XC9252 Series - Torex Semiconductor

XC9252 Series
ETR05038-004
Low Power Consumption Step-down DC/DC Controller IC
■GENERAL DESCRIPTION
The XC9252 series is a 30V operation step-down DC/DC controller IC.
under low input voltage.
The external P-ch driver transistor is used to achieve a stable operation
Low ESR capacitors such as ceramic capacitors can be used for the load capacitor (CL).
A 0.8V reference voltage source is incorporated, and the output voltage can be set freely from 1.5V using external resistors (RFB1, RFB2).
280kHz to 550kHz can be selected for the switching frequency by connecting an external resistor to the ROSC pin.
The generation of unneeded
noise can be reduced by this synchronization with an external CLK within ±25% of the internal clock using the MODE/SYNC pin.
In automatic
PWM/PFM control, the IC operates by PFM control when the load is light to achieve high efficiency over the full load range from light to heavy.
The soft start time can be set as desired by adding an external capacitance to the SS pin.
With the built-in UVLO function, the driver transistor is forced OFF when input voltage becomes 2.5V or lower.
Internal protection circuits include over current protection, short-circuit protection, and thermal shutdown circuits to enable safe use.
■APPLICATIONS
●Car navigation systems
●Car audios
●ETC automotives
■FEATURES
Input Voltage Range
FB Voltage
Supply Current
Oscillation Frequency
External Clocking Synchronous
Control Method
Soft-Start
Protection Circuits
Output Capacitor
Operating Ambient Temperature
Packages
Environmentally Friendly
: 3.0V~30V (Absolute MAX. Rating: 36V)
: 0.8V (±2%)
: 30μA (@300kHz)
: 280kHz~550kHz (External Resistor)
:±25% of the internal clock
: PWM control (MODE:H)
PWM/PFM (MODE:L)
: External set (External C)
: Over current limit (External Resistor)
Automatic Return (XC9252A/B)
Integral latch protection (XC9252C)
Thermal shutdown
: Low ESR Capacitor
: -40℃~+105℃
: TSSOP-16 (XC9252A/C)
USP-10B (XC9252B)
: EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE
CHARACTARISTICS
XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=280kHz)
L=22μH(CLF12555-220M), CIN =10μF(GRM32ER71H106KA12L),
ROSC =300kΩ, CL =22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
100
Efficiency :EFFI[%]
90
80
70
60
50
40
30
20
PFM(MODE=L)
10
PWM(MODE=H)
0
1
10
100
1000
10000
Output Current :IOUT[mA]
1/28
XC9252 Series
■BLOCK DIAGRAM
1) XC9252 Series, Type A
2) XC9252 Series, Type B
3) XC9252 Series, Type C
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.
2/28
XC9252
Series
■PRODUCT CLASSIFICATION
●Ordering Information
XC9252①②③④⑤⑥-⑦
DESIGNATOR
ITEM
①
TYPE
SYMBOL
DESCRIPTION
A
B
Refer to Selection Guide
C
②③
Adjustable Output Voltage
08
Reference voltage is fixed in 0.8V
④
Oscillation Frequency
A
Adjustable
⑤⑥-⑦
(*1)
(*2)
(*1)
Packages (Order Unit)
VR-G
TSSOP-16 (3,000/Reel) *Only Type A,C
DR-G
USP-10B (3,000/Reel) (*2) *Only Type B
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
The USP-10B reels are shipped in a moisture-proof packing.
●Selection Guide
TYPE
CHIP
ENABLE
SOFT-START
CURRENT
LIMITER
LATCH
PROTECTION
THERMAL
SHUTDOWN
UVLO
A
Yes
Yes
Yes
No
Yes
Yes
B
No
Yes
Yes
No
Yes
Yes
C
Yes
Yes
Yes
Yes
Yes
Yes
TYPE
SYNCHRONIZED WITH
EXTERNAL CLOCK
POWER-GOOD
A
Yes
Yes
B
Yes
No
C
Yes
Yes
■PIN CONFIGURATION
* The dissipation pad for this IC should be solder-plated for mounting strength and heat dissipation.
pattern and metal masking.
Please refer to the reference mount
The dissipation pad should be connected to the GND (No. 6) pin.
3/28
XC9252 Series
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTIONS
2
10
8
9
VIN
CE
VL
PG
SS
FB
Power Input
Chip Enable
Local Power Supply
Power-good Output
Soft-start Adjustment
Output Voltage Sense
3
1
MODE/SYNC
Mode Control/External CLK Sync Pin
11
7
ROSC
Frequency Adjustment
9
6
GND
Ground
8
5
CLAMP
High Side Gate Clamp
7
6
2, 4, 12, 13
4
3
-
ISENSE
EXTB
NC
Current Sense Pin
External Transistor Drive Pin
No Connection
TSSOP-16
USP-10B
5
1
16
10
14
15
■FUNCTION
XC9252 Series, Type A and Type C
PIN NAME
CE
SIGNAL
STATUS
L
Stand-by
H
Active
OPEN
Undefined State (*1)
SIGNAL
STATUS
L
PWM/PFM Automatic Control
H
PWM control
CLK
Synchronized with External Clock Signal
( PWM control )
OPEN
Undefined State(*1)
XC9252 Series
PIN NAME
MODE
/SYNC
(*1)
Please do not leave the CE and MODE/SYNC pin open.
