MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 MIXED SIGNAL MICROCONTROLLER FEATURES 1 • • • • • • • • • • • • • • Low Supply Voltage Range 1.8 V to 3.6 V Ultra-Low Power Consumption – Active Mode: 365 µA at 1 MHz, 2.2 V – Standby Mode (VLO): 0.5 µA – Off Mode (RAM Retention): 0.1 µA Wake-Up From Standby Mode in Less Than 1 µs 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time Three-Channel Internal DMA 12-Bit Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, and Autoscan Feature Dual 12-Bit Digital-to-Analog (D/A) Converters With Synchronization 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Seven Capture/CompareWith-Shadow Registers On-Chip Comparator Four Universal Serial Communication Interfaces (USCIs) – USCI_A0 and USCI_A1 – Enhanced UART Supporting AutoBaudrate Detection – IrDA Encoder and Decoder – Synchronous SPI – USCI_B0 and USCI_B1 – I2C™ – Synchronous SPI Supply Voltage Supervisor/Monitor With Programmable Level Detection Brownout Detector Bootstrap Loader • • • • Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse Family Members: – MSP430F2416 – 92KB + 256B Flash Memory – 4KB RAM – MSP430F2417 – 92KB + 256B Flash Memory – 8KB RAM – MSP430F2418 – 116KB + 256B Flash Memory – 8KB RAM – MSP430F2419 – 120KB + 256B Flash Memory – 4KB RAM – MSP430F2616 – 92KB + 256B Flash Memory – 4KB RAM – MSP430F2617 – 92KB + 256B Flash Memory – 8KB RAM – MSP430F2618 – 116KB + 256B Flash Memory – 8KB RAM – MSP430F2619 – 120KB + 256B Flash Memory – 4KB RAM Available in 80-Pin Quad Flat Pack (LQFP), 64Pin LQFP, and 113-Pin Ball Grid Array (BGA) (See Table 1) For Complete Module Descriptions, See the MSP430x2xx Family User's Guide (SLAU144) 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. DESCRIPTION The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The calibrated digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs. The MSP430F261x and MSP430F241x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface (USCI) modules, DMA, and up to 64 I/O pins. The MSP430F241x devices are identical to the MSP430F261x devices, with the exception that the DAC12 and the DMA modules are not implemented. Typical applications include sensor systems, industrial control applications, and hand-held meters. The 12mmx12mm LQFP-64 package is also available as a non-magnetic package for medical imaging applications. Table 1. Available Options (1) TA -40°C to 105°C (1) (2) PACKAGED DEVICES (2) PLASTIC 113-PIN BGA (ZQW) PLASTIC 80-PIN LQFP (PN) PLASTIC 64-PIN LQFP (PM) MSP430F2416TZQW MSP430F2417TZQW MSP430F2418TZQW MSP430F2419TZQW MSP430F2616TZQW MSP430F2617TZQW MSP430F2618TZQW MSP430F2619TZQW MSP430F2416TPN MSP430F2417TPN MSP430F2418TPN MSP430F2419TPN MSP430F2616TPN MSP430F2617TPN MSP430F2618TPN MSP430F2619TPN MSP430F2416TPM MSP430F2417TPM MSP430F2418TPM MSP430F2419TPM MSP430F2616TPM MSP430F2617TPM MSP430F2618TPM MSP430F2619TPM MSP430F2618TPMR-NM For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Development Tool Support All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: • Debugging and Programming Interface – MSP-FET430UIF (USB) – MSP-FET430PIF (Parallel Port) • Debugging and Programming Interface with Target Board – MSP-FET430U64 (PM Package) – MSP-FET430U80 (PN Package) • Standalone Target Board – MSP-TS430PM64 • Production Programmer – MSP-GANG430 2 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0 P7.7 AV CC DVSS1 AV SS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI P8.7/XT2IN P8.6/XT2OUT Device Pinout, MSP430F241x, 80-Pin PN Package 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 