XC9252 Series ETR05038-004 Low Power Consumption Step-down DC/DC Controller IC ■GENERAL DESCRIPTION The XC9252 series is a 30V operation step-down DC/DC controller IC. under low input voltage. The external P-ch driver transistor is used to achieve a stable operation Low ESR capacitors such as ceramic capacitors can be used for the load capacitor (CL). A 0.8V reference voltage source is incorporated, and the output voltage can be set freely from 1.5V using external resistors (RFB1, RFB2). 280kHz to 550kHz can be selected for the switching frequency by connecting an external resistor to the ROSC pin. The generation of unneeded noise can be reduced by this synchronization with an external CLK within ±25% of the internal clock using the MODE/SYNC pin. In automatic PWM/PFM control, the IC operates by PFM control when the load is light to achieve high efficiency over the full load range from light to heavy. The soft start time can be set as desired by adding an external capacitance to the SS pin. With the built-in UVLO function, the driver transistor is forced OFF when input voltage becomes 2.5V or lower. Internal protection circuits include over current protection, short-circuit protection, and thermal shutdown circuits to enable safe use. ■APPLICATIONS ●Car navigation systems ●Car audios ●ETC automotives ■FEATURES Input Voltage Range FB Voltage Supply Current Oscillation Frequency External Clocking Synchronous Control Method Soft-Start Protection Circuits Output Capacitor Operating Ambient Temperature Packages Environmentally Friendly : 3.0V~30V (Absolute MAX. Rating: 36V) : 0.8V (±2%) : 30μA (@300kHz) : 280kHz~550kHz (External Resistor) :±25% of the internal clock : PWM control (MODE:H) PWM/PFM (MODE:L) : External set (External C) : Over current limit (External Resistor) Automatic Return (XC9252A/B) Integral latch protection (XC9252C) Thermal shutdown : Low ESR Capacitor : -40℃~+105℃ : TSSOP-16 (XC9252A/C) USP-10B (XC9252B) : EU RoHS Compliant, Pb Free ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTARISTICS XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=280kHz) L=22μH(CLF12555-220M), CIN =10μF(GRM32ER71H106KA12L), ROSC =300kΩ, CL =22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 100 Efficiency :EFFI[%] 90 80 70 60 50 40 30 20 PFM(MODE=L) 10 PWM(MODE=H) 0 1 10 100 1000 10000 Output Current :IOUT[mA] 1/28 XC9252 Series ■BLOCK DIAGRAM 1) XC9252 Series, Type A 2) XC9252 Series, Type B 3) XC9252 Series, Type C * Diodes inside the circuit are an ESD protection diode and a parasitic diode. 2/28 XC9252 Series ■PRODUCT CLASSIFICATION ●Ordering Information XC9252①②③④⑤⑥-⑦ DESIGNATOR ITEM ① TYPE SYMBOL DESCRIPTION A B Refer to Selection Guide C ②③ Adjustable Output Voltage 08 Reference voltage is fixed in 0.8V ④ Oscillation Frequency A Adjustable ⑤⑥-⑦ (*1) (*2) (*1) Packages (Order Unit) VR-G TSSOP-16 (3,000/Reel) *Only Type A,C DR-G USP-10B (3,000/Reel) (*2) *Only Type B The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant. The USP-10B reels are shipped in a moisture-proof packing. ●Selection Guide TYPE CHIP ENABLE SOFT-START CURRENT LIMITER LATCH PROTECTION THERMAL SHUTDOWN UVLO A Yes Yes Yes No Yes Yes B No Yes Yes No Yes Yes C Yes Yes Yes Yes Yes Yes TYPE SYNCHRONIZED WITH EXTERNAL CLOCK POWER-GOOD A Yes Yes B Yes No C Yes Yes ■PIN CONFIGURATION * The dissipation pad for this IC should be solder-plated for mounting strength and heat dissipation. pattern and metal masking. Please refer to the reference mount The dissipation pad should be connected to the GND (No. 6) pin. 3/28 XC9252 Series ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTIONS 2 10 8 9 VIN CE VL PG SS FB Power Input Chip Enable Local Power Supply Power-good Output Soft-start Adjustment Output Voltage Sense 3 1 MODE/SYNC Mode Control/External CLK Sync Pin 11 7 ROSC Frequency Adjustment 9 6 GND Ground 8 5 CLAMP High Side Gate Clamp 7 6 2, 4, 12, 13 4 3 - ISENSE EXTB NC Current Sense Pin External Transistor Drive Pin No Connection TSSOP-16 USP-10B 5 1 16 10 14 15 ■FUNCTION XC9252 Series, Type A and Type C PIN NAME CE SIGNAL STATUS L Stand-by H Active OPEN Undefined State (*1) SIGNAL STATUS L PWM/PFM Automatic Control H PWM control CLK Synchronized with External Clock Signal ( PWM control ) OPEN Undefined State(*1) XC9252 Series PIN NAME MODE /SYNC (*1) Please do not leave the CE and MODE/SYNC pin open. 4/28 XC9252 Series ■ABSOLUTE MAXIMUM RATINGS Ta=25℃ PARAMETER SYMBOL RATINGS UNITS VIN Pin Voltage VIN -0.3 ~ +36 V CE Pin Voltage FB Pin Voltage VL Pin Voltage VL Pin Current SS Pin Voltage ROSC Pin Voltage MODE/SYNC Pin Voltage PG Pin Voltage (*6) PG Pin Current (*6) CLAMP Pin Voltage VCE VFB VVL IVL VSS VROSC VMODE VPG IPG VCLAMP -0.3 ~ +36 -0.3 ~ +6.5 -0.3 ~ VIN+0.3 or +6.5 (*1) 10 -0.3 ~ VVL+0.3 or +6.5 (*2) -0.3 ~ VVL+0.3 or +6.5 (*2) -0.3 ~ +6.5 -0.3 ~ +6.5 5 (*4) -0.3 or VIN-6.5 ~ VIN+0.3 or +36 (*3) V V V mA V V V V mA V CLAMP Pin Current ICLAMP 10 ISENSE Pin Voltage VISENSE -0.3 or VIN-6.5 or VCLAMP-0.3 (*5) EXTB Pin Voltage VEXT -0.3 or VIN-6.5 or VCLAMP-0.3 EXTB Pin Current IEXT 100 Power Dissipation TSSOP-16 USP-10B mA (*5) 350 