4/28
XC9252
Series
■ABSOLUTE MAXIMUM RATINGS
Ta=25℃
PARAMETER
SYMBOL
RATINGS
UNITS
VIN Pin Voltage
VIN
-0.3 ~ +36
V
CE Pin Voltage
FB Pin Voltage
VL Pin Voltage
VL Pin Current
SS Pin Voltage
ROSC Pin Voltage
MODE/SYNC Pin Voltage
PG Pin Voltage (*6)
PG Pin Current (*6)
CLAMP Pin Voltage
VCE
VFB
VVL
IVL
VSS
VROSC
VMODE
VPG
IPG
VCLAMP
-0.3 ~ +36
-0.3 ~ +6.5
-0.3 ~ VIN+0.3 or +6.5 (*1)
10
-0.3 ~ VVL+0.3 or +6.5 (*2)
-0.3 ~ VVL+0.3 or +6.5 (*2)
-0.3 ~ +6.5
-0.3 ~ +6.5
5
(*4)
-0.3 or VIN-6.5
~ VIN+0.3 or +36 (*3)
V
V
V
mA
V
V
V
V
mA
V
CLAMP Pin Current
ICLAMP
10
ISENSE Pin Voltage
VISENSE
-0.3 or VIN-6.5 or VCLAMP-0.3
(*5)
EXTB Pin Voltage
VEXT
-0.3 or VIN-6.5 or VCLAMP-0.3
EXTB Pin Current
IEXT
100
Power
Dissipation
TSSOP-16
USP-10B
mA
(*5)
350
Pd
150
~ VIN+0.3 or +36
(*3)
V
~ VIN+0.3 or +36
(*3)
V
mA
mW
Surge Voltage
Operating Ambient Temperature
VSURGE
Topr
46 (*7)
-40~+105
℃
Storage Temperature
Tstg
-55~+125
℃
* All voltages are described based on the GND pin.
(*1)
The maximum value should be either VIN+0.3 or +6.5 in the lowest.
(*2)
The maximum value should be either VVL+0.3 or +6.5 in the lowest.
(*3)
The maximum value should be either VIN+0.3 or +36 in the lowest.
(*4)
The minimum value should be either -0.3 or VIN-6.5 in the highest.
(*5)
The minimum value should be either -0.3 or VIN-6.5 or VCLAMP-0.3 in the highest.
(*6)
For the XC9252 Type A and C only.
(*7)
Applied Time≦400ms
5/28
XC9252 Series
■ELECTRICAL CHARACTERISTICS
XC9252 Series
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
UNIT
CIRCUIT
FB Voltage
Output Voltage Setting Range
Operating Voltage Range
Local Regulator Output Voltage
Gate Clamp Voltage
VFB
VOUTSET
VIN
VVL
VCLAMP
0.784
(*1)
1.5
3
4.75
4.75
0.800
5.00
5.00
0.816
VIN
30
5.25
5.25
V
V
V
V
V
②
③
②
②
UVLO Detect Voltage
VUVLO1
2.375
2.500
2.625
V
②
UVLO Release Voltage
VUVLO2
2.470
2.600
2.730
V
②
UVLO Detect Time
tUVLO
0.20
0.35
0.60
ms
②
Supply Current
Quiescent Current 1
Quiescent Current 2
Stand-by Current
Operating Oscillation
Frequency
Setting Range
IDD
Iq1
Iq2
ISTB
IVL=0.1mA
ICLAMP=0.1mA, VCLAMP=VIN-CLAMP
VIN: 2.8V→2.3V, VCE=12V, VFB=0.72V
VIN Voltage when EXTB pin voltage changes from
"L" level to "H" level
VIN: 2.3V→2.8V, VCE=12V, VFB=0.72V
VIN Voltage which EXTB pin voltage changes from
"H" level to "L" level
VIN: 2.8V→2.3V, VCE=12V, VFB=0.72V
VIN Voltage when EXTB pin voltage changes from
"L" level to "H" level
VIN=VCE=30V, VMODE=5V, VFB=0.95V(PWM)
VIN=VCE=30V, VMODE=0V, VFB=0.95V (PWM/PFM) ROSC=270kΩ
VIN=VCE=30V, VMODE=0V, VFB=0.95V (PWM/PFM)
VIN=30V, VCE=0V
70
18
25
95
30
36
0
120
46
55
1
μA
μA
μA
μA
①
①
①
①
280
-
550
kHz
③
270
300
330
kHz
③
fOSCSET
Oscillation Frequency 1
fOSC1
Oscillation Frequency 2
fOSC2
External Clock Signal
Synchronized Frequency
External Clock Signal
Duty Cycle
Maximum Duty Cycle
Minimum Duty Cycle
EXTB"H" SW On
Resistance
EXTB"L" SW On
Resistance
Connected to external components,
IOUT=100mA, ROSC: 270kΩ, L=22μH
Connected to external components, IOUT=100mA
414
460
506
kHz
③
SYNCOSC
Connected to external components,
VIN=VCE=12V, IOUT=100mA
fOSCx0.75
fOSC
fOSCx1.25
kHz
③
DSYNC
Connected to external components
25
-
75
%
③
DMAX
DMIN
VFB=0.65V
VFB=0.95V
100
-
-
0
%
%
②
②
REXTH
VIN=VCE=5V, VCLAMP=0V, VFB=0.95V, IEXT=50mA
2.0
3.5
6.0
Ω
②
REXTL
VIN=VCE=5V, VCLAMP=0V, VFB=0.65V, IEXT=-50mA
1.4
2.5
6.0
Ω
②
127.5
150
172.5
mV
②
85
100
115
mV
②
1.2
1.9
2.3
ms
③
0.8
1.2
1.5
ms
③
0.35
0.40
0.45
V
③
0.5
0.8
1.2
ms
②
4.0
5.6
7.0
ms
②
Current Limit Voltage 1
(*2)
VISENSE1
Current Limit Voltage 2
(*2)
VISENSE2
Latch Time1
(*4)
tLAT1
Latch Time2
(*4)
tLAT2
Short Protection
(*5)
Threshold Voltage
VSHORT
Internal Soft-start Time
tSS1
External Soft-start Time
tSS2
VISENSE=VIN→VIN-0.20V, VFB=0.65V, ROSC: 270kΩ
VISENSE Voltage when EXTB pin voltage changes
from "L" level to "H" level
VISENSE=VIN→VIN-0.15V, VFB=0.65V
VISENSE Voltage when EXTB pin voltage changes
from "L" level to "H" level
VISENSE=VIN→VIN-0.2V, VFB=0.65V, ROSC: 270kΩ
VISENSE Voltage when EXTB pin voltage changes
from "L" level to "H" level
VISENSE=VIN→VIN-0.2V, VFB=0.65V
VISENSE Voltage when EXTB pin voltage changes
from "L" level to "H" level
VFB=0.5V→0.3V,
VFB Voltage when Oscillation Frequency is decreased
VCE=0→12V, VSS=5V, VFB=VFB×0.9V
Time until EXTB pin oscillates
VCE=0→12V, VFB=VFB×0.9V, CSS=4700pF
Time until EXTB pin oscillates
NOTE:
Unless otherwise stated, VIN=VCE=12V, SS:OPEN, ROSC:160kΩ, CVL=1μF, CCLAMP=1μF
External Components: L=10μH, CIN=10μF, CL=22μF, RSENSE=33mΩ, RFB1=220kΩ, RFB2=36kΩ, CFB=33pF(VOUTSET=5.7V)
(*1)
Please use within the range of VOUT/VIN≧0.15
(*2)
Current limit denotes the level of detection at peak of coil current.
