Width:0.44V
1.3A
③④ represents VOUT detect over voltage
MARK
VOUT DETECT OVER VOLTAGE (e.g.)
③
④
2
1
21V
PRODUCT
SERIES
XC9516A**A**-G
PRODUCT SERIES
XC9516*21*** -G
⑤⑥ represents production lot number
01~09, 0A~0Z, 11・・・9Z, A1~A9, AA~Z9, ZA~ZZ repeated
(G, I, J, O, Q, W excluded)
*No character inversion used.
25/26
XC9516 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
26/26