Pd 150 ~ VIN+0.3 or +36 (*3) V ~ VIN+0.3 or +36 (*3) V mA mW Surge Voltage Operating Ambient Temperature VSURGE Topr 46 (*7) -40~+105 ℃ Storage Temperature Tstg -55~+125 ℃ * All voltages are described based on the GND pin. (*1) The maximum value should be either VIN+0.3 or +6.5 in the lowest. (*2) The maximum value should be either VVL+0.3 or +6.5 in the lowest. (*3) The maximum value should be either VIN+0.3 or +36 in the lowest. (*4) The minimum value should be either -0.3 or VIN-6.5 in the highest. (*5) The minimum value should be either -0.3 or VIN-6.5 or VCLAMP-0.3 in the highest. (*6) For the XC9252 Type A and C only. (*7) Applied Time≦400ms 5/28 XC9252 Series ■ELECTRICAL CHARACTERISTICS XC9252 Series Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNIT CIRCUIT FB Voltage Output Voltage Setting Range Operating Voltage Range Local Regulator Output Voltage Gate Clamp Voltage VFB VOUTSET VIN VVL VCLAMP 0.784 (*1) 1.5 3 4.75 4.75 0.800 5.00 5.00 0.816 VIN 30 5.25 5.25 V V V V V ② ③ ② ② UVLO Detect Voltage VUVLO1 2.375 2.500 2.625 V ② UVLO Release Voltage VUVLO2 2.470 2.600 2.730 V ② UVLO Detect Time tUVLO 0.20 0.35 0.60 ms ② Supply Current Quiescent Current 1 Quiescent Current 2 Stand-by Current Operating Oscillation Frequency Setting Range IDD Iq1 Iq2 ISTB IVL=0.1mA ICLAMP=0.1mA, VCLAMP=VIN-CLAMP VIN: 2.8V→2.3V, VCE=12V, VFB=0.72V VIN Voltage when EXTB pin voltage changes from "L" level to "H" level VIN: 2.3V→2.8V, VCE=12V, VFB=0.72V VIN Voltage which EXTB pin voltage changes from "H" level to "L" level VIN: 2.8V→2.3V, VCE=12V, VFB=0.72V VIN Voltage when EXTB pin voltage changes from "L" level to "H" level VIN=VCE=30V, VMODE=5V, VFB=0.95V(PWM) VIN=VCE=30V, VMODE=0V, VFB=0.95V (PWM/PFM) ROSC=270kΩ VIN=VCE=30V, VMODE=0V, VFB=0.95V (PWM/PFM) VIN=30V, VCE=0V 70 18 25 95 30 36 0 120 46 55 1 μA μA μA μA ① ① ① ① 280 - 550 kHz ③ 270 300 330 kHz ③ fOSCSET Oscillation Frequency 1 fOSC1 Oscillation Frequency 2 fOSC2 External Clock Signal Synchronized Frequency External Clock Signal Duty Cycle Maximum Duty Cycle Minimum Duty Cycle EXTB"H" SW On Resistance EXTB"L" SW On Resistance Connected to external components, IOUT=100mA, ROSC: 270kΩ, L=22μH Connected to external components, IOUT=100mA 414 460 506 kHz ③ SYNCOSC Connected to external components, VIN=VCE=12V, IOUT=100mA fOSCx0.75 fOSC fOSCx1.25 kHz ③ DSYNC Connected to external components 25 - 75 % ③ DMAX DMIN VFB=0.65V VFB=0.95V 100 - - 0 % % ② ② REXTH VIN=VCE=5V, VCLAMP=0V, VFB=0.95V, IEXT=50mA 2.0 3.5 6.0 Ω ② REXTL VIN=VCE=5V, VCLAMP=0V, VFB=0.65V, IEXT=-50mA 1.4 2.5 6.0 Ω ② 127.5 150 172.5 mV ② 85 100 115 mV ② 1.2 1.9 2.3 ms ③ 0.8 1.2 1.5 ms ③ 0.35 0.40 0.45 V ③ 0.5 0.8 1.2 ms ② 4.0 5.6 7.0 ms ② Current Limit Voltage 1 (*2) VISENSE1 Current Limit Voltage 2 (*2) VISENSE2 Latch Time1 (*4) tLAT1 Latch Time2 (*4) tLAT2 Short Protection (*5) Threshold Voltage VSHORT Internal Soft-start Time tSS1 External Soft-start Time tSS2 VISENSE=VIN→VIN-0.20V, VFB=0.65V, ROSC: 270kΩ VISENSE Voltage when EXTB pin voltage changes from "L" level to "H" level VISENSE=VIN→VIN-0.15V, VFB=0.65V VISENSE Voltage when EXTB pin voltage changes from "L" level to "H" level VISENSE=VIN→VIN-0.2V, VFB=0.65V, ROSC: 270kΩ VISENSE Voltage when EXTB pin voltage changes from "L" level to "H" level VISENSE=VIN→VIN-0.2V, VFB=0.65V VISENSE Voltage when EXTB pin voltage changes from "L" level to "H" level VFB=0.5V→0.3V, VFB Voltage when Oscillation Frequency is decreased VCE=0→12V, VSS=5V, VFB=VFB×0.9V Time until EXTB pin oscillates VCE=0→12V, VFB=VFB×0.9V, CSS=4700pF Time until EXTB pin oscillates NOTE: Unless otherwise stated, VIN=VCE=12V, SS:OPEN, ROSC:160kΩ, CVL=1μF, CCLAMP=1μF External Components: L=10μH, CIN=10μF, CL=22μF, RSENSE=33mΩ, RFB1=220kΩ, RFB2=36kΩ, CFB=33pF(VOUTSET=5.7V) (*1) Please use within the range of VOUT/VIN≧0.15 (*2) Current limit denotes the level of detection at peak of coil current. (*3) EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 (*4) For the XC9252 Type C only (*5) For the XC9252 Type A and B only (*6) For the XC9252 Type A and C only 6/28 XC9252 Series ■ ELECTRICAL CHARACTERISTICS (Continued) Ta=25℃ XC9252 Series PARAMETER SYMBOL MIN. TYP. MAX. UNIT CIRCUIT SS Pin Current 1 ISS1 VFB=0.95V, VSS=0V, ROSC: 270kΩ 0.6 0.8 1.2 μA ② SS Pin Current 2 ISS2 VFB=0.95V, VSS=0V 1.4 1.7 2.0 μA ② - 90 - % ③ - ±50 - ppm/℃ ② 0.691 0.720 0.749 V ② Efficiency (*3) EFFI FB Voltage ∆VFB/ Temperature (∆Topr・VFB) Characteristics CONDITIONS Connected to external components, VOUT=5.7V, IOUT=1A IOUT=100mA, -40℃≦Topr≦105℃ VFB=0.76V→0.65V, RPG: 200kΩ pull-up to VL PG detect voltage (*6) VPG Voltage when PG pin voltage changes from "H" level to "L" level PG Output Current (*6) 1 - - mA ② MODE/SYNC ‘H’ Voltage VMODEH IPG - VFB=0.65V, VPG=0.5V 1.2 - 6.0 V ③ ③ MODE/SYNC ‘L’ Voltage VMODEL - GND - 0.45 V MODE/SYNC ‘H’ Current IMODEH VL=VMODE=6V -0.1 0 0.1 μA ① MODE/SYNC ‘L’ Current IMODEL VL=6V, VMODE=0V -0.1 0 0.1 μA ① FB ‘H’ Current IFBH VSYNC=0V, VFB=6V -0.1 0 0.1 μA ① FB ‘L’ Current IFBL VSYNC=0V, VFB=0V -0.1 0 0.1 μA ① VCEH Voltage when EXTB pin voltage changes from 2.8 - 30 V ② GND - 0.7 V ② VCE=0.7→2.8V, VIN=30V, VMODE=0V, VFB=0.65V (*6) CE ‘H’ Voltage "H" level to "L" level VCE=2.8→0.7V, VIN=30V, VMODE=0V, VFB=0.65V CE ‘L’ Voltage (*6) VCEL Voltage when EXTB pin voltage changes from "L" level to "H" level CE ‘H’ Current (*6) ICEH VIN=VCE=30V, VMODE=0V -0.1 0 0.1 μA ① CE ‘L’ Current (*6) ICEL VIN=30V, VCE=VMODE=0V -0.1 0 0.1 μA ① TTSD Junction Temperature - 150 - ℃ ② THYS Junction Temperature - 25 - ℃ ② Thermal Shutdown Temperature Hysteresis Width NOTE: Unless otherwise stated, VIN=VCE=12V, SS:OPEN, ROSC:160kΩ, CVL=1μF, CCLAMP=1μF External Components: L=10μH, CIN=10μF, CL=22μF, RSENSE=33mΩ, RFB1=220kΩ, RFB2=36kΩ, CFB=33pF(VOUTSET=5.7V) (*3) EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 (*4) For the XC9252 Type C only (*5) For the XC9252 Type A and B only (*6) For the XC9252 Type A and C only 7/28 XC9252 Series ■TEST CIRCUITS CIRCUIT① CIRCUIT② CIRCUIT③ (*1) The Type B does not have the CE and PG pin. 8/28 XC9252 Series ■TYPICAL APPLICATION CIRCUIT <TSSOP-16> <USP-10B> 【Typical Examples】 MANUFACTURER L Pch MOSFET TDK CLF10040T-4R7M 4.7μH CLF10040T-100M 10μH CLF12555T-220M 22μH 2SJ668 VDS=60V/IDS=5A/RON=250mΩ SANYO CPH3351 VDS=60V/IDS=1.8A/RON=330mΩ CMS15 VF=0.58V(3A) CLS03 VF=0.58V(10A) Murata GRM32ER71H106K 10μF/50V Murata GRM32ER71E226K 22μF/25V Panasonic 20SVP22M 22μF/20V/ESR=60mΩ Panasonic 20SVP47M 47μF/20V/ESR=45mΩ Murata GRM188R71A105K 1μF/10V TOSHIBA CIN CVL, CCLAMP VALUE TOSHIBA SBD CL PRODUCT NUMBER <Output voltage setting> The output voltage can be set by adding an external dividing resistor. The output voltage is determined by the equation below based on the values of RFB1 and RFB2. VOUT=0.8×(RFB1+RFB2)/RFB2 with RFB1+RFB2≦1MΩ Adjust the value of the phase compensation speed-up capacitor CFB using the equation below. CFB= 1 2π × fzfb × RFB1 A target value for fzfb of about 2 2π CL × L is optimum. 【Setting Example】 When RFB1=220kΩ, RFB2=36kΩ, VOUT=0.8×(220kΩ+36kΩ) / 36kΩ=5.69V When CL=22μF, L=10μH, and fzfb is set to a target of 21.46kHz using the above equation, CFB=1/(2×π×21.46kHz×220kΩ)=33pF * The setting range for the output voltage is 1.5V to VIN. The condition VOUT/VIN ≧ 0.15 must be satisfied. 9/28 XC9252 Series ■TYPICAL APPLICATION CIRCUIT (Continued) <Switching frequency setting> In the XC9252 series, the switching frequency can be set to any value in the range 280kHz to 550kHz by connecting a resistance (ROSC) between the ROSC pin and GND. ROSC is determined by the equation below. ROSC=(30×fOSCSET-83016)/(27.4-fOSCSET) ROSC: Switching frequency setting resistance [kΩ] fOSCSET: Set frequency [kHz] Frequency (kHz) 600 【Setting Example】 550 500 450 400 Switching Frequency ROSC 300kHz 270kΩ 460kHz 160kΩ 350 300 250 100 150 200 250 300 ROSC (kΩ) Measured value 実測値 Calculation 計算式 equation <Inductance value setting> In the XC9252 series, it is optimum to set an inductance value within the range below based on the switching frequency. Switching Frequency L 280kHz≦foscset<400kHz 10μH ~ 22μH 400kHz≦foscset≦550kHz 4.7μH ~ 10μH <CL setting > In the XC9252 series, a low ESR capacitor can be used for the load capacitance CL; however, if a ceramic capacitor is used, the set voltage is restricted to 2.5V or higher. If less than 2.5V, an OS-CON (conductive polymer aluminum solid electrolytic capacitor) is recommended. Select according to the set voltage and switching frequency as shown in the table below. Select a capacitor with good temperature characteristics and bias dependence characteristics. VOUTSET<2.5V VOUTSET≧2.5V OS-CON Ceramic 280kHz≦foscset<400kHz 47μF 22μF×2 400kHz≦foscset≦550kHz 22μF 22μF Switching Frequency 10/28 XC9252 Series ■TYPICAL APPLICATION CIRCUIT (Continued) <Limit current setting> In the XC9252 series, a resistance can be connected between the VIN pin and ISENSE pin to set a limit current. The sense resistance (RSENSE) is determined by the equation below. RSENSE = VLIM / ILIM ILIM: Limit current (peak current) [A] RSENSE: Sense resistance [mΩ] VLIM= (230-(0.2765×fOSCSET)): Limit current detection voltage [mV] fOSCSET: Set frequency [kHz] 200 180 160 * The limit current detection voltage VLIM varies depending on the temperature. Set the limit current (reference value) using the lower limit value given by the equation below. Calculated value (VLIM, Ta=25℃) VLIM(mV) 140 120 100 VLIMMIN=(230-(0.33×fOSCSET)) x 0.85 VLIMMIN: Lower limit value within operating temperature range (-40 to 105℃) 80 60 40 20 0 100 Calculated value (VLIMMIN, Reference value) 150 200 ROSC (kΩ) 250 ILIMMIN=VLIMMIN / RSENSE [A] 300 【Calculation Example】 To set ILIM to 3A with fOSCSET=460kHz RSENSE=(230-(0.2765×460)) / 3 ≒ 34 [mΩ] In this case, the lower limit value of the limit current is ILIMMIN = (230-(0.33×460)) x 0.85 / 34=1.95 [A] <Soft-start function> The soft-start time of the XC9252 series can be adjusted externally (SS pin). The soft-start time is the time from the start of VCE until the output voltage reaches 90% of the set voltage. The soft-start time depends on the external capacitance CSS, and is determined by the equation below. tSS2=0.002 x CSS / ISS [ms] CSS: External capacitance [pF] ISS=fOSCSET / 300 [μA , TYP.] fOSCSET: Set frequency [kHz] * Note that the value of the soft-start time tSS2 varies depending on the effective capacitance value of the delay capacitance CSS. 