(*3)
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
(*4)
For the XC9252 Type C only
(*5)
For the XC9252 Type A and B only
(*6)
For the XC9252 Type A and C only
6/28
XC9252
Series
■ ELECTRICAL CHARACTERISTICS (Continued)
Ta=25℃
XC9252 Series
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
CIRCUIT
SS Pin Current 1
ISS1
VFB=0.95V, VSS=0V, ROSC: 270kΩ
0.6
0.8
1.2
μA
②
SS Pin Current 2
ISS2
VFB=0.95V, VSS=0V
1.4
1.7
2.0
μA
②
-
90
-
%
③
-
±50
-
ppm/℃
②
0.691
0.720
0.749
V
②
Efficiency
(*3)
EFFI
FB Voltage
∆VFB/
Temperature
(∆Topr・VFB)
Characteristics
CONDITIONS
Connected to external components,
VOUT=5.7V, IOUT=1A
IOUT=100mA, -40℃≦Topr≦105℃
VFB=0.76V→0.65V, RPG: 200kΩ pull-up to VL
PG detect voltage
(*6)
VPG
Voltage when PG pin voltage changes from "H"
level to "L" level
PG Output Current
(*6)
1
-
-
mA
②
MODE/SYNC ‘H’ Voltage
VMODEH
IPG
-
VFB=0.65V, VPG=0.5V
1.2
-
6.0
V
③
③
MODE/SYNC ‘L’ Voltage
VMODEL
-
GND
-
0.45
V
MODE/SYNC ‘H’ Current
IMODEH
VL=VMODE=6V
-0.1
0
0.1
μA
①
MODE/SYNC ‘L’ Current
IMODEL
VL=6V, VMODE=0V
-0.1
0
0.1
μA
①
FB ‘H’ Current
IFBH
VSYNC=0V, VFB=6V
-0.1
0
0.1
μA
①
FB ‘L’ Current
IFBL
VSYNC=0V, VFB=0V
-0.1
0
0.1
μA
①
VCEH
Voltage when EXTB pin voltage changes from
2.8
-
30
V
②
GND
-
0.7
V
②
VCE=0.7→2.8V, VIN=30V, VMODE=0V, VFB=0.65V
(*6)
CE ‘H’ Voltage
"H" level to "L" level
VCE=2.8→0.7V, VIN=30V, VMODE=0V, VFB=0.65V
CE ‘L’ Voltage
(*6)
VCEL
Voltage when EXTB pin voltage changes from
"L" level to "H" level
CE ‘H’ Current
(*6)
ICEH
VIN=VCE=30V, VMODE=0V
-0.1
0
0.1
μA
①
CE ‘L’ Current
(*6)
ICEL
VIN=30V, VCE=VMODE=0V
-0.1
0
0.1
μA
①
TTSD
Junction Temperature
-
150
-
℃
②
THYS
Junction Temperature
-
25
-
℃
②
Thermal Shutdown
Temperature
Hysteresis Width
NOTE:
Unless otherwise stated, VIN=VCE=12V, SS:OPEN, ROSC:160kΩ, CVL=1μF, CCLAMP=1μF
External Components: L=10μH, CIN=10μF, CL=22μF, RSENSE=33mΩ, RFB1=220kΩ, RFB2=36kΩ, CFB=33pF(VOUTSET=5.7V)
(*3)
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
(*4)
For the XC9252 Type C only
(*5)
For the XC9252 Type A and B only
(*6)
For the XC9252 Type A and C only
7/28
XC9252 Series
■TEST CIRCUITS
CIRCUIT①
CIRCUIT②
CIRCUIT③
(*1)
The Type B does not have the CE and PG pin.
8/28
XC9252
Series
■TYPICAL APPLICATION CIRCUIT
<TSSOP-16>
<USP-10B>
【Typical Examples】
MANUFACTURER
L
Pch MOSFET
TDK
CLF10040T-4R7M
4.7μH
CLF10040T-100M
10μH
CLF12555T-220M
22μH
2SJ668
VDS=60V/IDS=5A/RON=250mΩ
SANYO
CPH3351
VDS=60V/IDS=1.8A/RON=330mΩ
CMS15
VF=0.58V(3A)
CLS03
VF=0.58V(10A)
Murata
GRM32ER71H106K
10μF/50V
Murata
GRM32ER71E226K
22μF/25V
Panasonic
20SVP22M
22μF/20V/ESR=60mΩ
Panasonic
20SVP47M
47μF/20V/ESR=45mΩ
Murata
GRM188R71A105K
1μF/10V
TOSHIBA
CIN
CVL, CCLAMP
VALUE
TOSHIBA
SBD
CL
PRODUCT NUMBER
<Output voltage setting>
The output voltage can be set by adding an external dividing resistor. The output voltage is determined by the equation below
based on the values of RFB1 and RFB2.
VOUT=0.8×(RFB1+RFB2)/RFB2
with RFB1+RFB2≦1MΩ
Adjust the value of the phase compensation speed-up capacitor CFB using the equation below.
CFB=
1
2π × fzfb × RFB1
A target value for fzfb of about
2
2π CL × L
is optimum.
【Setting Example】
When RFB1=220kΩ, RFB2=36kΩ, VOUT=0.8×(220kΩ+36kΩ) / 36kΩ=5.69V
When CL=22μF, L=10μH, and fzfb is set to a target of 21.46kHz using the above equation,
CFB=1/(2×π×21.46kHz×220kΩ)=33pF
* The setting range for the output voltage is 1.5V to VIN. The condition VOUT/VIN ≧ 0.15 must be satisfied.
