XC9516 Series ETR0707-009 Triple Output Power Supply for TFT-LCD ☆GreenOperation Compatible ■GENERAL DESCRIPTION The XC9516 series can offer three different power supplies to TFT-LCD panels. These power supplies consist of a step-up DC/DC converter for a source driver, positive and negative charge pumps for a gate driver. This IC has power-on sequences to keep inrush current as small when output voltage rises. The step-up DC/DC output can be used as power-on sequences with adding a P-channel FET as external component. Also, the FET can shut down a path to the power input line when CE pin is low. ■APPLICATIONS ■FEATURES ●TFT-LCD panels ●LCD monitors A Step-up DC/DC Converter and 2 of Charge Pumps (Positive/Negative) Input Voltage Range : 2.5V ~ 5.5V Maximum Output Voltage : 19V (DC/DC output) Output Voltage Accuracy : ±1.5% Oscillation Frequency : 300kHz ~ 1.2MHz (Adjustable) External MOSFET Gate Signal Output : N-Channel Open Drain Switch Over-Current Protection : 1.3A Soft-Start Time : Internally fixed Protection : Over Voltage Protection (Step-up DC/DC 21V) Short-Circuit Protection (Step-up DC/DC) Short-Circuit Protection (Positive and Negative Charge Pump) Thermal Shutdown (150℃) UVLO (1.87V) Operating Ambient Temperature : -40℃~+85℃ Package : QFN-20 Environmentally Friendly : EU RoHS Compliant, Pb Free ■TYPICAL APPLICATION CIRCUITS ■TYPICAL PERFORMANCE CHARACTERISTICS L1 D1(SD) VOUT VIN CIN VIN LX CFB ●Efficiency vs. Output Current CL1 R1 FB CDD CE CE CVL CVL XC9516 Efficiency R2 PGND 100 ROSC (R9) ROSC 80 CD R8 Tr1 SWB CL2 R10 CP2SWB Tr2 VSRC FB1 R4 D2 C2 C1 DRV1 VGL D4 DRV2 D5 CLcp1 VGH D3 R5 AGND FB2 CLcp2 R6 e.g) Components List VIN=2.5V VIN=2.5V VIN=3.3V VIN=3.3V 70 Efficiency:EFFI(%) VOUT R3 VIN=5.5V 90 C5(R7) CD VOUT VIN=VCE, VOUT=9.0V FOSC=1MHz Icp1=-1mA, Icp2=1mA 60 VIN=4.0V VIN=4.0V 50 VIN=5.5V 40 2.5V 30 3.3V 4.0V 20 5.5V 10 0 VOUT = 9.2V, VGL = -5.3V, VGH= 12V R1 = 820 kΩ CIN = 4.7μF R2 = 100 kΩ CL1,CL2 =4.7μF R3 = 390 kΩ C1, C2 = 0.01μF R4 = 300 kΩ CVL,CD = 0.1μF R5 = 820 kΩ CDD = 1μF R6 = 75 kΩ CLcp1,CLcp2 = 1μF R8 = 300 kΩ CFB = 22pF ROSC(R9)= 130 kΩ C5 = 0.01μF R10 = 51 kΩ 1 10 100 1000 Iout[mA] 1/26 XC9516 Series *1 17 LX 18 NC 19 PGND 20 PGND NC 7 ROSC 6 AGND 10 VIN 8 17 LX 16 LX CD 9 16 LX 18 NC 8 VIN CD 9 19 PGND NC 7 <TOP VIEW> AGND 10 20 PGND ROSC 6 ■PIN CONFIGURATION <BOTTOM VIEW> The dissipation pad:AGND Level (If the pad needs to be connected to other pins, it should be considered about the level of pad voltage.) ■PIN ASSIGNMENT PIN NUMBER QFN-20 PIN NAME 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 DRV1 CP2SWB FB1 CE FB ROSC NC VIN CD AGND FB2 CVL SWB VOUT DRV2 LX LX NC PGND PGND FUNCTIONS Negative Charge Pump Driver Output Positive Charge Pump for Output Control FB Pin for Negative Charge Pump Chip Enable Pin FB Pin for Step-Up DC/DC Converter Frequency Setting No Connection Power Short Protection Delay Capacitor Connection Analog Ground FB Input for Positive Charge Pump Internal Power Capacitor Connection Step-Up DC/DC Converter Output Control Step-Up DC/DC Converter Output Voltage Positive Charge Pump Driver Output Driver Output Pin for Step-Up DC/DC Converter Driver Output Pin for Step-Up DC/DC Converter No Connection Power Ground Pin for Driver Power Ground Pin for Driver ■LOGIC CONDITION PIN NAME CE PIN LOGIC CONDITION L GND≦VCE≦0.4V H 1.2V≦VCE≦VIN Voltage is based on VSS(GND=AGND=PGND) ■FUNCTION CHART CONDITIONS IC OPERATION L H OFF(Stand-by) ON IC operation is unstable when CE opens so that these pins shall not be left open outside. 2/26 XC9516 Series ■PRODUCT CLASSIFICATION ●Ordering Information XC9516①②③④⑤⑥-⑦ (*1) ⇒ XC9516A21AZR-G DESIGNATOR ITEM SYMBOL ① ②③ ④ UVLO Detect Voltage Over Voltage Limit Over Current Limit A 21 A ⑤⑥-⑦ (*1) Package (Order Unit) ZR-G DESCRIPTON Detect Voltage: 1.87V, Hysteresis Width 0.44V Over Voltage Detect Voltage: 21V Over Current Detect Voltage: 1.3A QFN-20 (1,000/Reel) (*2) (*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant. (*2) The XC9516 reels are shipped in a moisture-proof packing. ■BLOCK DIAGRAM PGND and AGND are externally connected to the same potential. 3/26 XC9516 Series ■ABSOLUTE MAXIMUM RATINGS PARAMETER VIN Voltage CE Pin Voltage FB Pin Voltage FB1 Pin Voltage FB2 Pin Voltage ROSC Pin Voltage CD Pin Voltage CVL Pin Voltage SWB Pin Voltage CP2SWB Pin Voltage VOUT Pin Voltage LX Pin Voltage DR1 Pin Voltage DR2 Pin Voltage LX Pin Current Power Dissipation Operating Ambient Temperature SYMBOL VIN VCE VFB VFB1 VFB2 VROSC VCD VVL VSWB VCP2SWB VOUT VLX VDRV1 VDRV2 ILX Pd Topr RATINGS -0.3~6.0 -0.3~VIN+0.3 or 6.0 (*1) (*2) -0.3~VCVL+0.3 or 6.0 -0.3~VCVL+0.3 or 6.0 (*2) (*2) -0.3~VCVL+0.3 or 6.0 -0.3~VCVL+0.3 or 6.0 (*2) (*2) -0.3~VCVL+0.3 or 6.0 -0.3~6.0 -0.3~22 -0.3~22 -0.3~22 -0.3~22 (*3) -0.3~VOUT+0.3 or 22 -0.3~VOUT+0.3 or 22 (*3) 1650 300 -40 ~ +85 Storage Temperature Tstg -55 ~ +125 * All voltages are described based on GND. (GND=AGND=PGND) (*1) The maximum value should be either VIN+0.3 or +6.0 in the lowest. (*2) The maximum value should be either VCVL+0.3 or +6.0 in the lowest. (*3) The maximum value should be either VOUT+0.3 or +22.0 in the lowest. 