【Calculation Example】 When fOSCSET=460kHz, CSS=4700pF tSS2=0.002×4700/(460/300)=6.13ms The minimum value tSS1 of the soft-start time is set internally to about 0.8ms @460kHz (TYP.). The internal soft-start time is determined by the equation below. tSS1=368 / fOSCSET [ms] fOSCSET: Set frequency [kHz] VCE 90% of setting voltage VOUT tSS1 tSS2 11/28 XC9252 Series ■OPERATIONAL EXPLANATION The XC9252 series consists internally of a reference voltage supply, ramp wave circuit, error amp, PWM comparator, phase compensation circuit, current limiting circuit, under-voltage lockout (UVLO) circuit, internal power supply (VL) circuit, gate clamp (CLAMP) circuit, thermal shutdown (TSD) circuit, oscillator (OSC) circuit, soft-start circuit, control block and other elements. The voltage feed back from the FB pin is compared to the internal reference voltage by the error amp, the output from the error amp is phase compensated, and the signal is input to the PWM comparator to determine the ON time of switching during PWM operation. The output signal from the error amp is compared to the ramp wave by the PWM comparator, and the output is sent to the buffer drive circuit and output from the EXTB pin as the duty width of switching. This operation is performed continuously to stabilize the output voltage. The driver transistor current is monitored at each switching by the ISENSE pin, and the output signal from the error amp is modulated as a multi-feedback signal. This allows a stable feedback system to be obtained even when a low ESR capacitor such as a ceramic capacitor is used, and this stabilizes the output voltage . XC9252 Series, Type A <Reference voltage source> The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. <Oscillator circuit> The ramp wave circuit determines switching frequency. By connecting an external resistance ROSC, operation at any switching frequency from 280kHz to 550kHz is possible. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation. <Error amplifier> The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, RFB1 and RFB2. When a voltage is lower than the reference voltage, then the voltage is fed back, the output voltage of the error amplifier increases. The error amplifier output is fixed internally to deliver an optimized signal to the mixer. <Chip enable> Types A and C can be put in the standby state by inputting L level into the CE pin. In the standby state, the quiescent current of the IC is 0μA (TYP.). When H level is input into CE pin, operation starts. The input of the CE pin is CMOS input and the sink current is 0μA (TYP.). 12/28 XC9252 Series ■OPERATIONAL EXPLANATION (Continued) <Current limiting, short-circuit protection> The current limiting circuits of types A and B combine both current limiting and short-circuit protection. (1) The current in the sense resistance (RSENSE) connected to the VIN pin -ISENSE pin is monitored, and when the load current attains the limiting current, the current limiting circuit activates and the output voltage drops. (2) The output voltage drops to about 90% of the regular state, and this causes the switching frequency to drop and prevent coil current (IL) overlay. When the limiter state is released and the output voltage returns to the regular state, the switching frequency returns to the frequency set by ROSC. (3) If the output voltage drops further from states (2), the output current is limited, the switching frequency is lowered further, and the short-circuit state is entered. When the load becomes lighter than the short-circuit state, restart takes place automatically. To prevent overshoot during restart, restart takes place by soft-start. (1) Current limiting operation (2) When the current limiting state continues and VOUT falls to 90% (TYP.) of the regular state, the switching frequency is lowered. (3) When the current limiting states of (1) and (2) continue and VOUT falls to 50% (TYP.) of the regular state, the switching frequency is further lowered and the short-circuit state is entered. <Integral latch protection> When the current limiting state continues for a certain time, the correct limiting circuit of type C latches and stops the EXT/ pin in the "H" level state (turning off the driver Tr). To restart operation by soft-start once in the latch stop state, "L" level must be input into the CE pin followed by "H" level, or restart of the VIN pin (briefly lowering the VIN voltage below the UVLO detection voltage) must be performed. 1.2ms(TYP.fosc=460kHz) ILIM IL EXTB VOUT ③ ①、②の状態が ①電流制限動作 が定常状態から ②電流制限動作状態が続き、V (1) Current limiting (2) When the current limiting stateOUT continues and VOUT falls to (3) When the states of (1) and (2) ④ (4)CE="L"→"H"とすることでソ CE="L"->"H" restarts operation by 90%(TYP.)