SWT821-S - Seoul Semiconductor

Z-Power LED
X10490
Technical
Data
Sheet
Specification
SWT821-S
SSC
Drawn
Approval
CUSTOMER
Approval
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
CONTENTS
1.
Description
2.
Absolute Maximum Ratings
3.
Electro-Optical Characteristics
4.
Optical characteristics
5.
Reliability Test
6.
Color & Binning
7.
Bin Code Description
8.
Outline Dimension
9.
Reel Structure
10. Packing
11. Soldering
12. Precaution for use
13. Handling of Silicone Resin LEDs
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
SWT821-S
1. Description
SWT821-S
Features
•
This surface-mount
LED comes in standard
package dimension.
It has a substrate made up
of a molded plastic reflector
sitting on top of a bent lead frame.
The die is attached within the reflector cavity
and the cavity is encapsulated by silicone.
White colored SMT
package.
•
Pb-free Reflow Soldering
Application
•
Suitable for all SMT
assembly methods ;
Suitable for all soldering
methods
•
RoHS Compliant
The package design coupled with careful
selection of component materials allow these
products to perform with high reliability.
Applications
•
Interior lighting
•
General lighting
•
Indoor and out door
displays
•
Architectural / Decorative
lighting
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
2. Absolute maximum ratings
Parameter
[1]
Symbol
Value
Unit
Power Dissipation
Pd
324
mW
Forward Current
IF
90
mA
Operating Temperature
Topr
-40~+85
℃
Storage Temperature
Tstg
-40~+100
℃
Junction Temperature
Tj
125
℃
[1] Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product.
* LED’s properties might be different from suggested values like above and below tables if operation condition
will be exceeded our parameter range.
3. Electro-Optical characteristics
Parameter
Forward Voltage
Reverse Voltage
Luminous Intensity*
[1]
Color Correlated Temperature
Viewing Angle
[2]
Color Rendering Index*
ESD (HBM)
Symbol
Condition
Min.
Typ.
Max.
Unit
VF
IF=20mA
2.8
3.2
3.8
V
IR
VF=5V
-
-
10
μA
Iv
IF=60mA
4.0
5.5
-
cd
CCT
IF=60mA
4,800
-
10,000
K
2Θ1/2
IF=60mA
-
120
-
deg.
Ra
IF=60mA
62
68
-
-
1.5kΩ;100pF
1
-
-
KV
[1] The luminous intensity IV was measured at the peak of the spatial pattern which may not be aligned
with the mechanical axis of the LED package.
[2] 2Θ1/2 is the off-axis where the luminous intensity is 1/2 of the peak intensity.
[3] Thermal resistance: RthJS (Junction / solder)
* Tolerance : VF :±0.1V, IV :±10%, Ra :±3, x,y :±0.01
[Note] All measurements were made under the standardized environment of SSC.
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
4. Optical characteristics
Forward Current
vs. Relative Luminous Intensity
Forward Voltage
vs. Forward Current
Ta=25℃
Ta=25℃
0.6
60
Relative Luminous Intensity
40
30
20
10
0
2.6
2.8
3.0
3.2
3.4
3.6
3.8
0.4
0.2
0.0
0
10
20
30
Forward Current IF [mA]
Forward Voltage VF [V]
Directivity
Ambient Temperature
vs. Maximum Forward Current
35
Ta=25℃
30
Forward Current IF[mA]
Forward Current IF [mA]
50
0
25
-30
30
20
-60
15
60
10
-90
5
0
-25
0
25
50
75
O
Ambient temperature Ta( C)
90
100
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Spectrum
Ta=25℃, IF=60mA
1.0
Relative Emission Intensity
Z-Power LED
X10490
Technical
Data
Sheet
4. Optical characteristics
0.5
0.0
300
400
500
600
700
800
Wavelength [nm]
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
5. Reliability Test
Item
Reference
Test Conditions
Duration /
Cycle
Number
of
Damaged
Thermal Shock
EIAJ
ED-4701
Ta =-40oC(30min) ~
100oC(30min)
100 Cycle
0/22
High Temperature
Storage
EIAJ
ED-4701
Ta =100oC
1000 Hours
0/22
High Temp. High
Humidity Storage
EIAJ
ED-4701
Ta =60oC, RH=90%