DVCC1 P6.3/A3 1 2 60 59 P7.6 P7.5 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7/SVSIN 3 4 5 6 58 57 56 55 P7.4 P7.3 P7.2 P7.1 VREF+ XIN XOUT Ve REF+ VREF-/VeREF- 7 8 9 10 11 54 53 52 51 50 P7.0 DVSS2 DVCC2 P5.7/TBOUTH/SVSOUT P5.6/ACLK P1.0/TACLK/CAOUT P1.1/TA0 P1.2/TA1 P1.3/TA2 12 13 14 15 49 48 47 46 P5.5/SMCLK P5.4/MCLK P5.3/UCB1CLK/UCA1STE P5.2/UCB1SOMI/UCB1SCL P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 16 45 17 18 19 44 43 42 P5.1/UCB1SIMO/UCB1SDA P5.0/UCB1STE/UCA1CLK P4.7/TBCLK P4.6/TB6 P2.0/ACLK/CA2 20 41 P4.5/TB5 80-PIN PN PACKAGE (TOP VIEW) P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P2.6/ADC12CLK/CA6 P2.7/TA0/CA7 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 3 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com AV CC DVSS1 AV SS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P5.7/TBOUTH/SVSOUT P5.6/ACLK P5.5/SMCLK Device Pinout, MSP430F241x, 64-Pin PM Package 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 DVCC1 P6.3/A3 P6.4/A4 P6.5/A5 VREF-/VeREF- 1 2 3 4 5 6 7 8 9 10 11 P1.0/TACLK/CAOUT P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK 12 13 14 15 16 P6.6/A6 P6.7/A7/SVSIN VREF+ XIN XOUT Ve REF+ 64-PIN PM PACKAGE (TOP VIEW) 48 47 46 45 44 43 42 41 40 39 38 P5.4/MCLK P5.3/UCB1CLK/UCA1STE 37 36 35 34 33 P4.1/TB1 P4.0/TB0 P5.2/UCB1SOMI/UCB1SCL P5.1/UCB1SIMO/UCB1SDA P5.0/UCB1STE/UCA1CLK P4.7/TBCLK P4.6/TB6 P4.5/TB5 P4.4/TB4 P4.3/TB3 P4.2/TB2 P3.7/UCA1RXD/UCA1SOMI P3.6/UCA1TXD/UCA1SIMO P3.5/UCA0RXD/UCA0SOMI P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P2.6/ADC12CLK/CA6 P2.7/TA0/CA7 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 4 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0 P7.7 AV CC DVSS1 AV SS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI P8.7/XT2IN P8.6/XT2OUT Device Pinout, MSP430F261x, 80-Pin PN Package 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 DVCC1 P6.3/A3 P6.4/A4 1 2 3 60 59 58 P7.6 P7.5 P7.4 P6.5/A5/DAC1 P6.6/A6/DAC0 P6.7/A7/DAC1/SVSIN 4 5 6 57 56 55 P7.3 P7.2 P7.1 VREF+ XIN XOUT 7 8 9 54 53 52 P7.0 DVSS2 DVCC2 51 50 49 P5.7/TBOUTH/SVSOUT P5.6/ACLK P5.5/SMCLK 80-PIN PN PACKAGE (TOP VIEW) Ve REF+/DAC0 VREF-/VeREFP1.0/TACLK/CAOUT 10 11 12 P1.1/TA0 P1.2/TA1 P1.3/TA2 13 14 15 48 47 46 P5.4/MCLK P5.3/UCB1CLK/UCA1STE P5.2/UCB1SOMI/UCB1SCL P1.4/SMCLK P1.5/TA0 P1.6/TA1 16 45 17 18 44 43 P5.1/UCB1SIMO/UCB1SDA P5.0/UCB1STE/UCA1CLK P4.7/TBCLK P1.7/TA2 P2.0/ACLK/CA2 19 20 42 41 P4.6/TB6 P4.5/TB5 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P2.6/ADC12CLK/DMAE0/CA6 P2.7/TA0/CA7 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 5 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com P5.5/SMCLK P5.7/TBOUTH/SVSOUT P5.6/ACLK XT2IN XT2OUT TDI/TCLK TDO/TDI TCK TMS RST/NMI P6.1/A1 P6.0/A0 AV SS P6.2/A2 DVSS1 AV CC Device Pinout, MSP430F261x, 64-Pin PM Package 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 DV CC1 1 48 P6.3/A3 2 47 P5.3/UCB1CLK/UCA1STE P6.4/A4 3 46 P5.2/UCB1SOMI/UCB1SCL P6.5/A5/DAC1 P6.6/A6/DAC0 4 5 45 44 P5.1/UCB1SIMO/UCB1SDA P5.0/UCB1STE/UCA1CLK P6.7/A7/DAC1/SVSIN 6 43 P4.7/TBCLK VREF+ 7 42 P4.6/TB6 XIN 8 41 P4.5/TB5 40 39 P4.4/TB4 P4.3/TB3 XOUT Ve REF+/DAC0 9 10 64-PIN PM PACKAGE (TOP VIEW) P5.4/MCLK VREF-/Ve REF- 11 38 P4.2/TB2 P1.0/TACLK/CAOUT 12 37 P4.1/TB1 P1.1/TA0 13 36 P4.0/TB0 P1.2/TA1 14 35 P3.7/UCA1RXD/UCA1SOMI P1.3/TA2 P1.4/SMCLK 15 16 34 33 P3.6/UCA1TXD/UCA1SIMO P3.5/UCA0RXD/UCA0SOMI Submit Documentation Feedback P3.4/UCA0TXD/UCA0SIMO P3.3/UCB0CLK/UCA0STE P3.2/UCB0SOMI/UCB0SCL P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P2.7/TA0/CA7 P2.6/ADC12CLK/DMAE0/CA6 P2.5/ROSC/CA5 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.0/ACLK/CA2 P1.7/TA2 P1.5/TA0 6 P1.6/TA1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Device Pinout, 113-Pin ZQW Package NOTE For terminal assignments, see Table 2. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C11 C12 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 E1 E2 E4 E5 E6 E7 E8 E9 E11 E12 F1 F2 F4 F5 F8 F9 F11 F12 G1 G2 G4 G5 G8 G9 G11 G12 H1 H2 H4 H5 H6 H7 H8 H9 H11 H12 J1 J2 J4 J5 J6 J7 J8 J9 J11 J12 K1 K2 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 7 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Functional Block Diagram, MSP430F241x, 80-Pin PN Package XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC1/2 ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers DVSS1/2 Flash RAM 120KB 116KB 92KB 92KB 4KB 8KB 8KB 4KB AVCC AVSS P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x Ports P1/P2 ADC12 12-Bit Ports P3/P4 P5/P6 2x8 I/O Interrupt capability 8 Channels 4x8 I/O P7.x/P8.x 2x8/ 1x16 Ports P7/P8 2x8/1x16 I/O USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C MAB MDB Emulation Brownout Protection JTAG Interface SVS, SVM Hardware Multiplier Timer_B7 Watchdog WDT+ MPY, MPYS, MAC, MACS 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI Functional Block Diagram, MSP430F241x, 64-Pin PM Package XIN/ XOUT/ XT2IN XT2OUT 2 2 DVCC ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers DVSS Flash RAM 120KB 116KB 92KB 92KB 4KB 8KB 8KB 4KB AVCC AVSS P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x Ports P1/P2 ADC12 12-Bit 2x8 I/O Interrupt capability 8 Channels Ports P3/P4 P5/P6 USCI A0 UART/ LIN, IrDA, SPI 4x8 I/O USCI B0 SPI, I2C MAB MDB Emulation Brownout Protection JTAG Interface SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS Timer_B7 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI 8 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Functional Block Diagram, MSP430F261x, 80-Pin PN Package XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC1/2 ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers Flash 120kB 116kB 92kB 92kB 56kB DVSS1/2 AVCC RAM 4kB 8kB 8kB 4kB 4kB ADC12 12-Bit 8 Channels AVSS DAC12 12-Bit 2 Channels Voltage Out P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x Ports P1/P2 Ports P3/P4 P5/P6 2x8 I/O Interrupt capability 4x8 I/O P7.x/P8.x 2x8/ 1x16 Ports P7/P8 2x8/1x16 I/O USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C MAB MDB Emulation Brownout Protection JTAG Interface SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS DMA Controller 3 Channels Timer_B7 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI Functional Block Diagram, MSP430F261x, 64-Pin PM Package XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers Flash 120kB 116kB 92kB 92kB 56kB DVSS AVCC RAM 4kB 8kB 8kB 4kB 4kB ADC12 12-Bit 8 Channels AVSS DAC12 12-Bit 2 Channels Voltage Out P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x Ports P1/P2 2x8 I/O Interrupt capability Ports P3/P4 P5/P6 USCI A0 UART/ LIN, IrDA, SPI 4x8 I/O USCI B0 SPI, I2C MAB MDB Emulation Brownout Protection JTAG Interface SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS DMA Controller 3 Channels Timer_B7 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 9 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Table 2. Terminal Functions TERMINAL NO. NAME I/O DESCRIPTION 64 PIN 80 PIN 113 PIN AVCC 64 80 A2 Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12. AVSS 62 78 B2, B3 Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12. DVCC1 