以下に低下した場合に、スイッチング周波数を operation 90% (TYP.) of the regular state, the switching frequency is 1.2ms(TYP.fosc=460kHz時)続くと、 continue for 1.2ms (TYP. when フトスタートにて動作を再開 soft start. EXT/端子は"H"レベルの状態でラ 低下させる lowered. fosc=460kHz), the EXT/ pin latches ッチ停止する and stops in the "H" level state. VOUT×0.90 CE (UVLO) <Thermal shutdown> The thermal shutdown (TSD) as an over current limit is built in the XC9252 series. When the junction temperature of the IC reaches the detection temperature, EXTB becomes "H" level and forcibly stops output. When the junction temperature falls to the release temperature while in the output stop state, restart takes place by soft-start. <UVLO> When the VIN pin voltage falls below 2.5V (TYP.), EXTB becomes "H" level and forcibly stops output to prevent false pulse output due to instable operation of the internal circuits. When the VIN pin voltage rises above 2.6V (TYP.), the UVLO function is released, the soft-start function activates, and output start operation begins. Stopping by UVLO is not shutdown; only pulse output is stopped and the internal circuits continue to operate. 13/28 XC9252 Series ■OPERATIONAL EXPLANATION (Continued) <Power good> On types A and C, the output state can be monitored using the power good function. When the FB voltage drops below 90% (TYP.), the PG pin outputs an "L" signal. The PG pin is an Nch open drain output, therefore a pull-up resistance must be connected to the PG pin. <SYNC/MODE function> The MODE/SYNC pin has the two functions of a control MODE selector pin and an external CLK input pin. When "H" voltage is input, the mode becomes fixed PWM control, and when "L" voltage is input, the mode becomes PWM/PFM auto switching control. When an external CLK (±25% of free running frequency, on duty 25% to 75%) is input into the MODE/SYNC pin, operation is synchronized to the falling edge of the external CLK (external CLK synchronization function). When synchronized to the external CLK, the control mode is automatically PWM control. When the external CLK is fixed at "H" voltage or "L" voltage for about 2 cycles of the free running frequency, external CLK synchronization stops and operation at the free running frequency takes place. (1) Switching from free running frequency => external CLK synchronization Operation at free running frequency Synchronized to external CLK Cycles at falling edge of external CLK Free running frequency → external CLK synchronization switching delay (about 10 cycles) (2) Switching from external CLK synchronization => free running frequency Synchronized to external CLK Synchronized to external CLK When there is no pulse for about 2 cycles, switches to free running frequency 14/28 XC9252 Series ■NOTE ON USE 1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used beyond the absolute MAX. specifications. 2. Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded. 3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which components to select. Be especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R, X5R (EIA standard) ceramic capacitors. 4. If there is a large dropout voltage, then there might be pulse-skip during light loads even with PWM control. 5. The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage is large or the load current is large, the peak current will increase, which makes it easier for current limitation to be applied which in turn could cause the operation to become unstable. When the peak current becomes large, adjust the coil inductance and sufficiently check the operation. The following formula is used to show the peak current. Peak Current: Ipk = ( VIN – VOUT ) × OnDuty / ( 2 × L × fOSC ) + IOUT L: Coil Inductance [H] fOSC: Oscillation Frequency [Hz] IOUT: Load Current [A] 6. If there is a large dropout voltage, a circuit delay could create the ramp-up of coil current with staircase waveform exceeding the current limit. 7. The ripple voltage could be increased when switching from discontinuous conduction mode to Continuous conduction mode. Please apply the ICs only after careful examination by the customer. 8. When operation changes from free running frequency to external CLK synchronization, the output voltage may fluctuate. Please apply the ICs only after careful examination by the customer. 9. The internal power supply VL and gate clamp CLAMP are optimized as a local power supply for the DC/DC control block of the IC. Do not use the VL pin output and the CLAMP pin output. 10. Instructions of pattern layouts The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the input capacitor(CIN) and the output capacitor (CL,CVL,CCLAMP) as close to the IC as possible. (1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VIN and GND pins. (2) Please mount each external component as close to the IC as possible. (3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. (4) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC. 15/28 XC9252 Series ■NOTE ON USE (Continued) 10. Instructions of pattern layouts (Continued) <Reference Pattern Layout> TSSOP-16 (Front) TSSOP-16 (Back) USP-10B (Front) USP-10B (Back) 11. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems. 16/28 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Efficiency vs. Output current XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=280kHz) XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=460kHz) L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 100 90 90 80 80 Efficiency :EFFI[%] Efficiency :EFFI[%] L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 100 70 60 50 40 30 20 PFM(MODE=L) 10 PWM(MODE=H) 0 70 60 50 40 30 20 PFM(MODE=L) 10 PWM(MODE=H) 0 1 10 100 1000 10000 1 Output Current :IOUT[mA] XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=280kHz) 10000 90 90 80 Efficiency :EFFI[%] Efficiency :EFFI[%] 1000 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 100 70 60 50 40 30 PFM(MODE=L) 20 10 PWM(MODE=H) 80 70 60 50 40 30 PFM(MODE=L) 20 PWM(MODE=H) 10 0 0 1 10 100 1000 1 10000 10 100 1000 10000 Output Current :IOUT[mA] Output Current :IOUT[mA] XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=280kHz) XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=460kHz) L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 100 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 100 90 Efficiency :EFFI[%] 90 Efficiency :EFFI[%] 100 XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=460kHz) L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 100 80 70 60 50 40 30 20 PFM(MODE=L) 10 0 PWM(MODE=H) 80 70 60 50 40 30 20 PFM(MODE=L) 10 PWM(MODE=H) 0 1 10 100 1000 1 10000 Output Current :IOUT[mA] 10 100 1000 10000 Output Current :IOUT[mA] XC9252x08A(VIN=24V, VOUT=12V, fOSC=280kHz) XC9252x08A(VIN=24V, VOUT=12V, fOSC=460kHz) L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 100 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 100 90 Efficiency :EFFI[%] 90 Efficiency :EFFI[%] 10 Output Current :IOUT[mA] 80 70 60 50 40 30 20 PFM(MODE=L) PWM(MODE=H) 10 80 70 60 50 40 30 20 PFM(MODE=L) 10 PWM(MODE=H) 0 0 1 10 100 1000 Output Current :IOUT[mA] 10000 1 10 100 1000 10000 Output Current :IOUT[mA] 17/28 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Output Voltage vs. Output Current L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 3.60 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 3.60 Output Voltage : VOUT[V] XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=460kHz) Output Voltage : VOUT[V] XC9252x08A(VIN=12V, VOUT=3.3V, fOSC=280kHz) 3.50 3.40 3.30 3.20 PFM(MODE=L) 3.10 PWM(MODE=H) 3.00 3.50 3.40 3.30 3.20 PFM(MODE=L) 3.10 PWM(MODE=H) 3.00 1 10 100 1000 10000 1 10 Output Current :IOUT[mA] 1000 10000 L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 6.00 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 6.00 Output Voltage : VOUT[V] XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=460kHz) Output Voltage : VOUT[V] XC9252x08A(VIN=12V, VOUT=5.7V, fOSC=280kHz) 5.90 5.80 5.70 5.60 PFM(MODE=L) 5.50 PWM(MODE=H) 5.40 5.90 5.80 5.70 5.60 PFM(MODE=L) 5.50 PWM(MODE=H) 5.40 1 10 100 1000 10000 1 10 Output Current :IOUT[mA] 100 1000 10000 Output Current :IOUT[mA] L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 6.00 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 6.00 Output Voltage : VOUT[V] XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=460kHz) Output Voltage : VOUT[V] XC9252x08A(VIN=24V, VOUT=5.7V, fOSC=280kHz) 5.90 5.80 5.70 5.60 PFM(MODE=L) 5.50 PWM(MODE=H) 5.40 5.90 5.80 5.70 5.60 PFM(MODE=L) 5.50 PWM(MODE=H) 5.40 1 10 100 1000 10000 1 10 Output Current :IOUT[mA] 100 1000 10000 Output Current :IOUT[mA] L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 12.60 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 12.60 Output Voltage : VOUT[V] XC9252x08A(VIN=24V, VOUT=12V, fOSC=460kHz) Output Voltage : VOUT[V] XC9252x08A(VIN=24V, VOUT=12V, fOSC=280kHz) 12.40 12.20 12.00 11.80 PFM(MODE=L) 11.60 PWM(MODE=H) 11.40 12.40 12.20 12.00 11.80 PFM(MODE=L) 11.60 PWM(MODE=H) 11.40 1 10 100 1000 Output Current :IOUT[mA] 18/28 100 Output Current :IOUT[mA] 10000 1 10 100 1000 Output Current :IOUT[mA] 10000 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3) Ripple Voltage vs. Output Current XC9252x08A(VIN=12V, VOUT=5V, fOSC=280kHz) XC9252x08A(VIN=12V, VOUT=5V, fOSC=460kHz) 45 PWM(MODE=H) 40 PFM(MODE=L) L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50 Ripple Voltage :Vr[mV] Ripple Voltage :Vr[mV] L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=300kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 50 35 30 25 20 15 10 5 45 PWM(MODE=H) 40 PFM(MODE=L) 35 30 25 20 15 10 0 5 0 0.1 1 10 100 1000 10000 0.1 Output Current :IOUT[mA] 1 10 100 1000 10000 Output Current :IOUT[mA] ※ when the MODE/SYNC pin is "L", ripple voltage will increase while the PWM and PFM controls switch depending on the conditions of input and output voltage, peripheral components. The ripple voltage can be minimized by operating PWM control state, which the MODE/SYNC pin is "H" or the external clock is synchronized. (5) UVLO Voltage vs. Ambient Temperature (4) FB Voltage vs. Ambient Temperature XC9252x08A XC9252x08A VIN=12V 0.810 0.808 FB Voltage :VFB[V] 3.0 UVLO Voltage :VUVLO1,VUVLO2[V] 0.812 0.806 0.804 0.802 0.800 0.798 0.796 0.794 0.792 0.790 0.788 -50 -25 0 25 50 75 100 VUVLO1(DetectVoltage) 2.9 VUVLO2(ReleaseVoltage) 2.8 2.7 2.6 2.5 2.4 2.3 2.2 125 -50 Ambient Temperature :Ta[℃] -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (6) Oscillation Frequency vs. Ambient Temperature XC9252x08A VIN=12V VIN=12V, ROSC=160kΩ(fOSC=460kHz) 506 600 Oscillation Frequency:fOSC[kHz] Oscillation Frequency:fOSC[kHz] XC9252x08A 483 460 437 414 -50 -25 0 25 50 75 100 550 Ta=-40℃ Ta=25℃ 500 Ta=105℃ 450 400 350 300 250 100 125 150 Ambient Temperature :Ta[℃] 200 ROSC [kΩ] 250 300 (7) Quiescent Current vs. Ambient Temperature XC9252x08A 45 40 35 30 25 20 VIN=30V, ROSC=160kΩ(fOSC=460kHz) 50 Quiescent Current2 :Iq2[uA] 50 Quiescent Current1 :Iq1[uA] XC9252x08A VIN=30V, ROSC=270kΩ(fOSC=300kHz) 45 40 35 30 25 20 -50 -25 0 25 50 75 Ambient Temperature :Ta[℃] 100 125 -50 -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] 19/28 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (8) Stand-by Current vs. Ambient Temperature (9) Ext SW ON Resistance vs. Ambient Temperature XC9252x08A XC9252x08A 5.0 Ext SW ON Resistance :REXT[Ω] 10 Stand-by Current :ISTB[μA] VIN=5V VIN=30V 9 8 7 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 4.5 4.0 3.5 3.0 2.5 2.0 EXT"H" 1.5 EXT"L" 1.0 -50 -25 Ambient Temperature :Ta[℃] 0 25 (10) SS Pin Current vs. Ambient Temperature 1.80 1.70 1.60 1.50 1.40 0 25 50 75 100 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 125 -50 Ambient Temperature :Ta[℃] -25 0 7 6 5 4 3 0 25 50 75 100 125 XC9252x08A ExternalSoft-StartTime:tSS2[ms] ExternalSoft-StartTime:tSS2[ms] XC9252x08A -25 50 (13) External Soft-Start Time vs. CSS VIN=12V, ROSC=160kΩ(fOSC=300kHz), CSS=4700pF -50 25 Ambient Temperature :Ta[℃] (12) External Soft-Start Time vs. Ambient Temperature 8 125 VIN=12V, ROSC=160kΩ(fOSC=460kHz) 1.20 InternalSoft-StartTime:tSS1[ms] SS Pin Current :ISS[μA] 1.90 -25 100 XC9252x08A VIN=12V, ROSC=270kΩ(fOSC=300kHz) -50 75 (11) Internal Soft-Start Time vs. Ambient Temperature XC9252x08A 2.00 50 Ambient Temperature :Ta[℃] 75 100 VIN=12V, ROSC=160kΩ(fOSC=460kHz) 60 Ta=-40℃ Ta=25℃ 50 Ta=105℃ 40 30 20 10 0 0 125 10 20 30 40 50 Capasitor :CSS[nF] Ambient Temperature :Ta[℃] (14) Current Limit Voltage vs. Ambient Temperature XC9252x08A VIN=12V, ROSC=270kΩ(fOSC=300kHz) 200 CurrentLimitVoltage2:VLIM2[mV] CurrentLimitVoltage1:VLIM1[mV] XC9252x08A 180 160 140 120 100 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 20/28 125 VIN=12V, ROSC=160kΩ(fOSC=460kHz) 140 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 125 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Current Limit Voltage vs. ROSC (16) Short Protection Threshold Voltage vs. Temperature XC9252x08A VIN=12V 200 180 160 140 120 100 80 60 Ta=-40℃ Ta=25℃ Ta=105℃ 40 20 0 100 125 150 175 200 225 250 275 VIN=12V 0.50 ShortProtectionVoltage:VSHORT[V] Current Limit Voltage :VLIM[mV] XC9252x08A 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 -50 300 -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] ROSC[kΩ] (17) Latch Time vs. Ambient Temperature XC9252C08A VIN=12V, ROSC=270kΩ(fOSC=300kHz) 2.1 2.0 1.9 1.8 1.7 VIN=12V, ROSC=160kΩ(fOSC=460kHz) 1.5 Latch Time2 :tLAT2[ms] 2.2 Latch Time1 :tLAT1[ms] XC9252C08A 1.4 1.3 1.2 1.1 1.0 1.6 -50 -25 0 25 50 75 100 -50 125 -25 0 25 50 75 (18) PG Detect Voltage vs. Ambient Temperature XC9252x08A VIN=12V, RPG:200kΩ pullup to VL VIN=12V 5.0 PG Output Current :IPG[mA] 0.75 PG detect Voltage :VPG[V] 125 (19) PG Output Current vs. Ambient Temperature XC9252x08A 0.74 0.73 0.72 0.71 0.70 0.69 4.0 3.0 2.0 1.0 0.0 -50 -25 0 25 50 75 100 125 -50 -25 Ambient Temperature :Ta[℃] 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (20) Local Regulator Output Voltage vs. Ambient Temperature (21) Gate Clamp Voltage vs. Ambient Temperature XC9252x08A XC9252x08A VIN=12V 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 VIN=12V 5.5 GateClampVoltage:VCLAMP[V] LocalRegulatorOutputVoltage:VVL [V] 100 Ambient Temperature :Ta[℃] Ambient Temperature :Ta[℃] 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 125 -50 -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] 21/28 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (22) MODE/SYNC Voltage vs. Ambient Temperature (23) CE Voltage vs. Ambient Temperature XC9252x08A 1.2 2.8 1.1 2.4 CE Voltage :VCE[V] MODE/SYNC Voltage :VMODE[V] XC9252x08A 1.0 0.9 0.8 0.7 0.6 2.0 1.6 1.2 0.8 0.5 0.4 0.4 0.0 -50 -25 0 25 50 75 100 125 CE"H" CE"L" -50 Ambient Temperature :Ta[℃] -25 0 25 50 75 100 Ambient Temperature :Ta[℃] (24) CE Rising Response XC9252x08A、 fOSC=460kHz XC9252x08A、 fOSC=300kHz VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:OPEN VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:OPEN L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 200μs/div 200μs/div CE=0V→12V CE=0V→12V VOUT : 2V/div VOUT : 2V/div PG : 5V/div PG : 5V/div XC9252x08A、 fOSC=300kHz XC9252x08A、 fOSC=460kHz VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:4700pF L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 VIN=12V, VCE=0→12V, VOUT=3.3V, IOUT=1A, CSS:4700pF L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 2ms/div CE=0V→12V CE=0V→12V VOUT : 2V/div PG : 5V/div 22/28 2ms/div VOUT : 2V/div PG : 5V/div 125 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (25) Load Transient Response(MODE=L, PFM/PWM