1000 Hours
0/22
Low Temperature
Storage
EIAJ
ED-4701
Ta =-40oC
1000 Hours
0/22
Operating
Endurance Test
Internal
Reference
Ta =25oC, IF =60mA
1000 Hours
0/22
High Temperature
High Humidity Life
Test
Internal
Reference
Ta =60oC, RH=90%, IF =60mA
500 Hours
0/22
High Temperature
Life Test
Internal
Reference
Ta =85oC, IF =60mA
500 Hours
0/22
Low Temperature
Life Test
Internal
Reference
Ta =-40oC, IF =60mA
1000 Hours
0/22
ESD(HBM)
MIL-STD883D
1KV at 1.5kΩ; 100pF
3 Time
0/22
Reflow
Tsol
260℃< 10sec. Reflow
Soldering
3 Time
0/22
□ CRITERIA FOR JUDGING THE DAMAGE
Item
Symbol
Condition
Forward Voltage
VF
Luminous Intensity
IV
Criteria for Judgment
MIN
MAX
IF =60mA
-
USL [1] × 1.2
IF =60mA
LSL [2] × 0.7
-
Note : [1] USL : Upper Standard Level
[2] LSL : Lower Standard Level
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
6. Color & Binning
0.38
4800K
5600K
0.36
f2
6200K
e2
0.34
CIE Y
7000K
0.32
8200K
10000K
0.30
c2
b2
d2
f1
e1
d1
c1
b1
0.28
0.26
0.24
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
CIE X
● COLOR RANK
<IF=60mA, Ta=25℃>
b2
X
Y
X
Y
0.292
0.27
0.286
0.282
0.3
0.281
0.295
0.295
0.295
0.295
0.289
0.312
0.286
0.282
0.279
0.297
d1
d2
X
Y
X
Y
0.31
0.2935
0.3065
0.3104
0.32
0.306
0.318
0.325
0.318
0.325
0.316
0.343
0.3065
0.3104
0.303
0.329
f1
f2
X
Y
X
Y
0.33
0.318
0.33
0.338
0.344
0.335
0.345
0.353
0.345
0.353
0.346
0.374
0.33
0.338
0.33
0.358
b1
c1
X
0.3
0.31
0.3065
0.295
X
0.32
0.33
0.33
0.318
Y
0.281
0.2935
0.3104
0.295
e1
Y
0.306
0.318
0.338
0.325
c2
X
0.295
0.3065
0.303
0.289
Y
0.295
0.3104
0.329
0.312
e2
X
0.318
0.33
0.33
0.316
Y
0.325
0.338
0.358
0.343
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
7. Bin Code Description
Bin Code
Forward Voltage
Luminous Intensity
Color Rank
Z1
M0
b1
4,700K ~ 7,000K
Color Rank
@ IF = 60mA
Luminous Intensity [mcd]
*[1]
@ IF = 60mA
M0
4000
4600
M5
4600
5000
N0
5000
5500
N5
5500
6000
P0
6000
6500
b1
b2
c1
c2
d1
d2
e1
e2
f1
f2
Forward Voltage [V]
@ IF = 60mA
RANK
Min.
Max.
Z1
3.0
3.1
Z2
3.1
3.2
Z3
3.2
3.3
A1
3.3
3.4
Available ranks
Not yet available ranks
CCT
IV Rank
6,000~7,000 K
M0
M5
N0
N5
P0
5,300~6,000 K
M0
M5
N0
N5
P0
4,700~5,300 K
M0
M5
N0
N5
P0
[Note] All measurements were made under the standardized environment of SSC.
In order to ensure availability, single color rank will not be orderable.
[1] Classification criteria : Luminous intensity IV
[2] Please use for only reference.
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
2.80
1.9
0.75
3
1
2
0.85
0.80
4
1.50
3.20
2.40
Z-Power LED
X10490
Technical
Data
Sheet
8.Outline Dimension
Packing Mark (Anode)
0.50
0.15
( Tolerance: ±0.2, Unit: mm )
Circuit Diagram
Anode
1
4
2
3
Cathode Cathode Cathode
<Circuit diagram>
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
1.55 ± 0.05
1.75±0.1
2.0±0.05
4.0±0.1
0.22±0.05
3.83±0.1
5°
3.5±0.1
8±0.1
1.0±0.1
8°
3.1±0.1
2.22±0.1
11.4 ± 0.1
180 +0
-3
9.0 ± 0.3
LABLE
2.0 ± 0.2
13 ±0.2
30°
10
60
Z-Power LED
X10490
Technical
Data
Sheet
9. Reel Structure
22
( Tolerance: ±0.2, Unit: mm )
1)Quantity : 1,000pcs/Reel
2)Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ±0.2mm
3)Adhesion Strength of Cover Tape : Adhesion strength to be 0.1-0.7N when the cover tape is
turned off from the carrier tape at the angle of 10 to the carrier tape
4)Package : P/N, Manufacturing data Code No. and quantity to be indicated on a damp proof
Package
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
10. Packing
Reel
QUANTITY : XXXX
LOT NUMBER : XXXXXXXXXX
PART NUMBER :
SEOUL SEMICONDUCTOR CO., LTD.
HUMIDITY INDICATOR
DESI PAK
Aluminum Vinyl Bag
QUANTITY : XXXX
LOT NUMBER : XXXXXXXXXX
PART NUMBER :
SEOUL SEMICONDUCTOR CO., LTD.