4/26 UNITS V V V V V V V V V V V V V V mA mW o C o C XC9516 Series ■ELECTRICAL CHARACTERISTICS Unless otherwise stated, VIN=VCE=3.3V, VOUT=9.0V, fOSC=300kHz, Ta=25℃ PARAMETER SYMBOL Power Input Voltage Range VIN CONDITIONS (*1) Input Voltage Rise Time tVIN VIN=VCE=0.2V→2.5V Supply Current IDD1 VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V Stand-by Current ISTB VCE=0V Oscillation Frequency fOSC UVLO Detect Voltage (VIN falls down) MIN. TYP. 2.5 - MAX. UNITS CIRCUIT 5.5 V - - - 15 ms ⑳ 0.8 2.0 4.0 μA ① - 0.1 8.0 μA ② VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V, ROSC Open 255 300 345 kHz ③ VUVLO1 VIN=VCE, VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V 1.77 1.87 1.97 V ④ UVLO Feedback Voltage (VIN rises) VUVLO2 VIN=VCE, VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V 2.22 2.31 2.40 V ④ CE "High" Voltage VCEH VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V 1.2 - VIN V ⑤ CE "Low" Voltage VCEL VFB=VFB2=0.8V, VFB1=1.2V, VCD=0V AGND - 0.4 V ⑤ CE Input Current ICE VIN=5.5V, VCE=0V or 5.5V -0.1 - 0.1 μA ⑥ CD Pin Charge Current ICD1 VFB=0.9V→0.4V, VFB1= VFB2=0.9V 2.6 5.5 8.4 μA ⑦ CD Pin Discharge Current ICD2 VFB=VFB1=VFB2=0.9V, VCD=0.1V 0.20 0.38 0.56 mA ⑧ CD Pin Detect Voltage VCD VFB= VFB1= VFB2=0V 0.95 1.0 1.05 V ⑨ CP2SWB ”L” Output Voltage VSWB2 Input Current=1mA 0.55 0.65 0.80 V ⑩ SWB ”L” Output Voltage VSWB Input Current=1mA 0.26 0.33 0.40 V ⑩ CP2SWB Pull up Resistance RCP2 VCE=0V,VOUT=5.5V,CP2SWB=1.0V 350 800 2500 kΩ ⑪ SWB Pull up Resistance RSWB VCE=0V,VOUT=5.5V,SWB=1.0V 350 800 2500 kΩ ⑪ Thermal Shutdown Temperature TTSD - 150 - o Hysteresis Width THYS - 20 - o 0.985 1 1.015 V ⑫ 5.5 - 19 V - 92 95 98 % ⑬ C - C - ●Step-Up DC/DC Converter Block FB Voltage VFB Setting Output Voltage Range VOUTSET VFB1=1.2V, VFB2=0.8V, VCD=0V Maximum Duty Cycle DMAX Soft-Start Time tSS 2.0 4.0 5.0 ms ⑲ LX “N-ch” ON Resistance RLXN 100 190 400 mΩ - LX Current Limit ILIM ⑱ VOUT Over Voltage Limit VOVP Short Protection Voltage VSHORT FB Input Current IFB VFB=VFB1=VFB2=0V, VCD=0V, ROSC Open 1.1 1.3 1.5 A 19.5 21 22 V ⑰ VFB1=VFB2=0.9V, CD=0.1μF 0.40 0.48 0.55 V ⑮ VIN=5.5V, VCE=0V, VFB=0V, 5.5V -0.1 - 0.1 μA ⑭ 0.985 1 1.015 V ⑫ fOSC=1.0MHz ●Negative Charge Pump Block FB1 Voltage VFB1 VFB=VFB2=0.8V, VCD=0V VFB1=1.2V, IDRV1=20mA Output Impedance 1 ROUT1 Short Protection Voltage 1 VSHORT1 - 15 45 Ω ⑯ VFB=VFB2=0.9V, CD=0.1μF 1.2 2.4 2.8 V ⑮ FB1 Input Current IFB1 VIN=5.5V, VCE=0V , VFB1=0V, 5.5V -0.1 - 0.1 μA ⑭ FB2 Voltage VFB2 VFB=0.8V, VFB1=1.2V, VCD=0V 0.985 1.0 1.015 V ⑫ Output Impedance 2 ROUT2 - 15 45 Ω ⑯ Short Protection Voltage 2 VSHORT2 VFB=VFB1=0.9V, CD=0.1μF 0.40 0.48 0.55 V ⑮ FB2 Input Current IFB2 VIN=5.5V, VCE=0V , VFB2=0V, 5.5V -0.1 - 0.1 μA ⑭ ●Positive Charge Pump Block VFB2=0.8V, IDRV2=20mA (*1)Test Condition for input voltage rise time When used at VIN=VCE, input voltage should rise from 0.2V to 2.5V within 15ms. Please also note input voltage before rise should be less than 0.2V. Please see test circuit 20 for test condition, and for the detail of recommended input wave form, please see NOTES ON USE. 5/26 XC9516 Series ■TEST CIRCUITS <Circuit1 Supply Current> <Circuit2 Stand-by Current> A PGND LX DRV1 DRV2 CP2SWB VOUT FB1 SWB CE CVL FB FB2 VIN CD A VOUT=9.0V ROSC VIN=3.3V AGND ①VFB=0.8V→1.2V→0.8V LX oscillation is checked ②VFB1=1.2V→0.8V→1.2V DRV1 Oscillation is checked. ③VFB2=0.8V→1.2V →0.8V DRV2 Oscillation is checked. After ①~③, supply current is measured at both VIN and VOUT. <Circuit3 Oscillation Frequency> LX Oscillation period is measured. <Circuit5 CE H/L Voltage> CE H Voltage Measurement: VCE is increased(0.4V→1.2V), VCE is measured when LX oscillation started. CE L Voltage Measurement: VCE is decreased(1.2V→0.4V), VCE is measured when LX oscillation stopped. 6/26 VCE=0V, supply current is measured at both VIN and VOUT. <Circuit4 UVLO Detect/Release Voltage> UVLO Detect Voltage Measurement: VIN is decreased (2.5V→1.5V), VIN is measured when LX oscillation stopped. UVLO Release Voltage Measurement: VIN is increased (1.5V→2.5V) when LX oscillation started, <Circuit6 CE H/L Input Current> CE H Input Current: Current is measured when CE pin Voltage is 5.5V. CE L Input Current: Current is measured when CE pin Voltage is 0V. XC9516 Series ■TEST CIRCUITS (Continued) < Circuit7 CDCD端子充電電流> pin Charge Current> <測定回路7 After FB=0.9V→0.4V, CD pin output current is measured. VFBV=0.9V→0.4V後にCD端子出力電流を測定 < Circuit8 CD CD端子放電電流> pin Discharge Current> <測定回路8 Input current is measured when CD pin Voltage is 0.1V. CD端子に0.1V入力時の入力電流を測定 <測定回路9 <Circuit9 CD CD端子検出電圧> pin Detect Voltage> VCD=0.1V→0.2 VCD is measured when LX oscillation stopped. VCD=0V→1.2V、LX端子が発振停止するVCD電圧を測定 <Circuit10 CP2SWB/SWB Output Voltage> <測定回路10 CP2SWB/SWBL L出力電圧> CP2SWB L Output Voltage: Voltage is measured when 1.0mA is flow in CP2SWB“L”出力電圧:CP2SWB端子に1.0mA入力し電圧を測定 CP2SWB pin. SWB“L”出力電圧 :SWB端子に1.0mA入力し電圧を測定 SWB L Output Voltage Voltage is measured when 1.0mA is flow in SWB pin. <Circuit11 CP2SWB/SWB pins Pull-up Resistance> <測定回路11 CP2SWB/SWB プルアップ抵抗> CP2SWB Pull-up Resistance Measurement: Output current is measured when CP2SWB pin is 1.0V.R=(5.5-1.0)/I CP2SWB and SWB pins are internally pulled-up to VOUT SWB Pull-up Resistance Measurement: Output Current is measured when SWB pin voltage is 1.0V.R=(5.5-1.0)/I *CP2SWB and SWB pins are internally pulled-up to VOUT 7/26 XC9516 Series ■TEST CIRCUITS (Continued) < Circuit12 FB/FB1/FB2 Voltage Test> < Circuit13 Maximum Duty Cycle> FB Voltage Measurement: VFB=1.1V→0.9V, VFB is measured when LX oscillation started. FB1 Voltage Measurement: VFB1=0.9V→1.1V, VFB1 is measured when DRV1 oscillation started. FB2 Voltage Measurement: VFB2=1.1V→0.9V, VFB2 is measured when DRV2 oscillation started. < Circuit14 FB/FB1/FB2 H/L Input Current> FB Input Current Measurement: Input Current is measured when FB Voltage is 5.5V/0V. FB1 Input Current Measurement: Input Current is measured when FB1 Voltage is 5.5V/0V. FB2 Input Current Measurement: Input Current is measured when FB2 Voltage is 5.5V/0V. < Circuit16 Output Impedance 1/2> Output Impedance1: A load current of 20mA is applied to DRV1, DRV1 voltage is measured when a load is applied or not applied R=V/0.02. Output Impedance2: A load current of 20mA is applied to DRV2, DRV2 voltage is measured when a load is applied or not applied R=V/0.02. 8/26 Duty cycle of LX oscillation is measured. < Circuit15 FB/FB1/FB2 Short Circuit Protection> FB Short Protection Measurement: VFB=0.9V→0.4V, VFB is measured when VFB oscillation stopped. FB1 Short Protection Measurement: VFB1=1.2V→2.8V, VFB1 is measured when DRV1 oscillation stopped. FB2 Short Protection Measurement: VFB2=0.9V→0.4V, VFB2 is measured when DRV2 oscillation stopped. < Circuit17 VOUT Over Voltage Limit Measurement> VOUT=18V→22V, VOUT is measured when Lx oscillation stopped. XC9516 Series ■TEST CIRCUITS (Continued) < Circuit18 L Current Limit> <測定回路18 X LX電流制限> VSRCload に負荷電流(可変抵抗)を接続 ・A current (Variable Resistor) is connected to 電流プローブを使用しV IN-L1間のコイルピークを確認 VSRC. 過電流制限がかかるまで負荷電流を増加 Coil peak current at VIN-L1 is monitored by the 過電流制限時のコイルピークを測定する。 current probe. A coil peak current is measured. < ・測定回路図18 Circuit18 LX External Components List> 外付け部品使用例 NAME 名称 L1 L1 SD SD D2-5 D2-5 Tr1 Tr1 Tr2 Tr2 CCIN IN CCDD,C ,CVL VL CCDD DD CCL1L1,C ,CL2 L2 CCLcp1 ,CLcp2 Lcp1,C Lcp2 CCFB FB CC11,C ,C22 RR11 RR22 RR33 RR44 RR55 RR66 CC55 RR88 RR99 R R1010 MODEL NAME 型番 LTF5022T-4R7N2R0 LTF5022T-4R7N2R0 XBS204S17 XBS204S17 XBS104S13 XBS104S13 XP152A11E5MR XP152A11E5MR CPH3109 CPH3109 LMK212BJ475KG LMK212BJ475KG TMK107BJ104KA TMK107BJ104KA TMK107BJ105KA TMK107BJ105KA C3216X5R1E475M C3216X5R1E475M TMK107BJ105KA TMK107BJ105KA C1608JB1H220J C1608JB1H220J C1608JB1H103K C1608JB1H103K RMC1/16K824FTP RMC1/16K824FTP RMC1/16K104FTP RMC1/16K104FTP RMC1/16K394FTP RMC1/16K394FTP RMC1/16K304FTP RMC1/16K304FTP RMC1/16K824FTP RMC1/16K824FTP RMC1/16K753FTP RMC1/16K753FTP C1608JB1H103K C1608JB1H103K RMC1/16K304FTP RMC1/16K304FTP RMC1/16K134FTP RMC1/16K134FTP RMC1/16K513FTP RMC1/16K513FTP CHARACTERISTIC 特性 Coil, 4.7μH コイル, 4.7uH Schottky diode, 2A/40V ショットキーダイオード, 2A/40V Schottky diode, 1A/40V ショットキーダイオード, 1A/40V Pch MOSFET Pch MOSFET PNPトランジスタ transistor PNP ceramic condenser, 4.7μF/10V 4.7μF/10V セラミックコンデンサ, ceramic condenser, 0.1μF/25V 0.1μF/25V セラミックコンデンサ, MANUFACTURER メーカ TDK TDK TOREX TOREX TOREX TOREX TOREX TOREX SANYO 三洋 TAIYO YUDEN 太陽誘電 TAIYO YUDEN 太陽誘電 ceramic condenser, 1μF/25V 1μF/25V セラミックコンデンサ, ceramic condenser, 4.7μF/25V 4.7μF/25V セラミックコンデンサ, TAIYO YUDEN 太陽誘電 TDK TDK ceramic condenser, 1μF/25V 1μF/25V セラミックコンデンサ, ceramic condenser, 22pF/50V 22pF/50V セラミックコンデンサ, TAIYO YUDEN 太陽誘電 TDK TDK ceramic condenser, 0.01μF/50V 0.01μF/50V TDK TDK セラミックコンデンサ, チップ抵抗, 820kΩ820kΩ chip resistance, チップ抵抗, 100kΩ100kΩ chip resistance, 釜屋電機 KAMAYA 釜屋電機 KAMAYA チップ抵抗, 390kΩ390kΩ chip resistance, チップ抵抗, 300kΩ300kΩ chip resistance, 釜屋電機 KAMAYA 釜屋電機 KAMAYA チップ抵抗, 820kΩ820kΩ chip resistance, チップ抵抗, 75kΩ75kΩ chip resistance, 釜屋電機 KAMAYA 釜屋電機 KAMAYA セラミックコンデンサ, ceramic condenser, 0.01μF/50V 0.01μF/50V チップ抵抗, 300kΩ300kΩ chip resistance, チップ抵抗, 130kΩ chip resistance, 130kΩ チップ抵抗, 51kΩ chip resistance, 51kΩ TDK TDK 釜屋電機 KAMAYA 釜屋電機 KAMAYA 釜屋電機 KAMAYA < Setting values when the above parts are used> 各設定電圧(上記部品使用時) VOUT=VSRC=9.2V VGL=-5.3V VGH=12.0V fOSC=1.0MHz 9/26 XC9516 Series ■TEST CIRCUITS (Continued) < Circuit19 Soft start/Start-up Sequence> <測定回路19 ソフトスタート/立ち上がりシーケンス> ・Soft start Measurement ・ソフトスタート測定 CE voltage is triggered on rising edge (0V→VIN). CE端子に0V→V IN入力でCEをトリガにして測定 LX oscillation start from 1.0V≦VCE.OUTの 1.0V≦V CEからLXの発振開始時間、V V rising time is measured. OUT 起動完了時間を測定する。 ・Start-up Sequence Measurement ・立ち上がりシーケンス測定 Trigger on CE start-up. Sequence is checked in CE起動をトリガにして測定 order of VOUT , VCL, VGH and VSRC. Vthe OUT出力完了、V GL出力完了、V GH出力完了、 VSRC出力完了を確認する。 <・測定回路図19 Circuit19 LX External Components List> 外付け部品使用例 NAME L1 SD L1 MODEL NAME CHARACTERISTIC 名称 LTF5022T-4R7N2R0 型番 Coil, 4.7μH LTF5022T-4R7N2R0 コイル, 4.7uH 特性 XBS204S17 Schottky diode, 2A/40V D2-5 XBS104S13 Schottky diode, 1A/40V Tr1 XP152A11E5MR Pch MOSFET CPH3109 PNP transistor SD XBS204S17 D2-5 XBS104S13 Tr1 XP152A11E5MR TOREX TOREX Pch MOSFET TOREX LMK212BJ475KG ceramic condenser, 4.7μF/10V TMK107BJ104KA ceramic condenser, 0.1μF/25V CPH3109 CD,CVL CDDC TMK107BJ104KA TOREX TOREX SANYO PNP トランジスタ 三洋 セラミックコンデンサ, 4.7μF/10V 太陽誘電 セラミックコンデンサ, 0.1μF/25V 太陽誘電 TAIYO YUDEN TAIYO YUDEN TMK107BJ105KA TMK107BJ105KA ceramic condenser, 1μF/25V セラミックコンデンサ, 1μF/25V C3216X5R1E475M C3216X5R1E475M ceramic condenser, 4.7μF/25V セラミックコンデンサ, 4.7μF/25V TDK TDK CLcp1 Lcp2 ,CLcp2 TMK107BJ105KA C,C TMK107BJ105KA Lcp1 ceramic condenser, 1μF/25V セラミックコンデンサ, 1μF/25V TAIYO YUDEN 太陽誘電 CFBCFB C1608JB1H220J C1608JB1H220J ceramic condenser, 22pF/50V セラミックコンデンサ, 22pF/50V TDK TDK C1,CC21,C2 C1608JB1H103K C1608JB1H103K ceramic condenser, 0.01μF/50V セラミックコンデンサ, 0.01μF/50V TDK TDK R 1 R1 R 2 R2 RMC1/16K824FTP RMC1/16K824FTP chip resistance, 820kΩ チップ抵抗, 820kΩ KAMAYA 釜屋電機 RMC1/16K104FTP RMC1/16K104FTP チップ抵抗, 100kΩ chip resistance, 100kΩ 釜屋電機 KAMAYA R 3 R3 RMC1/16K394FTP RMC1/16K394FTP チップ抵抗, 390kΩ chip resistance, 390kΩ 釜屋電機 KAMAYA R 4 R4 RMC1/16K304FTP RMC1/16K304FTP チップ抵抗, 300kΩ chip resistance, 300kΩ 釜屋電機 KAMAYA R 5 R5 RMC1/16K824FTP RMC1/16K824FTP チップ抵抗, 820kΩ chip resistance, 820kΩ 釜屋電機 KAMAYA RMC1/16K753FTP RMC1/16K753FTP チップ抵抗, 75kΩ chip resistance, 75kΩ 釜屋電機 KAMAYA C1608JB1H103K C1608JB1H103K セラミックコンデンサ, 0.01μF/50V ceramic condenser, 0.01μF/50V RMC1/16K304FTP chip resistance, 300kΩ RMC1/16K134FTP chip resistance, 130kΩ RMC1/16K513FTP chip resistance, 51kΩ DD CL1,C C L2,C L1 R 6 R6 C 5 C5 R8 R8 R9 R9 R10 R10 L2 RMC1/16K304FTP RMC1/16K134FTP RMC1/16K513FTP TAIYO YUDEN 太陽誘電 TDK TDK チップ抵抗, 300kΩ 釜屋電機 チップ抵抗, 130kΩ 釜屋電機 チップ抵抗, 51kΩ 釜屋電機 < Setting values when the above parts are used> 各設定電圧(上記部品使用時) VOUT=VSRC=9.2V VGL=-5.3V VGH=12.0V fOSC=1.0MHz 10/26 TOREX ショットキーダイオード, 2A/40V CD,CVL LMK212BJ475KG TDK メーカ TDK ショットキーダイオード, 1A/40V Tr2 Tr2 CIN CIN MANUFACTURER KAMAYA KAMAYA KAMAYA XC9516 Series ■TEST CIRCUITS (Continued) < Circuit20 Input Voltage Start-up Time> <測定回路20 入力電圧立ち上げ時間> ・Input Voltage Start-up Time ・入力電圧立ち上げ時間 VSRC is measured after rising VIN and VCE within VINless =VCEthan を15ms以下で起動しV SRCの出力を確認。 15ms. VINV=V CE=0.2V→2.5V、t VIN≦15ms tVIN≦15ms IN=V CE=0.2V→2.5V, ・推奨入力波形 ・Recommended Input Waveform VINStart-up =VCE≦0.2Vで起動 with VIN=VCE≦0.2V 立ち上げ時間 ≦15ms Start-up timetVIN tVIN ≦15ms Input Waveform 入力電圧立ち上げ時間波形 < Circuit20 LX External Components List> ・測定回路図20 外付け部品使用例 NAME MODEL NAME CHARACTERISTIC L1 MANUFACTURER D2-5 SD LTF5022T-4R7N2R0 Coil, 4.7μH 特性 型番 XBS204S17 Schottky diode, 2A/40V LTF5022T-4R7N2R0 コイル, 4.7uH XBS104S13 Schottky diode, 1A/40V XBS204S17 ショットキーダイオード, 2A/40V TOREX TOREX D2-5 Tr1 XBS104S13 XP152A11E5MR ショットキーダイオード, 1A/40V Pch MOSFET TOREX TOREX Tr1 Tr2 CTr2 IN XP152A11E5MR CPH3109 CPH3109 LMK212BJ475KG Pch MOSFET PNP transistor TOREX SANYO CCDIN ,CVL CCDDD,CVL LMK212BJ475KG TMK107BJ104KA PNP トランジスタ ceramic condenser, 4.7μF/10V 三洋TAIYO YUDEN セラミックコンデンサ, ceramic condenser,4.7μF/10V 0.1μF/25V 太陽誘電 TAIYO YUDEN TMK107BJ104KA TMK107BJ105KA セラミックコンデンサ, ceramic condenser,0.1μF/25V 1μF/25V ,CL2 CL1DD C3216X5R1E475M C3216X5R1E475M TMK107BJ105KA TMK107BJ105KA セラミックコンデンサ, 1μF/25V 太陽誘電 TAIYO YUDEN 太陽誘電 TMK107BJ105KA セラミックコンデンサ, 1μF/25V 太陽誘電 C1608JB1H220J 名称 SD L1 C C ,C L1 L2 ,CLcp2 CLcp1 CLcp1,CLcp2 CFB CFB C1,C2 C1608JB1H220J TDK メーカ TDKTOREX ceramic condenser, 4.7μF/25V TDK セラミックコンデンサ, 4.7μF/25V TDK ceramic condenser, 1μF/25V TAIYO YUDEN ceramic condenser, 22pF/50V TDK C1608JB1H103K C1608JB1H103K RMC1/16K824FTP RMC1/16K824FTP セラミックコンデンサ, 22pF/50V ceramic condenser, 0.01μF/50V TDK セラミックコンデンサ, 0.01μF/50V TDK chip resistance, 820kΩ KAMAYA チップ抵抗, 820kΩ 釜屋電機 TDK RMC1/16K104FTP RMC1/16K104FTP chip resistance, チップ抵抗, 100kΩ100kΩ KAMAYA 釜屋電機 RMC1/16K394FTP RMC1/16K394FTP chip resistance, チップ抵抗, 390kΩ390kΩ KAMAYA 釜屋電機 RMC1/16K304FTP RMC1/16K304FTP RMC1/16K824FTP RMC1/16K824FTP chip resistance, チップ抵抗, 300kΩ300kΩ KAMAYA 釜屋電機 chip resistance, チップ抵抗, 820kΩ820kΩ KAMAYA 釜屋電機 RR6 6 CC5 5 RMC1/16K753FTP RMC1/16K753FTP チップ抵抗, 75kΩ 75kΩ chip resistance, 釜屋電機 KAMAYA C1608JB1H103K C1608JB1H103K セラミックコンデンサ, ceramic condenser,0.01μF/50V 0.01μF/50V TDKTDK RR8 8 RMC1/16K304FTP RMC1/16K304FTP RMC1/16K134FTP RMC1/16K134FTP チップ抵抗, 300kΩ300kΩ chip resistance, 釜屋電機 KAMAYA RR9 9 チップ抵抗, 130kΩ130kΩ chip resistance, 釜屋電機 KAMAYA RR1010 RMC1/16K513FTP RMC1/16K513FTP チップ抵抗, 51kΩ 51kΩ chip resistance, 釜屋電機 KAMAYA C1,C2 RR1 1 RR2 2 RR3 3 RR4 4 RR5 5 < Setting values when the above parts are used> 各設定電圧(上記部品使用時) VOUT=VSRC=9.2V VGL=-5.3V VGH=12.0V fOSC=1.0MHz 11/26 XC9516 Series ■OPERATIONAL EXPLANATION XC9516 series includes following blocks which are a reference voltage source, an oscillation circuit connecting to an external ROSC register, a UVLO circuit to prevent malfunction in low voltage operation, internal power