9/28
XC9252 Series
■TYPICAL APPLICATION CIRCUIT (Continued)
<Switching frequency setting>
In the XC9252 series, the switching frequency can be set to any value in the range 280kHz to 550kHz by connecting a
resistance (ROSC) between the ROSC pin and GND. ROSC is determined by the equation below.
ROSC=(30×fOSCSET-83016)/(27.4-fOSCSET)
ROSC: Switching frequency setting resistance [kΩ]
fOSCSET: Set frequency [kHz]
Frequency (kHz)
600
【Setting Example】
550
500
450
400
Switching Frequency
ROSC
300kHz
270kΩ
460kHz
160kΩ
350
300
250
100
150
200
250
300
ROSC (kΩ)
Measured value
実測値
Calculation
計算式 equation
<Inductance value setting>
In the XC9252 series, it is optimum to set an inductance value within the range below based on the switching frequency.
Switching Frequency
L
280kHz≦foscset<400kHz
10μH ~ 22μH
400kHz≦foscset≦550kHz
4.7μH ~ 10μH
<CL setting >
In the XC9252 series, a low ESR capacitor can be used for the load capacitance CL; however, if a ceramic capacitor is used, the
set voltage is restricted to 2.5V or higher. If less than 2.5V, an OS-CON (conductive polymer aluminum solid electrolytic
capacitor) is recommended. Select according to the set voltage and switching frequency as shown in the table below. Select a
capacitor with good temperature characteristics and bias dependence characteristics.
VOUTSET<2.5V
VOUTSET≧2.5V
OS-CON
Ceramic
280kHz≦foscset<400kHz
47μF
22μF×2
400kHz≦foscset≦550kHz
22μF
22μF
Switching Frequency
10/28
XC9252
Series
■TYPICAL APPLICATION CIRCUIT (Continued)
<Limit current setting>
In the XC9252 series, a resistance can be connected between the VIN pin and ISENSE pin to set a limit current. The sense
resistance (RSENSE) is determined by the equation below.
RSENSE = VLIM / ILIM
ILIM: Limit current (peak current) [A]
RSENSE: Sense resistance [mΩ]
VLIM= (230-(0.2765×fOSCSET)): Limit current detection voltage [mV]
fOSCSET: Set frequency [kHz]
200
180
160
* The limit current detection voltage VLIM varies depending on
the temperature. Set the limit current (reference value)
using the lower limit value given by the equation below.
Calculated value (VLIM, Ta=25℃)
VLIM(mV)
140
120
100
VLIMMIN=(230-(0.33×fOSCSET)) x 0.85
VLIMMIN: Lower limit value within operating temperature range
(-40 to 105℃)
80
60
40
20
0
100
Calculated value (VLIMMIN, Reference value)
150
200
ROSC (kΩ)
250
ILIMMIN=VLIMMIN / RSENSE [A]
300
【Calculation Example】
To set ILIM to 3A with fOSCSET=460kHz
RSENSE=(230-(0.2765×460)) / 3 ≒ 34 [mΩ]
In this case, the lower limit value of the limit current is ILIMMIN = (230-(0.33×460)) x 0.85 / 34=1.95 [A]
<Soft-start function>
The soft-start time of the XC9252 series can be adjusted externally (SS pin). The soft-start time is the time from the start of VCE
until the output voltage reaches 90% of the set voltage. The soft-start time depends on the external capacitance CSS, and is
determined by the equation below.
tSS2=0.002 x CSS / ISS [ms]
CSS: External capacitance [pF]
ISS=fOSCSET / 300 [μA , TYP.]
fOSCSET: Set frequency [kHz]
* Note that the value of the soft-start time tSS2 varies depending on the effective capacitance value of the delay capacitance CSS.
【Calculation Example】
When fOSCSET=460kHz, CSS=4700pF
tSS2=0.002×4700/(460/300)=6.13ms
The minimum value tSS1 of the soft-start time is set internally to about 0.8ms @460kHz (TYP.). The internal soft-start time is
determined by the equation below.
tSS1=368 / fOSCSET [ms]
fOSCSET: Set frequency [kHz]
VCE
90% of setting voltage
VOUT
tSS1
tSS2
11/28
XC9252 Series
■OPERATIONAL EXPLANATION
The XC9252 series consists internally of a reference voltage supply, ramp wave circuit, error amp, PWM comparator,
phase compensation circuit, current limiting circuit, under-voltage lockout (UVLO) circuit, internal power supply (VL) circuit,
gate clamp (CLAMP) circuit, thermal shutdown (TSD) circuit, oscillator (OSC) circuit, soft-start circuit, control block and other
elements.
The voltage feed back from the FB pin is compared to the internal reference voltage by the error amp, the output from the error
amp is phase compensated, and the signal is input to the PWM comparator to determine the ON time of switching during PWM
operation. The output signal from the error amp is compared to the ramp wave by the PWM comparator, and the output is sent
to the buffer drive circuit and output from the EXTB pin as the duty width of switching. This operation is performed continuously
to stabilize the output voltage.
The driver transistor current is monitored at each switching by the ISENSE pin, and the output signal from the error amp is
modulated as a multi-feedback signal. This allows a stable feedback system to be obtained even when a low ESR capacitor
such as a ceramic capacitor is used, and this stabilizes the output voltage .
XC9252 Series, Type A
<Reference voltage source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.
<Oscillator circuit>
The ramp wave circuit determines switching frequency. By connecting an external resistance ROSC, operation at any
switching frequency from 280kHz to 550kHz is possible.
Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation.
<Error amplifier>
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback
voltage divided by the internal split resistors, RFB1 and RFB2. When a voltage is lower than the reference voltage, then the
voltage is fed back, the output voltage of the error amplifier increases. The error amplifier output is fixed internally to deliver an
optimized signal to the mixer.
<Chip enable>
Types A and C can be put in the standby state by inputting L level into the CE pin. In the standby state, the quiescent current of
the IC is 0μA (TYP.). When H level is input into CE pin, operation starts. The input of the CE pin is CMOS input and the sink
current is 0μA (TYP.).
12/28
XC9252
Series
■OPERATIONAL EXPLANATION (Continued)
<Current limiting, short-circuit protection>
The current limiting circuits of types A and B combine both current limiting and short-circuit protection.
(1) The current in the sense resistance (RSENSE) connected to the VIN pin -ISENSE pin is monitored, and when the load current
attains the limiting current, the current limiting circuit activates and the output voltage drops.