1 1 A1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS1 63 79 A3 Digital supply voltage, negative terminal. Supplies all digital parts. DVCC2 52 F12 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS2 53 E12 Digital supply voltage, negative terminal. Supplies all digital parts. P1.0/TACLK/CAOUT 12 12 G2 I/O General-purpose digital I/O pin Timer_A, clock signal TACLK input Comparator_A output P1.1/TA0 13 13 H1 I/O General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: Out0 output BSL transmit P1.2/TA1 14 14 H2 I/O General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 15 15 J1 I/O General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK 16 16 J2 I/O General-purpose digital I/O pin SMCLK signal output P1.5/TA0 17 17 K1 I/O General-purpose digital I/O pin Timer_A, compare: Out0 output P1.6/TA1 18 18 K2 I/O General-purpose digital I/O pin Timer_A, compare: Out1 output P1.7/TA2 19 19 L1 I/O General-purpose digital I/O pin Timer_A, compare: Out2 output P2.0/ACLK/CA2 20 20 M1 I/O General-purpose digital I/O pin ACLK output/Comparator_A input P2.1/TAINCLK/CA3 21 21 M2 I/O General-purpose digital I/O pin Timer_A, clock signal at INCLK P2.2/CAOUT/TA0/CA4 22 22 M3 I/O General-purpose digital I/O pin Timer_A, capture: CCI0B input Comparator_A output BSL receive Comparator_A input P2.3/CA0/TA1 23 23 L3 I/O General-purpose digital I/O pin Timer_A, compare: Out1 output Comparator_A input P2.4/CA1/TA2 24 24 L4 I/O General-purpose digital I/O pin Timer_A, compare: Out2 output Comparator_A input P2.5/ROSC/CA5 25 25 M4 I/O General-purpose digital I/O pin Input for external resistor defining the DCO nominal frequency Comparator_A input 10 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Table 2. Terminal Functions (continued) TERMINAL NO. NAME 64 PIN 80 PIN I/O DESCRIPTION 113 PIN P2.6/ADC12CLK/ DMAE0 (1)/CA6 26 26 J4 I/O General-purpose digital I/O pin Conversion clock - 12-bit ADC DMA channel 0 external trigger Comparator_A input P2.7/TA0/CA7 27 27 L5 I/O General-purpose digital I/O pin Timer_A, compare: Out0 output Comparator_A input P3.0/UCB0STE/ UCA0CLK 28 28 M5 I/O General-purpose digital I/O pin USCI_B0 slave transmit enable/USCI_A0 clock input/output P3.1/UCB0SIMO/ UCB0SDA 29 29 L6 I/O P3.2/UCB0SOMI/ UCB0SCL 30 30 M6 I/O General-purpose digital I/O pin USCI_B0 slave-out master-in in SPI mode, SCL I2C clock in I2C mode P3.3/UCB0CLK/ UCA0STE 31 31 L7 I/O General-purpose digital I/O USCI_B0 clock input/output, USCI_A0 slave transmit enable P3.4/UCA0TXD/ UCA0SIMO 32 32 M7 I/O General-purpose digital I/O pin USCI_A transmit data output in UART mode, slave data in/master out in SPI mode P3.5/UCA0RXD/ UCA0SOMI 33 33 L8 I/O General-purpose digital I/O pin USCI_A0 receive data input in UART mode, slave data out/master in in SPI mode P3.6/UCA1TXD/ UCA1SIMO 34 34 M8 I/O General-purpose digital I/O pin USCI_A1 transmit data output in UART mode, slave data in/master out in SPI mode P3.7/UCA1RXD/ UCA1SOMI 35 35 L9 I/O General-purpose digital I/O pin USCI_A1 receive data input in UART mode, slave data out/master in in SPI mode P4.0/TB0 36 36 M9 I/O General-purpose digital I/O pin Timer_B, capture: CCI0A/B input, compare: Out0 output P4.1/TB1 37 37 J9 I/O General-purpose digital I/O pin Timer_B, capture: CCI1A/B input, compare: Out1 output P4.2/TB2 38 38 M10 I/O General-purpose digital I/O pin Timer_B, capture: CCI2A/B input, compare: Out2 output P4.3/TB3 39 39 L10 I/O General-purpose digital I/O pin Timer_B, capture: CCI3A/B input, compare: Out3 output P4.4/TB4 40 40 M11 