supply regulator connecting external CVL capacitor, a step-up DC/DC converter, step-up charge pump and inverting charge pump, a short circuit protection circuit, an over current sensing circuit, an over voltage sensing circuit and a thermal shutdown circuit. L1 D1(SD) VOUT VIN CIN VIN CDD CE CE CVL CVL LX CFB CL1 R1 FB R2 PGND ROSC (R9) ROSC C5(R7) CD CD VOUT R8 VOUT Tr1 SWB CP2SWB R3 CL2 R10 Tr2 VSRC FB1 R4 D2 C2 C1 DRV1 VGL D4 DRV2 D5 CLcp1 VGH D3 R5 AGND FB2 CLcp2 R6 The step-up DC/DC converter consists of a ramp wave circuit created from the above mentioned oscillation circuit, an error amplifier to compare feedback voltage through external resistor network from VOUT output voltage and internal reference voltage, a PWM comparator to decide duty cycle by comparing ramp wave form created by the above mentioned ramp wave circuit and error amplifier output, a phase compensation circuit and current feedback circuit for output voltage stabilization, a N-channel MOS driver transistor to provide duty cycle on-time from LX pin, a current limit circuit to limit the current to flow the N-channel MOS driver transistor, a over-voltage protection circuit operated at 1.3 typical to protect the devices connecting to the VOUT output voltage pin. A multi-loop feedback control by feedback voltage and N-channel MOS driver transistor provides stable output voltage operation so that low ESR ceramic capacitor can be used. The inverting voltage charge pump consists of an error amplifier to compare internal voltage reference and the feedback voltage thorough external resistor network from VOUT output voltage, output impedance control circuit to adjust output impedance by output level of the error amplifier, driver circuit for charge pump operation. The step-up charge pump consists of an error amplifier to compare internal voltage reference and the feedback voltage thorough external resistor network from VOUT output voltage, output impedance control circuit to adjust output impedance by output level of the error amplifier, driver circuit for charge pump operation. <Reference Voltage Source> The reference voltage source provides the reference voltage to ensure stable output voltage of the IC. <Oscillation Circuit > The oscillation circuit determines switching frequency. The frequency can be changed by external resistance ROSC in a range of 300 kHz to 1.2MHz. When ROSC pin is left open, the frequency is fixed at 300kHz. When the frequency is low, efficiency is high at light load. When the frequency is high, “L” value of coil will be low and makes space saving. The oscillation frequency is calculated by the following formula (Equation 1). ROSC = 95 x 109 / (fOCS - 300 x 103)・・・(Equation 1) where fOSC denotes a setting frequency. < Ramp Wave Circuit > This circuit is used to produce ramp waveforms needed for PWM operation. < Error Amplifier for DC/DC> The error amplifier is designed to monitor output voltage. The error amplifier compares the reference voltage with the feedback voltage through the external divider resistors. When a feedback voltage is lower than the reference voltage, the output voltage of the error amplifier is increased. 12/26 XC9516 Series ■OPERATIONAL EXPLANATION (Continued) <External Resistors for setting Output Voltages> A setting output voltage VOUT for the step-up DC/DC is calculated by the following formula (Equation 2). VOUT = VFB×( R1 + R2 ) / R2・・・(Equation 2) VFB=1.0V, R1 + R2 < 1000kΩ A setting output voltage VGL for the negative charge pump is calculated by the following formula (Equation 3). VGL = VFB1-( VOUT - VFB1 ) x R4 / R3・・・(Equation 3) VFB1=1.0V, R3 + R4 < 1000kΩ A setting output voltage VGH for the step-up charge pump is calculated by the following formula (Equation 4). VGH = VFB2×( R5 + R6 ) / R6・・・(Equation 4) VFB2=1.0V, R5 + R6 < 1000kΩ <Regulator for Internal Power Circuit > The XC9516 series includes a regulator for internal power circuit in order to stabilize operation. Its power source is taken from VIN and VOUT. An external capacitor CVL=0.1μF is required to stabilize this internal power supply. <UVLO Circuit > When the input voltage VIN falls below a threshold voltage 1.87V (TYP.), all driver transistors will be forced off to prevent malfunction. When the VIN voltage becomes 2.31V (TYP.) or higher, the UVLO function is released and the IC performs the soft-start function to initiate startup operation. < Current Limit > The current limiter monitors the current flowing through the N-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit and latch function. ①When the driver current is greater than a specific level (a peak current of inductor), the constant-current type current limit function operates to turn off the pulses from the Lx pin at any given timing. ②When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state. ③At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over-current state. ④When the over-current state is eliminated, the IC resumes its normal operation. The IC waits for the over-current state to end by repeating the steps ①~③. During a latch delay time which was set by an external capacitor with CD pin, if the ①~③ over-current sate is repeated, all driver transistors in the step-up DC/DC converter, the step-up charge pump and the voltage inverting charge pump will be maintained to turn off. Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the CE pin, or by restoring power to the VIN pin. Depending on the state of a substrate, it may result in the case where the latch delay time may become longer or the operation may not be latched. Please locate an input capacitor to the CD pin as close as possible. Limit < td Limit > td ILIM Level ILX 0mA VOUT 0V LX VCE VCE Restart VIN Current Limit Timing Chart 13/26 XC9516 Series ■OPERATIONAL EXPLANATION (Continued) <Short-circuit Detection Circuit > When either output voltage falls below the set voltage while monitoring each feedback voltage of a step-up DC/DC converter, step-up charge pump and inverting charge pump it is allowed as short-circuit so that latch delay circuit starts operation. If the output voltage goes back in the range of the set voltage within the latch delay time, the start of the latch delay circuit will be released. When output voltage is not recovered, all of the driver transistors will be turned off and latched after the latch delay time. <Latch Delay Circuit > Where each short-circuit detection circuit detects output voltage short-circuit or when the over-current detection circuit detects over-current of the LX pin, All driver transistors in a step-up DC/DC converter, step-up charge pump and inverting charge pump. will be tuned off and latched after the delay time which was set by an external capacitor to the CD pin. In order to release the latch, either turning the IC off and on via the CE pin or restoring power supply (VIN pin) should be selected. A setting delay time tD is calculated by the following formula (Equation 5). CD = td x 5.5 x 10-6/ 1.0・・・(Equation 5) 5.5 x 10-6 (CD Pin Charge Current, Typical) 1.0 (CD Pin Detect Voltage, TYP.) <Thermal Shutdown> For protection against heat damage of the ICs, thermal shutdown function monitors chip temperature. The thermal shutdown circuit starts operating and all of the driver transistors will be turned off when the chip’s temperature reaches 150OC. When the temperature drops to 130OC or less after shutting of the current flow, the IC performs the soft start function to initiate output startup operation. <Over-voltage Protection> The over-voltage limit monitors the voltage of VOUT pin. All of the driver transistors will be turned off when the voltage of VOUT pin elevates and beyond 21V (TYP.). In order to release the latch, either turning the IC off and on via the CE pin or restoring power supply (VIN pin) should be selected. 14/26 XC9516 Series ■OPERATIONAL EXPLANATION (Continued) <Start-up Sequence> After VIN input with CE same time, the DC/DC starts to operate to set VOUT voltage. After the DC/DC start-up, a negative inverting charge pump starts to operate to see VGL voltage. After the negative charge pump, CP2SWB low signal output turns Tr2 on to make a positive charge pump starts to operate to see VGH voltage. After VGH output, SWB low signal output turn Tr1 on for VSRC output. The CP2SWB and SWB pins are internally pulled up to VOUT, therefore, this VOUT level is kept until a low signal come out. When falling, VOUT, VGL, and VGH outputs go off after VIN and VCE goes to ground. The VSRC output will be turned off when the Tr2 goes off. When Rising ①VIN=VCE input ②VOUT Rising completed ③VGL Operation started ④CP2SWB Low output, VGH rising started ⑤SWB Low output, VSRC output When Falling ⑥VIN=VCE=0V, VOUT, VGL, VGH, VSRC output is OFF Rising/Falling Sequence ① TSS ⑥ VIN=CE 0V 0V VOUT Level ② VIN Level VOUT 0V 0V 0V 0V VGL ③ VGL Level VGH Level VOUT Level VGH 0V 0V ④ VOUT Level VOUT Level CP2SWB Low Level 0V 0V VOUT Level SWB VOUT Level ⑤ Low Level 0V 0V VOUT Level VSRC 0V 0V 15/26 XC9516 Series ■NOTES ON USE 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded. 2. Switching regulators like step-up DC/DC converters may cause spike noise and/or ripple voltage. These amounts are greatly affected by peripheral components (coil inductance values, capacitor value and substrate layout of peripheral circuit). Test and inspect the actual circuits thoroughly before use. 3. An input capacitor should be placed near the IC VIN pin as much as possible. 4. As for power-on, when CE pin is used with connecting to VIN pin, VIN-VCE voltage should begin rising from below 2.0V. Rise time should be less than 15ms. (Please refer to Figure 1.) On the other hand, when CE pin is used independently from VIN pin, CE pin voltage should be started to rise after VIN pin voltage rising. (Please refer to Figure 2.) 5. GND pattern should be layouted to get a same level of voltage for AGND pin, PGND pin, and package heatsink. 