Outer Box Structure
Material : Paper(SW3B(B))
SIZE (mm)
a
c
b
245 220 102
7inch
245 220 142
TYPE
1 SIDE
c
TUV
QUANTITY : XXXX
LOT NUMBER : XXXXXXXXXX
PART NUMBER :
SEOUL SEMICONDUCTOR CO., LTD.
MADE IN KOREA
Acriche
1
Semiconductor EcoLight
b
RoHS
a
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
11. Soldering
(1) Lead Solder
Lead Solder
Lead Solder
Pre-heat
120~150℃
Pre-heat time
120 sec. Max.
Peak-Temperature
240℃ Max.
Soldering time Condition
10 sec. Max.
2.5~5 o C / sec.
2.5~5 C / sec.
Pre-heating
120~150 oC
240 oC Max.
10 sec. Max.
60sec. Max.
Above 200 oC
120sec. Max.
(2) Lead-Free Solder
Lead-free Solder
Lead Free Solder
Pre-heat
150~200℃
Pre-heat time
120 sec. Max.
Peak-Temperature
260℃ Max.
Soldering time Condition
10 sec. Max.
1~5 oC / sec.
1~5 o C / sec.
Pre-heating
150~200 o C
260 oC Max.
10 sec. Max.
60sec. Max.
Above 220 oC
120sec. Max.
(3) Hand Soldering conditions
Do not exceed 4 seconds at maximum 315ºC under soldering iron.
(4) The encapsulated material of the LEDs is silicone.
Precautions should be taken to avoid the strong pressure on the encapsulated part.
So when using the chip mounter,
the picking up nozzle that does not affect the silicone resign should be used.
(5) It is recommended that the customer use the nitrogen reflow method.
(6) Repairing should not be done after the LEDs have been soldered.
(7) Reflow soldering should not be done more than two times.
In the case of more than 24 hours passed soldering after first, LEDs will be
damaged.
[Note] In case that the soldered products are reused in soldering process, we don’t guarantee theRev.05
products.
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
12. Precaution for use
1) Storage
In order to avoid the absorption of moisture, it is recommended to store in a dry box (or a desiccator)
with a desiccant. Otherwise, to store them in the following environment is recommended.
Temperature : 5ºC ~30ºC Humidity : maximum 70%RH
2) Attention after open.
LED is correspond to SMD, when LED be soldered dip, interfacial separation may affect the light
transmission efficiency, causing the light intensity to drop. Attention in followed;
a. After opened and mounted the soldering shall be quickly.
b. Keeping of a fraction
Temperature : 5 ~ 40ºC Humidity : less than 30%
3) In the case of more than 1 week passed after opening or change color of indicator on desiccant,
components shall be dried 10-12hr. at 60±5ºC.
4) Silver plating might be tarnished in the environment that contains corrosive gases and materials.
Also any product that has tarnished lead might be decreased the solder-ability and optical-electrical
properties compare to normal ones.
Please do not expose the product in the corrosive environment during the storage.
5) Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to
normal temperature after soldering.
6) Quick cooling shall be avoided.
7) Components shall not be mounted on warped direction of PCB.
8) Anti radioactive ray design is not considered for the products.
9) This device should not be used in any type of fluid such as water, oil, organic solvent etc.
When washing is required, IPA should be used.
10) When the LEDs are illuminating, operating current should be decided after considering the ambient
maximum temperature.
11) The LEDs must be soldered within seven days after opening the moisture-proof packing.
12) Repack unused products with anti-moisture packing, fold to close any opening and then store
in a dry place.
13) The appearance and specifications of the product may be modified for improvement without notice.
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)
Z-Power LED
X10490
Technical
Data
Sheet
13. Handling of Silicone Resin LEDs
1) During processing, mechanical stress on the surface should be minimized as much as possible.
Sharp objects of all types should not be used to pierce the sealing compound.
2) In general, LEDs should only be handled from the side. By the way, this also applies to LEDs
without a silicone sealant, since the surface can also become scratched.
3) When populating boards in SMT production, there are basically no restrictions regarding the form of the
pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevented.
This is assured by choosing a pick and place nozzle which is larger than the LED’s reflector area.
4) Silicone differs from materials conventionally used for the manufacturing of LEDs. These conditions
must be considered during the handling of such devices. Compared to standard encapsulants, silicone is
generally softer, and the surface is more likely to attract dust.
As mentioned previously, the increased sensitivity to dust requires special care during processing.
In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning solution
must be applied to the surface after the
soldering of components.
5) SSC suggests using isopropyl alcohol for cleaning. In case other solvents are used, it
must be assured that these solvents do not dissolve the package or resin.
Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.
6) Please do not mold this product into another resin (epoxy, urethane, etc) and
do not handle this product with acid or sulfur material in sealed space.
Rev.05
March 2011
www.seoulsemicon.com
SSC-QP-7-07-24 (Rev.00)