Control) XC9252x08A、 fOSC=300kHz XC9252x08A、 fOSC=300kHz VIN=12V, VOUT=3.3V, IOUT=0.1mA→500mA VIN=12V, VOUT=3.3V, IOUT=500mA→0.1mA L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 50μs/div 1ms/div VOUT: 500mV/div VOUT: 500mV/div IOUT=0.1mA→500mA IOUT=500mA→0.1mA XC9252x08A、 fOSC=300kHz XC9252x08A、 fOSC=300kHz VIN=12V, VOUT=5.0V, IOUT=0.1mA→500mA VIN=12V, VOUT=5.0V, IOUT=500mA→0.1mA L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 500mV/div IOUT=0.1mA→500mA XC9252x08A、 fOSC=460kHz 1ms/div VOUT: 500mV/div IOUT=500mA→0.1mA XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=3.3V, IOUT=0.1mA→500mA VIN=12V, VOUT=3.3V, IOUT=500mA→0.1mA L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div 1ms/div VOUT: 500mV/div VOUT: 500mV/div IOUT=0.1mA→500mA IOUT=500mA→0.1mA XC9252x08A、 fOSC=460kHz XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=5.0V, IOUT=0.1mA→500mA VIN=12V, VOUT=5.0V, IOUT=500mA→0.1mA L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 500mV/div IOUT=0.1mA→500mA L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 1ms/div VOUT: 500mV/div IOUT=500mA→0.1mA 23/28 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (26) Load Transient Response(MODE=H, PWM Control) XC9252x08A、 fOSC=300kHz XC9252x08A、 fOSC=300kHz VIN=12V, VOUT=3.3V, IOUT=0.1A→1A VIN=12V, VOUT=3.3V, IOUT=1A→0.1A L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 50μs/div 50μs/div VOUT: 500mV/div VOUT: 500mV/div IOUT=0.1A→1A XC9252x08A、 fOSC=300kHz IOUT=1A→0.1A XC9252x08A、 fOSC=300kHz VIN=12V, VOUT=5.0V, IOUT=0.1A→1A VIN=12V, VOUT=5.0V, IOUT=1A→0.1A L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 L=22μH(CLF12555-220M), CIN=10μF(GRM32ER71H106KA12L), ROSC=270kΩ, CL=22μF×2 (GRM32ER71E226KE15L), RSENSE=50mΩ, PchMOSFET:2SJ668, SBD:CMS15 50μs/div 50μs/div VOUT: 500mV/div VOUT: 500mV/div IOUT=0.1A→1A IOUT=1A→0.1A XC9252x08A、 fOSC=460kHz XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=3.3V, IOUT=0.1A→1A VIN=12V, VOUT=3.3V, IOUT=1A→0.1A L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div 50μs/div VOUT: 500mV/div VOUT: 500mV/div IOUT=0.1A→1A XC9252x08A、 fOSC=460kHz IOUT=1A→0.1A XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=5.0V, IOUT=0.1A→1A VIN=12V, VOUT=5.0V, IOUT=1A→0.1A L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 500mV/div L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 500mV/div IOUT=0.1A→1A IOUT=1A→0.1A 24/28 XC9252 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (27) Transient Response(MODE/SYNC=L⇔External Clock) (Continued) XC9252x08A、 fOSC=460kHz XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=460kHz→345kHz VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=345kHz→460kHz L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 100mV/div MODE/SYNC=0V→External Clock(345kHz) 50μs/div VOUT: 100mV/div MODE/SYNC=External Clock(345kHz)→0V XC9252x08A、 fOSC=460kHz XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=460kHz→345kHz VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=345kHz→460kHz L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 100mV/div MODE/SYNC=0V→External Clock(345kHz) 50μs/div VOUT: 100mV/div MODE/SYNC=External Clock(345kHz)→0V XC9252x08A、 fOSC=460kHz XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=460kHz→575kHz VIN=12V, VOUT=3.3V, IOUT=1A, fOSC=575kHz→460kHz L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 100mV/div MODE/SYNC=0V→External Clock(575kHz) 50μs/div VOUT: 100mV/div MODE/SYNC=External Clock(575kHz)→0V XC9252x08A、 fOSC=460kHz XC9252x08A、 fOSC=460kHz VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=460kHz→575kHz VIN=12V, VOUT=5.0V, IOUT=1A, fOSC=575kHz→460kHz L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 100mV/div MODE/SYNC=0V→External Clock(575kHz) L=10μH(CLF10040-100M), CIN=10μF(GRM32ER71H106KA12L), ROSC=160kΩ, CL=22μF(GRM32ER71E226KE15L), RSENSE=27mΩ,PchMOSFET:2SJ668, SBD:CMS15 50μs/div VOUT: 100mV/div MODE/SYNC=External Clock(575kHz)→0V 25/28 XC9252 Series ■PACKAGING INFORMATION ●USP-10B (unit: mm) 2.6±0.05 0.4±0.03 1.6±0.05 1.15±0.1 0.1±0.05 0.25±0.05 0.6 MAX 6.4±0.2 4.4±0.2 0.5±0.2 ●TSSOP-16 (unit:mm) * The side of pins are not gilded, but nickel is used. * Pin #1, #2, #9 and #10 is wider than other pins. ●USP-10B (unit: mm) Reference Pattern Layout 1.50 1.05 0.8 1.50 1.05 0.8 0.4 26/28 ●USP-10B (unit: mm) 0.35 Reference Metal Mask Design 1.45 1.10 0.70 1.45 1.10 0.70 0.35 XC9252 Series ■MARKING RULE ① represents products series TSSOP-16 16 15 14 13 12 11 10 9 ① ② ③ ④ ⑤ MARK PRODUCT SERIES 1 XC9252******-G ② represents products type 1 2 3 4 5 6 7 8 MARK TYPE PRODUCT SERIES A B C Standard type Without chip enable, power-good Standard type with latch protection XC9252A*****-G XC9252B*****-G XC9252C*****-G USP-10B ③ represents reference voltage and oscillation frequency 2 9 3 4 5 ① ② ③ 10 ④ ⑤ 1 MARK VOLTAGE (V) OSCILLATION FREQUENCY PRODUCT SERIES A 0.8 Adjustable XC9252*08A**-G 8 7 6 ④⑤ represents production lot number 01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order. (G, I, J, O, Q, W excluded) * No character inversion used. 27/28 XC9252 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 28/28