6. When current over limited value (peak current) flows for a specified period, current limit circuit will turn off a built-in driver transistor (integral latch circuit). Until the circuit detects the latch delay time and turns off the build-in driver transistor, current of limited level continues to flow, so please take full care of rating of coils. 7. In case of VGL voltage, VGH voltage may overshoots or undershoots when power supply rise, please put speed-up capacitor (CFB1, CFB2) between FB1 pin and VGL, FB2 pin and VGH. (Please refer to figure 3 and 4.) 8. When load of inverting charge pump and step-up charge pump are with no load and load current of step-up DC/DC converter is large, the output of the each charge pump may become unstable by switch of step-up DC/DC converter. In case of that, please put a ferrite bead (L2) into a driver output (DRV1 pin and DRV2 pin) of the each charge pump. (Please refer to figure 4.) 9. Torex places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment. VIN 0V VCE 0V Figure 1. (Recommended for input wave form for VIN=VCE) Figure 2. (Recommended for input wave form for VIN pin and CE pin are input separately.) Rising is recommended from less than 0.2V. CE should be rising after VIN rising. Rise time should be within 15ms. VOUT L2 D4 DRV2 R3 CFB1 C2 D5 FB1 VGH R4 D2 VGL CFB2 DRV1 CLcp1 R5 FB2 C1 CLcp2 R6 D3 Figure 3. Figure 4. Connection diagram for speed-up capacitor (CFB1) Connection diagram for a ferrite bead / speed-up capacitor (CFB2) CFB1 is connected to between FB1 pin and VGL L2 (ferrite bead) is connected to between DRV2 pin and C2. CFB2 is connected to between FB2 pin and VGH. 16/26 XC9516 Series ■NOTES ON USE (Continued) TOP VIEW (Layout example) LX L VIN GND CL2 SD CIN CLcp2 SD D4 VOUT NC ROSC AGND FB_CP2 CD CVL FB VIN CE CE D3 CVL SWB FB_CP1 R6 R2 FB CP1 R5 FB CP2 R1 R9 CDD R3 VOUT CP1 FB R1 CFB CD R7 CL1 CFB CLcp1 TR2 DR-CP2 RDYB R4 VOUT CP2 R10 R8 DR-CP1 D5 DR_CP2 LX LX NC PGND PGND PGND C1 Tr TR1 D2 DR_CP1 Tr C2 *Notes for Board VOUTCP1=VGL GND VOUTCP2=VGH VOUT Components List DESIGNATOR PRODUCT NOTE MAKER TOREX QTY IC XC9516A21AZR-G L LTF5022T-4R7N2R0 Coil, 4.7μH TDK 1 1 SD XBS204S17 Schottky Barrie Diodes, 2A/40V TOREX 1 D2, D3, D4, XBS104S13 Schottky Barrie Diodes, 1A/40V TOREX 4 Tr1 XP152A11E5MR P-ch MOS FET TOREX 1 Tr2 CPH3109 PNP Transistor SANYO 1 CIN LMK212BJ475KG Ceramic Capacitor, 4.7μF/10V TAIYO UDEN 1 CD, CVL TMK107BJ104KA Ceramic Capacitor, 0.1μF/25V TAIYO UDEN 2 CDD TMK107BJ105KA Ceramic Capacitor, 1μF/25V TAIYO UDEN 1 CL1, CL2 C3216X5R1E475M Ceramic Capacitor, 4.7μF/25V TDK 2 CLcp1, CLcp2 TMK107BJ105KA Ceramic Capacitor, 1μF/25V TAIYO UDEN 2 CFB C1608JB1H220J Ceramic Capacitor, 22pF/50V TDK 1 C1, C2 C1608JB1H103K Ceramic Capacitor, 0.01μF/50V TDK 2 R1 RMC1/16K824FTP Chip Resistor, 820kΩ KAMAYA ELECTRIC 1 R2 RMC1/16K104FTP Chip Resistor, 100kΩ KAMAYA ELECTRIC 1 R3 RMC1/16K394FTP Chip Resistor, 390kΩ KAMAYA ELECTRIC 1 R4 RMC1/16K304FTP Chip Resistor, 300kΩ KAMAYA ELECTRIC 1 R5 RMC1/16K824FTP Chip Resistor, 820kΩ KAMAYA ELECTRIC 1 R6 RMC1/16K753FTP Chip Resistor, 75kΩ KAMAYA ELECTRIC 1 R7 C1608JB1H103K Ceramic Capacitor, 0.01μF/50V TDK 1 R8 RMC1/16K304FTP Chip Resistor, 300kΩ KAMAYA ELECTRIC 1 R9 RMC1/16K134FTP Chip Resistor, 130kΩ KAMAYA ELECTRIC 1 R10 RMC1/16K513FTP Chip Resistor, 51kΩ KAMAYA ELECTRIC 1 L2 MMZ1608S400A Ferrite bead, 40Ω@100MHz TDK 1 TOP VIEW BOTTOM VIEW (Flip horizontal) LX L GND CL2 VIN CIN CLcp2 SD DR_CP2 TR2 D5 CE R9 CDD VOUT CP1 R3 CLcp1 R5 FB CP2 R6 R2 FB CP1 CD FB R1 CFB GND R7 CL1 D3 CVL R4 TR1 D2 PGND C1 VOUT CP2 R10 R8 D4 C2 DR_CP1 VOUT 17/26 XC9516 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Efficiency vs. Output Current XC9516 Efficiency VIN=VCE, VOUT=9.0V FOSC=1MHz Icp1=-1mA, Icp2=1mA XC9516 Efficiency 100 100 VIN=5.5V 90 VIN=5.5V 90 80 80 VIN=2.5V VIN=2.5V VIN=3.3V VIN=3.3V 60 70 Efficiency:EFFI(%) 70 Efficiency:EFFI(%) VIN=VCE, VOUT=9.0V FOSC=1MHz Icp1=-10mA, Icp2=10mA VIN=4.0V VIN=4.0V 50 VIN=5.5V 40 2.5V 30 20 VIN=3.3V 60 VIN=4.0V VIN=2.5V 50 40 3.3V 30 4.0V 20 2.5V 3.3V 4.0V 5.5V 10 10 0 5.5V 0 1 10 100 1000 1 10 100 1000 Iout[mA] Iout[mA] (2) Output Voltage vs. Output Current 9.6 -5.10 9.4 -5.20 9.2 -5.30 9.0 8.8 DC/DC VOUT 0 20 40 60 80 100 120 140 IOUT(mA) LOAD REG CP2 VGH 160 180 200 220 VIN=VCE=2.5V, VGH=12V IOUT=100mA, Icp1=-10mA 12.3 12.2 12.1 12.0 VGH 11.9 11.8 0 18/26 5 10 15 ICP2(mA) 20 25 30 VIN=VCE=2.5V, VGL=-5.3V IOUT=100mA, Icp2=10mA -5.40 -5.50 8.6 VGH(V) LOAD REG CP1 VGL VIN=VCE=2.5V, VOUT=9V Icp1=-10mA, Icp2=10mA VGL(V) VOUT(V) LOAD REG DC/DC VOUT 240 VGL -5.60 0 5 10 15 ICP1(mA) 20 25 XC9516 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3) Frequency vs. Ambient Temperature XC9516 FOSC VIN=VCE, VOUT=9.0V FOSC=OPEN 400 350 VIN=4.0V FOSC (kHz) VIN=2.5V 300 250 VIN=2.5V VIN=4.0V VIN=5.5V VIN=5.5V 200 -50 -25 0 25 50 75 100 125 Temperature (℃) (5) Stand-by Current vs. Ambient Temperature (4) Supply Current vs. Ambient Temperature IDD1 XC9516 ISTB VIN=VCE, VOUT=9.0V 4000.0 3500.0 VIN=5.5V 2500.0 ISTB(μA) IDD1(μA) 3000.0 2000.0 1500.0 1000.0 VIN=4.0V VIN=2.5V 500.0 