I/O General-purpose digital I/O pin Timer_B, capture: CCI4A/B input, compare: Out4 output P4.5/TB5 41 41 M12 I/O General-purpose digital I/O pin Timer_B, capture: CCI5A/B input, compare: Out5 output P4.6/TB6 42 42 L12 I/O General-purpose digital I/O pin Timer_B, capture: CCI6A input, compare: Out6 output P4.7/TBCLK 43 43 K11 I/O General-purpose digital I/O pin Timer_B, clock signal TBCLK input (1) General-purpose digital I/O pin USCI_B0 slave-in master-out in SPI mode, SDA I2C data in I2C mode MSP430F261x devices only Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 11 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Table 2. Terminal Functions (continued) TERMINAL NO. NAME I/O DESCRIPTION 64 PIN 80 PIN 113 PIN P5.0/UCB1STE/ UCA1CLK 44 44 K12 I/O General-purpose digital I/O pin USCI_B1 slave transmit enable/USCI_A1 clock input/output P5.1/UCB1SIMO/ UCB1SDA 45 45 J11 I/O General-purpose digital I/O pin USCI_B1 slave-in master-out in SPI mode, SDA I2C data in I2C mode P5.2/UCB1SOMI/ UCB1SCL 46 46 J12 I/O General-purpose digital I/O pin USCI_B1 slave-out master-in in SPI mode, SCL I2C clock in I2C mode P5.3/UCB1CLK/ UCA1STE 47 47 H11 I/O General-purpose digital I/O USCI_B1 clock input/output, USCI_A1 slave transmit enable P5.4/MCLK 48 48 H12 I/O General-purpose digital I/O pin Main system clock MCLK output P5.5/SMCLK 49 49 G11 I/O General-purpose digital I/O pin Submain system clock SMCLK output P5.6/ACLK 50 50 G12 I/O General-purpose digital I/O pin Auxiliary clock ACLK output P5.7/TBOUTH/SVSOUT 51 51 F11 I/O General-purpose digital I/O pin Switch all PWM digital output ports to high impedance - Timer_B TB0 to TB6 SVS comparator output P6.0/A0 59 75 D4 I/O General-purpose digital I/O pin Analog input A0 - 12-bit ADC P6.1/A1 60 76 A4 I/O General-purpose digital I/O pin Analog input A1 - 12-bit ADC P6.2/A2 61 77 B4 I/O General-purpose digital I/O pin Analog input A2 - 12-bit ADC P6.3/A3 2 2 B1 I/O General-purpose digital I/O pin Analog input A3 - 12-bit ADC P6.4/A4 3 3 C1 I/O General-purpose digital I/O pin Analog input A4 - 12-bit ADC P6.5/A5/DAC1 (2) 4 4 C2, C3 I/O General-purpose digital I/O pin Analog input A5 - 12-bit ADC DAC12.1 output P6.6/A6/DAC0 (2) 5 5 D1 I/O General-purpose digital I/O pin Analog input A6 - 12-bit ADC DAC12.0 output D2 I/O General-purpose digital I/O pin Analog input A7 - 12-bit ADC DAC12.1 output SVS input P6.7/A7/DAC1 (2) /SVSIN 6 6 P7.0 54 E11 I/O General-purpose digital I/O pin P7.1 55 D12 I/O General-purpose digital I/O pin P7.2 56 D11 I/O General-purpose digital I/O pin P7.3 57 C12 I/O General-purpose digital I/O pin P7.4 58 C11 I/O General-purpose digital I/O pin (2) 12 MSP430F261x devices only Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Table 2. Terminal Functions (continued) TERMINAL NO. NAME 64 PIN I/O DESCRIPTION 80 PIN 113 PIN P7.5 59 B12 I/O General-purpose digital I/O pin P7.6 60 A12 I/O General-purpose digital I/O pin P7.7 61 A11 I/O General-purpose digital I/O pin P8.0 62 B10 I/O General-purpose digital I/O pin P8.1 63 A10 I/O General-purpose digital I/O pin P8.2 64 D9 I/O General-purpose digital I/O pin P8.3 65 A9 I/O General-purpose digital I/O pin P8.4 66 B9 I/O General-purpose digital I/O pin P8.5 67 B8 I/O General-purpose digital I/O pin P8.6/XT2OUT 68 A8 I/O General-purpose digital I/O pin Output terminal of crystal oscillator XT2 P8.7/XT2IN 69 A7 I/O General-purpose digital I/O pin Input port for crystal oscillator XT2. Only standard crystals can be connected. XT2OUT 52 O Output terminal of crystal oscillator XT2 XT2IN 53 I Input port for