(2) The output voltage drops to about 90% of the regular state, and this causes the switching frequency to drop and prevent
coil current (IL) overlay. When the limiter state is released and the output voltage returns to the regular state, the switching
frequency returns to the frequency set by ROSC.
(3) If the output voltage drops further from states (2), the output current is limited, the switching frequency is lowered further,
and the short-circuit state is entered. When the load becomes lighter than the short-circuit state, restart takes place
automatically. To prevent overshoot during restart, restart takes place by soft-start.
(1) Current limiting
operation
(2) When the current limiting state
continues and VOUT falls to 90%
(TYP.) of the regular state, the
switching frequency is lowered.
(3) When the current limiting states of (1) and (2) continue and VOUT falls to 50%
(TYP.) of the regular state, the switching frequency is further lowered and the
short-circuit state is entered.
<Integral latch protection>
When the current limiting state continues for a certain time, the correct limiting circuit of type C latches and stops the EXT/ pin
in the "H" level state (turning off the driver Tr). To restart operation by soft-start once in the latch stop state, "L" level must be
input into the CE pin followed by "H" level, or restart of the VIN pin (briefly lowering the VIN voltage below the UVLO detection
voltage) must be performed.
1.2ms(TYP.fosc=460kHz)
ILIM
IL
EXTB
VOUT
③ ①、②の状態が
①電流制限動作
が定常状態から
②電流制限動作状態が続き、V
(1) Current
limiting
(2) When the current limiting stateOUT
continues
and VOUT falls to (3)
When the states of (1) and (2) ④
(4)CE="L"→"H"とすることでソ
CE="L"->"H" restarts operation by
90%(TYP.)以下に低下した場合に、スイッチング周波数を
operation
90% (TYP.) of the regular state, the switching frequency is 1.2ms(TYP.fosc=460kHz時)続くと、
continue for 1.2ms (TYP. when フトスタートにて動作を再開
soft start.
EXT/端子は"H"レベルの状態でラ
低下させる
lowered.
fosc=460kHz), the EXT/ pin latches
ッチ停止する
and stops in the "H" level state.
VOUT×0.90
CE
(UVLO)
<Thermal shutdown>
The thermal shutdown (TSD) as an over current limit is built in the XC9252 series.
When the junction temperature of the IC reaches the detection temperature, EXTB becomes "H" level and forcibly stops output.
When the junction temperature falls to the release temperature while in the output stop state, restart takes place by soft-start.
<UVLO>
When the VIN pin voltage falls below 2.5V (TYP.), EXTB becomes "H" level and forcibly stops output to prevent false pulse
output due to instable operation of the internal circuits. When the VIN pin voltage rises above 2.6V (TYP.), the UVLO function is
released, the soft-start function activates, and output start operation begins. Stopping by UVLO is not shutdown; only pulse
output is stopped and the internal circuits continue to operate.
13/28
XC9252 Series
■OPERATIONAL EXPLANATION (Continued)
<Power good>
On types A and C, the output state can be monitored using the power good function. When the FB voltage drops below 90%
(TYP.), the PG pin outputs an "L" signal.
The PG pin is an Nch open drain output, therefore a pull-up resistance must be connected to the PG pin.
<SYNC/MODE function>
The MODE/SYNC pin has the two functions of a control MODE selector pin and an external CLK input pin. When "H" voltage
is input, the mode becomes fixed PWM control, and when "L" voltage is input, the mode becomes PWM/PFM auto switching
control.
When an external CLK (±25% of free running frequency, on duty 25% to 75%) is input into the MODE/SYNC pin, operation is
synchronized to the falling edge of the external CLK (external CLK synchronization function). When synchronized to the
external CLK, the control mode is automatically PWM control. When the external CLK is fixed at "H" voltage or "L" voltage for
about 2 cycles of the free running frequency, external CLK synchronization stops and operation at the free running frequency
takes place.
(1) Switching from free running frequency => external CLK synchronization
Operation at free running frequency
Synchronized to external CLK
Cycles at falling edge of external CLK
Free running frequency → external CLK synchronization switching delay (about 10 cycles)
(2) Switching from external CLK synchronization => free running frequency
Synchronized to external CLK
Synchronized to external CLK
When there is no pulse for about 2 cycles, switches to free running frequency
14/28
XC9252
Series
■NOTE ON USE
1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or
deteriorated if IC is used beyond the absolute MAX. specifications.
2. Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.
3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the
characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully
considering which components to select. Be especially careful of the capacitor characteristics and use B characteristics (JIS
standard) or X7R, X5R (EIA standard) ceramic capacitors.
4. If there is a large dropout voltage, then there might be pulse-skip during light loads even with PWM control.
5. The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage
is large or the load current is large, the peak current will increase, which makes it easier for current limitation to be applied
which in turn could cause the operation to become unstable. When the peak current becomes large, adjust the coil
inductance and sufficiently check the operation. The following formula is used to show the peak current.
Peak Current: Ipk = ( VIN – VOUT ) × OnDuty / ( 2 × L × fOSC ) + IOUT
L: Coil Inductance [H]
fOSC: Oscillation Frequency [Hz]
IOUT: Load Current [A]
6. If there is a large dropout voltage, a circuit delay could create the ramp-up of coil current with staircase waveform exceeding
the current limit.
7. The ripple voltage could be increased when switching from discontinuous conduction mode to Continuous conduction mode.
Please apply the ICs only after careful examination by the customer.
8. When operation changes from free running frequency to external CLK synchronization, the output voltage may fluctuate.
Please apply the ICs only after careful examination by the customer.
9. The internal power supply VL and gate clamp CLAMP are optimized as a local power supply for the DC/DC control block of
the IC. Do not use the VL pin output and the CLAMP pin output.
10. Instructions of pattern layouts
The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is
high, please place the input capacitor(CIN) and the output capacitor (CL,CVL,CCLAMP) as close to the IC as possible.
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the
VIN and GND pins.
(2) Please mount each external component as close to the IC as possible.
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
(4) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at
the time of switching may result in instability of the IC.