3.50 VIN=2.5V 3.00 VIN=4.0V 2.50 VIN=5.5V 2.00 1.50 VIN=5.5V VIN=2.5V 1.00 VIN=4.0V VIN=5.5V 0.50 VIN=4.0V 0.00 VIN=2.5V -0.50 0.0 -50 -25 0 25 50 Temperature(℃) 75 100 -50 125 (6) FB Voltage vs. Ambient Temperature XC9516 FB-V -25 VIN=VCE, VOUT=9.0V FOSC=OPEN 1.030 1.025 1.025 1.020 1.020 1.015 VIN=5.5V FB1 (V) 1.000 0.995 VIN=2.5V VIN=4.0V VIN=5.5V 0.980 0.975 100 125 VIN=VCE, VOUT=9.0V FOSC=OPEN 1.005 1.000 0.995 0.990 VIN=2.5V VIN=4.0V 0.985 75 VIN=4.0V VIN=2.5V 1.010 1.005 0.990 25 50 Temperature(℃) XC9516 FB1-V 1.030 1.010 0 (7) FB1 Voltage vs. Ambient Temperature 1.015 FB (V) VCE=0V, VOUT=9.0V 4.00 VIN=5.5V 0.985 0.980 VIN=2.5V VIN=4.0V 0.975 VIN=5.5V 0.970 0.970 -50 -20 10 40 Temperature (℃) 70 100 -50 -20 10 40 70 100 Temperature (℃) 19/26 XC9516 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (8) FB2 Voltage vs. Ambient Temperature VIN=VCE, VOUT=9.0V FOSC=OPEN XC9516 FB2-V 1.030 1.025 1.020 1.015 VIN=2.5V FB2 (V) 1.010 VIN=4.0V 1.005 1.000 0.995 VIN=5.5V 0.990 0.985 0.980 VIN=2.5V VIN=4.0V 0.975 VIN=5.5V 0.970 -50 -20 10 40 70 100 Temperature (℃) (9) CE ”H” Voltage vs. Ambient Temperature (10) CE ”L” Voltage vs. Ambient Temperature XC9516 CE-L XC9516 CE-H VOUT=9.0V, FOSC=OPEN VOUT=9.0V, FOSC=OPEN 1.40 1.40 1.30 1.30 1.20 1.20 1.10 CE-L (V) 1.10 CE-H (V) VIN=2.5V VIN=4.0V VIN=5.5V VIN=2.5V 1.00 VIN=4.0V 0.90 VIN=5.5V 0.70 VIN=2.5V 0.90 VIN=2.5V VIN=4.0V VIN=5.5V 0.80 1.00 VIN=4.0V 0.80 VIN=5.5V 0.70 0.60 0.60 -50 -25 0 25 50 75 100 125 -50 Temperature (℃) XC9516 LX Nch On resistance CVL=4.0V, FOSC=OPEN 400 350 LX Nch ON-R (mΩ) 300 250 200 150 100 50 0 -25 0 25 50 Temperature (℃) 20/26 0 25 50 Temperature (℃) (11) LX Pin N-ch Driver ON Resistance vs. Ambient Temperature -50 -25 75 100 125 75 100 125 XC9516 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (13) Maximum Duty Cycle vs. Ambient Temperature (12) LX Current Limit vs. Ambient Temperature VIN=2.5V, VOUT=9.0V, FOSC=1MHz 100 Maximum Duty Cycle: DMAX (%) 2.0 Lx Current Limit: ILIM (A) 1.8 1.6 1.4 1.2 1.0 0.8 0.6 -50 -25 0 25 50 75 98 96 94 VIN = 2.5V 92 VIN = 4.0V VIN = 5.5V 90 -50 100 -25 0 25 50 75 100 Temperature.(゚C) Temperature.(゚C) (14) Load Transient Response 1 vs. DC/DC Output (VOUT) IOUT=0mA→100mA VIN=VCE=2.5V, VOUT=9.0V IOUT=100mA→0mA VIN=VCE=2.5V, VOUT=9.0V Ta=25℃ Ta=25℃ VOUT VOUT 200mV/div 200mV/div IOUT IOUT SW IOUT=100mA IOUT=0mA 2.0V/div IOUT=100mA IOUT=0mA 50mA/div 100μs/div 100μs/div (15) Load Transient Response 2 vs. CP1 Output (VGL) VIN=VCE=2.5V, VGL=-5.0V ICP1=-1mA→-10mA VIN=VCE=2.5V, VGL=-5.0V ICP1=-10mA→-1mA Ta=25℃ Ta=25℃ VGL VGL 200mV/div 200mV/div ICP1 SW 2.0V/div ICP1 SW OFF =-1mA 100μs/div ICP1 SW ON ICP1 SW ICP1 SW ON =-10mA 2.0V/div =-10mA ICP1 SW OFF =-1mA 100μs/div 21/26 XC9516 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (16) Load Transient Response 3 vs. CP2 Output (VGH) VIN=VCE=2.5V, VGH=12V ICP2=1mA→10mA VIN=VCE=2.5V, VGH=12V ICP2=10mA→1mA Ta=25℃ Ta=25℃ VGH VGH 200mV/div 200mV/div ICP2 SW ICP1 SW OFF ICP2 SW 2.0V/div =1mA 2.0V/div ICP1 SW ON ICP1 SW OFF ICP2 SW ON =1mA =10mA =10mA 100μs/div 100μs/div (17) Ripple Rejection Rat vs. Output Current VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V Ta=25℃, Ta=25℃, IOUT=0mA, ICP1=0mA, ICP2=0mA VOUT VOUT 20mV/div 20mV/div VGL VGL 20mV/div 20mV/div VGH VGH 20mV/div 20mV/div 1μs/div VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V Ta=25℃, IOUT=100mA, ICP1=-10mA, ICP2=10mA VOUT 20mV/div VGL 20mV/div VGH 20mV/div 1μs/div 22/26 IOUT=50mA, ICP1=-5mA, ICP2=5mA 1μs/div XC9516 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (18) Start-up Sequence VSRC Monitor VOUT Monitor VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V VIN=VCE=2.5V, VOUT=9V, VGL=-5V, VGH=12V Ta=25℃, Ta=25℃, IOUT=1mA, ICP1=-1mA, ICP2=1mA IOUT=1mA, ICP1=-1mA, ICP2=1mA VGH 3.0V/div VGH 3.0V/div VOUT 3.0V/div VSRC 3.0V/div VIN 3.0V/div VIN 3.0V/div VGL 3.0V/div 2.0ms/div VGL 3.0V/div 2.0ms/div 23/26 XC9516 Series ■PACKAGING INFORMATION ●QFN-20 (Unit: mm) (0.2) 4.00±0.10 1 PIN INDENT +0.03 0.02 -0.02 4.00±0.10 0.75±0.05 7 8 9 10 5 11 4 12 3 13 2 14 1 15 *The side of pins are not gilded, but nickel is used. (0.5) 2.70±0.05 6 0.20±0.05 0.40±0.05 2.70±0.05 19 18 17 16 ●QFN-20 Reference Pattern Layout (Unit: mm) ●QFN-20 Reference Metal Mask Design (Unit: mm) 4.6 3.2 0.3 3.3 4.6 3.2 2.7 0.3 1.1 4.5 3.3 4.5 20 2.7 0.5 0.3 0.5 0.3 1.1 Solder Thickness:120μm (reference) 24/26 XC9516 Series ■MARKING RULE QFN20 ① represents product series MARK PRODUCT SERIES 1pin ①②③④⑤⑥ 0 XC9516******-G ② represents UVLO setting voltage and LX detect over current LX DETECT MARK UVLO VOLTAGE OVER CURRENT A Detect:1.87V, Hysteresis Width:0.44V 1.3A ③④ represents VOUT detect over voltage MARK VOUT DETECT OVER VOLTAGE (e.g.) ③ ④ 2 1 21V PRODUCT SERIES XC9516A**A**-G PRODUCT SERIES XC9516*21*** -G ⑤⑥ represents production lot number 01~09, 0A~0Z, 11・・・9Z, A1~A9, AA~Z9, ZA~ZZ repeated (G, I, J, O, Q, W excluded) *No character inversion used. 25/26 XC9516 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 26/26