15/28
XC9252 Series
■NOTE ON USE (Continued)
10. Instructions of pattern layouts (Continued)
<Reference Pattern Layout>
TSSOP-16 (Front)
TSSOP-16 (Back)
USP-10B (Front)
USP-10B (Back)
11. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their
systems.
16/28
XC9252
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Efficiency vs. Output current
XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=280kHz)
XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=460kHz)
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
100
90
90
80
80
Efficiency :EFFI[%]
Efficiency :EFFI[%]
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
100
70
60
50
40
30
20
PFM(MODE=L)
10
PWM(MODE=H)
0
70
60
50
40
30
20
PFM(MODE=L)
10
PWM(MODE=H)
0
1
10
100
1000
10000
1
Output Current :IOUT[mA]
XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=280kHz)
10000
90
90
80
Efficiency :EFFI[%]
Efficiency :EFFI[%]
1000
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
100
70
60
50
40
30
PFM(MODE=L)
20
10
PWM(MODE=H)
80
70
60
50
40
30
PFM(MODE=L)
20
PWM(MODE=H)
10
0
0
1
10
100
1000
1
10000
10
100
1000
10000
Output Current :IOUT[mA]
Output Current :IOUT[mA]
XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=280kHz)
XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=460kHz)
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
100
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
100
90
Efficiency :EFFI[%]
90
Efficiency :EFFI[%]
100
XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=460kHz)
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
100
80
70
60
50
40
30
20
PFM(MODE=L)
10
0
PWM(MODE=H)
80
70
60
50
40
30
20
PFM(MODE=L)
10
PWM(MODE=H)
0
1
10
100
1000
1
10000
Output Current :IOUT[mA]
10
100
1000
10000
Output Current :IOUT[mA]
XC9252x08A(VIN=24V, VOUT=12V, fOSC=280kHz)
XC9252x08A(VIN=24V, VOUT=12V, fOSC=460kHz)
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
100
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
100
90
Efficiency :EFFI[%]
90
Efficiency :EFFI[%]
10
Output Current :IOUT[mA]
80
70
60
50
40
30
20
PFM(MODE=L)
PWM(MODE=H)
10
80
70
60
50
40
30
20
PFM(MODE=L)
10
PWM(MODE=H)
0
0
1
10
100
1000
Output Current :IOUT[mA]
10000
1
10
100
1000
10000
Output Current :IOUT[mA]
17/28
XC9252 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Output Current
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
3.60
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
3.60
Output Voltage : VOUT[V]
XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=460kHz)
Output Voltage : VOUT[V]
XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=280kHz)
3.50
3.40
3.30
3.20
PFM(MODE=L)
3.10
PWM(MODE=H)
3.00
3.50
3.40
3.30
3.20
PFM(MODE=L)
3.10
PWM(MODE=H)
3.00
1
10
100
1000
10000
1
10
Output Current :IOUT[mA]
1000
10000
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
6.00
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
6.00
Output Voltage : VOUT[V]
XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=460kHz)
Output Voltage : VOUT[V]
XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=280kHz)
5.90
5.80
5.70
5.60
PFM(MODE=L)
5.50
PWM(MODE=H)
5.40
5.90
5.80
5.70
5.60
PFM(MODE=L)
5.50
PWM(MODE=H)
5.40
1
10
100
1000
10000
1
10
Output Current :IOUT[mA]
100
1000
10000
Output Current :IOUT[mA]
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
6.00
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
6.00
Output Voltage : VOUT[V]
XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=460kHz)
Output Voltage : VOUT[V]
XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=280kHz)
5.90
5.80
5.70
5.60
PFM(MODE=L)
5.50
PWM(MODE=H)
5.40
5.90
5.80
5.70
5.60
PFM(MODE=L)
5.50
PWM(MODE=H)
5.40
1
10
100
1000
10000
1
10
Output Current :IOUT[mA]
100
1000
10000
Output Current :IOUT[mA]
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
12.60
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
12.60
Output Voltage : VOUT[V]
XC9252x08A(VIN=24V, VOUT=12V, fOSC=460kHz)
Output Voltage : VOUT[V]
XC9252x08A(VIN=24V, VOUT=12V, fOSC=280kHz)
12.40
12.20
12.00
11.80
PFM(MODE=L)
11.60
PWM(MODE=H)
11.40
12.40
12.20
12.00
11.80
PFM(MODE=L)
11.60
PWM(MODE=H)
11.40
1
10
100
1000
Output Current :IOUT[mA]
18/28
100
Output Current :IOUT[mA]
10000
1
10
100
1000
Output Current :IOUT[mA]
10000
XC9252
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Ripple Voltage vs. Output Current
XC9252x08A(VIN=12V, VOUT=5V, fOSC=280kHz)
XC9252x08A(VIN=12V, VOUT=5V, fOSC=460kHz)
45
PWM(MODE=H)
40
PFM(MODE=L)
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50
Ripple Voltage :Vr[mV]
Ripple Voltage :Vr[mV]
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
50
35
30
25
20
15
10
5
45
PWM(MODE=H)
40
PFM(MODE=L)
35
30
25
20
15
10
0
5
0
0.1
1
10
100
1000
10000
0.1
Output Current :IOUT[mA]
1
10
100
1000
10000
Output Current :IOUT[mA]
※ when the MODE/SYNC pin is "L", ripple voltage will increase while the PWM and PFM controls switch depending on the conditions of input and output voltage, peripheral
components. The ripple voltage can be minimized by operating PWM control state, which the MODE/SYNC pin is "H" or the external clock is synchronized.
(5) UVLO Voltage vs. Ambient Temperature
(4) FB Voltage vs. Ambient Temperature
XC9252x08A
XC9252x08A
VIN=12V
0.810
0.808
FB Voltage :VFB[V]
3.0
UVLO Voltage :VUVLO1,VUVLO2[V]
0.812
0.806
0.804
0.802
0.800
0.798
0.796
0.794
0.792
0.790
0.788
-50
-25
0
25
50
75
100
VUVLO1(DetectVoltage)
2.9
VUVLO2(ReleaseVoltage)
2.8
2.7
2.6
2.5
2.4
2.3
2.2
125
-50
Ambient Temperature :Ta[℃]
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
(6) Oscillation Frequency vs. Ambient Temperature
XC9252x08A
VIN=12V
VIN=12V, ROSC=160kΩ(fOSC=460kHz)
506
600
Oscillation Frequency:fOSC[kHz]
Oscillation Frequency:fOSC[kHz]
XC9252x08A
483
460
437
414
-50
-25
0
25
50
75
100
550
Ta=-40℃
Ta=25℃
500
Ta=105℃
450
400
350
300
250
100
125
150
Ambient Temperature :Ta[℃]
200
ROSC [kΩ]
250
300
(7) Quiescent Current vs. Ambient Temperature
XC9252x08A
45
40
35
30
25
20
VIN=30V, ROSC=160kΩ(fOSC=460kHz)
50
Quiescent Current2 :Iq2[uA]
50
Quiescent Current1 :Iq1[uA]
XC9252x08A
VIN=30V, ROSC=270kΩ(fOSC=300kHz)
45
40
35
30
25
20
-50
-25
0
25
50
75
Ambient Temperature :Ta[℃]
100
125
-50
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
19/28
XC9252 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) Stand-by Current vs. Ambient Temperature
(9) Ext SW ON Resistance vs. Ambient Temperature
XC9252x08A
XC9252x08A
5.0
Ext SW ON Resistance :REXT[Ω]
10
Stand-by Current :ISTB[μA]
VIN=5V
VIN=30V
9
8
7
6
5
4
3
2
1
0
-50
-25
0
25
50
75
100
125
4.5
4.0
3.5
3.0
2.5
2.0
EXT"H"
1.5
EXT"L"
1.0
-50
-25
Ambient Temperature :Ta[℃]
0
25
(10) SS Pin Current vs. Ambient Temperature
1.80
1.70
1.60
1.50
1.40
0
25
50
75
100
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
125
-50
Ambient Temperature :Ta[℃]
-25
0
7
6
5
4
3
0
25
50
75
100
125
XC9252x08A
ExternalSoft-StartTime:tSS2[ms]
ExternalSoft-StartTime:tSS2[ms]
XC9252x08A
-25
50
(13) External Soft-Start Time vs. CSS
VIN=12V, ROSC=160kΩ(fOSC=300kHz), CSS=4700pF
-50
25
Ambient Temperature :Ta[℃]
(12) External Soft-Start Time vs. Ambient Temperature
8
125
VIN=12V, ROSC=160kΩ(fOSC=460kHz)
1.20
InternalSoft-StartTime:tSS1[ms]
SS Pin Current :ISS[μA]
1.90
-25
100
XC9252x08A
VIN=12V, ROSC=270kΩ(fOSC=300kHz)
-50
75
(11) Internal Soft-Start Time vs. Ambient Temperature
XC9252x08A
2.00
50
Ambient Temperature :Ta[℃]
75
100
VIN=12V, ROSC=160kΩ(fOSC=460kHz)
60
Ta=-40℃
Ta=25℃
50
Ta=105℃
40
30
20
10
0
0
125
10
20
30
40
50
Capasitor :CSS[nF]
Ambient Temperature :Ta[℃]
(14) Current Limit Voltage vs. Ambient Temperature
XC9252x08A
VIN=12V, ROSC=270kΩ(fOSC=300kHz)
200
CurrentLimitVoltage2:VLIM2[mV]
CurrentLimitVoltage1:VLIM1[mV]
XC9252x08A
180
160
140
120
100
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
20/28
125
VIN=12V, ROSC=160kΩ(fOSC=460kHz)
140
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
125
XC9252
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Current Limit Voltage vs. ROSC
(16) Short Protection Threshold Voltage vs. Temperature
XC9252x08A
VIN=12V
200
180
160
140
120
100
80
60
Ta=-40℃
Ta=25℃
Ta=105℃
40
20
0
100
125
150
175
200
225
250
275
VIN=12V
0.50
ShortProtectionVoltage:VSHORT[V]
Current Limit Voltage :VLIM[mV]
XC9252x08A
0.48
0.46
0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30
-50
300
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
ROSC[kΩ]
(17) Latch Time vs. Ambient Temperature
XC9252C08A
VIN=12V, ROSC=270kΩ(fOSC=300kHz)
2.1
2.0
1.9
1.8
1.7
VIN=12V, ROSC=160kΩ(fOSC=460kHz)
1.5
Latch Time2 :tLAT2[ms]
2.2
Latch Time1 :tLAT1[ms]
XC9252C08A
1.4
1.3
1.2
1.1
1.0
1.6
-50
-25
0
25
50
75
100
-50
125
-25
0
25
50
75
(18) PG Detect Voltage vs. Ambient Temperature
XC9252x08A
VIN=12V, RPG:200kΩ pullup to VL
VIN=12V
5.0
PG Output Current :IPG[mA]
0.75
PG detect Voltage :VPG[V]
125
(19) PG Output Current vs. Ambient Temperature
XC9252x08A
0.74
0.73
0.72
0.71
0.70
0.69
4.0
3.0
2.0
1.0
0.0
-50
-25
0
25
50
75
100
125
-50
-25
Ambient Temperature :Ta[℃]
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
(20) Local Regulator Output Voltage vs. Ambient Temperature
(21) Gate Clamp Voltage vs. Ambient Temperature
XC9252x08A
XC9252x08A
VIN=12V
5.5
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.6
4.5
VIN=12V
5.5
GateClampVoltage:VCLAMP[V]
LocalRegulatorOutputVoltage:VVL
[V]
100
Ambient Temperature :Ta[℃]
Ambient Temperature :Ta[℃]
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.6
4.5
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
125
-50
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
21/28
XC9252 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(22) MODE/SYNC Voltage vs. Ambient Temperature
(23) CE Voltage vs. Ambient Temperature
XC9252x08A
1.2
2.8
1.1
2.4
CE Voltage :VCE[V]
MODE/SYNC Voltage :VMODE[V]
XC9252x08A
1.0
0.9
0.8
0.7
0.6
2.0
1.6
1.2
0.8
0.5
0.4
0.4
0.0
-50
-25
0
25
50
75
100
125
CE"H"
CE"L"
-50
Ambient Temperature :Ta[℃]
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
(24) CE Rising Response
XC9252x08A、 fOSC=460kHz
XC9252x08A、 fOSC=300kHz
VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:OPEN
VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:OPEN
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
200μs/div
200μs/div
CE=0V→12V
CE=0V→12V
VOUT : 2V/div
VOUT : 2V/div
PG : 5V/div
PG : 5V/div
XC9252x08A、 fOSC=300kHz
XC9252x08A、 fOSC=460kHz
VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:4700pF
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:4700pF
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
2ms/div
CE=0V→12V
CE=0V→12V
VOUT : 2V/div
PG : 5V/div
22/28
2ms/div
VOUT : 2V/div
PG : 5V/div
125
XC9252
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(25) Load Transient Response(MODE=L, PFM/PWM Control)
XC9252x08A、 fOSC=300kHz
XC9252x08A、 fOSC=300kHz
VIN=12V, VOUT=3.3V, IOUT=0.1mA→500mA
VIN=12V, VOUT=3.3V, IOUT=500mA→0.1mA
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
50μs/div
1ms/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=0.1mA→500mA
IOUT=500mA→0.1mA
XC9252x08A、 fOSC=300kHz
XC9252x08A、 fOSC=300kHz
VIN=12V, VOUT=5.0V, IOUT=0.1mA→500mA
VIN=12V, VOUT=5.0V, IOUT=500mA→0.1mA
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 500mV/div
IOUT=0.1mA→500mA
XC9252x08A、 fOSC=460kHz
1ms/div
VOUT: 500mV/div
IOUT=500mA→0.1mA
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=3.3V, IOUT=0.1mA→500mA
VIN=12V, VOUT=3.3V, IOUT=500mA→0.1mA
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
1ms/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=0.1mA→500mA
IOUT=500mA→0.1mA
XC9252x08A、 fOSC=460kHz
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=5.0V, IOUT=0.1mA→500mA
VIN=12V, VOUT=5.0V, IOUT=500mA→0.1mA
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 500mV/div
IOUT=0.1mA→500mA
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
1ms/div
VOUT: 500mV/div
IOUT=500mA→0.1mA
23/28
XC9252 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(26) Load Transient Response(MODE=H, PWM Control)
XC9252x08A、 fOSC=300kHz
XC9252x08A、 fOSC=300kHz
VIN=12V, VOUT=3.3V, IOUT=0.1A→1A
VIN=12V, VOUT=3.3V, IOUT=1A→0.1A
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
50μs/div
50μs/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=0.1A→1A
XC9252x08A、 fOSC=300kHz
IOUT=1A→0.1A
XC9252x08A、 fOSC=300kHz
VIN=12V, VOUT=5.0V, IOUT=0.1A→1A
VIN=12V, VOUT=5.0V, IOUT=1A→0.1A
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L),
RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15
50μs/div
50μs/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=0.1A→1A
IOUT=1A→0.1A
XC9252x08A、 fOSC=460kHz
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=3.3V, IOUT=0.1A→1A
VIN=12V, VOUT=3.3V, IOUT=1A→0.1A
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
50μs/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=0.1A→1A
XC9252x08A、 fOSC=460kHz
IOUT=1A→0.1A
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=5.0V, IOUT=0.1A→1A
VIN=12V, VOUT=5.0V, IOUT=1A→0.1A
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 500mV/div
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 500mV/div
IOUT=0.1A→1A
IOUT=1A→0.1A
24/28
XC9252
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(27) Transient Response(MODE/SYNC=L⇔External Clock) (Continued)
XC9252x08A、 fOSC=460kHz
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=460kHz→345kHz
VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=345kHz→460kHz
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 100mV/div
MODE/SYNC=0V→External Clock(345kHz)
50μs/div
VOUT: 100mV/div
MODE/SYNC=External Clock(345kHz)→0V
XC9252x08A、 fOSC=460kHz
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=460kHz→345kHz
VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=345kHz→460kHz
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 100mV/div
MODE/SYNC=0V→External Clock(345kHz)
50μs/div
VOUT: 100mV/div
MODE/SYNC=External Clock(345kHz)→0V
XC9252x08A、 fOSC=460kHz
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=460kHz→575kHz
VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=575kHz→460kHz
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 100mV/div
MODE/SYNC=0V→External Clock(575kHz)
50μs/div
VOUT: 100mV/div
MODE/SYNC=External Clock(575kHz)→0V
XC9252x08A、 fOSC=460kHz
XC9252x08A、 fOSC=460kHz
VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=460kHz→575kHz
VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=575kHz→460kHz
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 100mV/div
MODE/SYNC=0V→External Clock(575kHz)
L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L),
ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L),
RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15
50μs/div
VOUT: 100mV/div
MODE/SYNC=External Clock(575kHz)→0V
25/28
XC9252 Series
■PACKAGING INFORMATION
●USP-10B (unit: mm)
2.6±0.05
0.4±0.03
1.6±0.05
1.15±0.1
0.1±0.05
0.25±0.05
0.6 MAX
6.4±0.2
4.4±0.2
0.5±0.2
●TSSOP-16 (unit:mm)
* The side of pins are not gilded, but nickel is used.
* Pin #1, #2, #9 and #10 is wider than other pins.
●USP-10B (unit: mm)
Reference Pattern Layout
1.50
1.05
0.8
1.50
1.05
0.8
0.4
26/28
●USP-10B (unit: mm)
0.35
Reference Metal Mask Design
1.45
1.10
0.70
1.45
1.10
0.70
0.35
XC9252
Series
■MARKING RULE
① represents products series
TSSOP-16
16 15 14 13 12 11 10 9
①
②
③
④
⑤
MARK
PRODUCT SERIES
1
XC9252******-G
② represents products type
1 2 3 4 5 6 7 8
MARK
TYPE
PRODUCT SERIES
A
B
C
Standard type
Without chip enable, power-good
Standard type with latch protection
XC9252A*****-G
XC9252B*****-G
XC9252C*****-G
USP-10B
③ represents reference voltage and oscillation frequency
2
9
3
4
5
① ② ③
10
④ ⑤
1
MARK
VOLTAGE (V)
OSCILLATION
FREQUENCY
PRODUCT SERIES
A
0.8
Adjustable
XC9252*08A**-G
8
7
6
④⑤ represents production lot number
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order.
(G, I, J, O, Q, W excluded)
* No character inversion used.
27/28
XC9252 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
28/28