crystal oscillator XT2 RST/NMI 58 74 B5 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices) TCK 57 73 A5 I Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start TDI/TCLK 55 71 A6 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI 54 70 B7 I/O TMS 56 72 B6 I Test mode select. TMS is used as an input port for device programming and test. VeREF+/DAC0 (3) 10 10 F2 I Input for an external reference voltage/DAC12.0 output VREF+ 7 7 E2 O Output of positive terminal of the reference voltage in the ADC12 VREF-/VeREF- 11 11 G1 I Negative terminal for the reference voltage for both sources, the internal reference voltage or an external applied reference voltage XIN 8 8 E1 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 9 F1 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected. Reserved - - (4) (3) (4) NA Test data output port. TDO/TDI data output or programming data input terminal. Reserved pins. Connection to DVSS, AVSS recommended. MSP430F261x devices only Reserved pins are L2, E4, F4, G4, H4, D5, E5, F5, G5, H5, J5, D6, E6, H6, J6, D7, E7, H7, J7, D8, E8, F8, G8, H8, J8, E9, F9, G9, H9, B11, L11. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 13 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com SHORT-FORM DESCRIPTION CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 Instruction Set General-Purpose Register R11 The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 3 shows examples of the three types of instruction formats; Table 4 shows the address modes. General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. Table 3. Instruction Word Formats INSTRUCTION FORMAT EXAMPLE OPERATION Dual operands, source-destination ADD R4,R5 R4 + R5 -> R5 Single operands, destination only CALL R8 PC ->(TOS), R8-> PC Relative jump, un/conditional JNE Jump-on-equal bit = 0 Table 4. Address Mode Descriptions ADDRESS MODE SYNTAX EXAMPLE ✓ ✓ MOV Rs,Rd MOV R10,R11 R10 -> R11 Indexed ✓ ✓ MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)-> M(6+R6) Symbolic (PC relative) ✓ ✓ MOV EDE,TONI M(EDE) -> M(TONI) Absolute ✓ ✓ MOV &MEM,&TCDAT M(MEM) -> M(TCDAT) Indirect ✓ MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) -> M(Tab+R6) Indirect autoincrement ✓ MOV @Rn+,Rm MOV @R10+,R11 M(R10) -> R11 R10 + 2-> R10 Immediate ✓ MOV #X,TONI MOV #45,TONI #45 -> M(TONI) 14 D (1) Register (1) S (1) OPERATION S = source, D = destination Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Operating Modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active – MCLK is disabled • Low-power mode 1 (LPM1) – CPU is disabled – ACLK and SMCLK remain active. MCLK is disabled – DCO's dc-generator is disabled if DCO not used in active mode • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and SMCLK are disabled – DCO's dc-generator remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK and SMCLK are disabled – DCO's dc-generator is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK and SMCLK are disabled – DCO's dc-generator is disabled – Crystal oscillator is stopped Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 15 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed) the CPU enters LPM4 immediately after power-up. Table 5. Interrupt Sources INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External reset Watchdog Timer+ Flash key violation PC out-of-range (1) PORIFG RSTIFG WDTIFG KEYV See (2) Reset 0FFFEh 31, highest NMI Oscillator fault Flash memory access violation NMIIFG OFIFG ACCVIFG (2) (3) (Non)maskable, (Non)maskable, (Non)maskable 0FFFCh 30 Timer_B7 TBCCR0 CCIFG (4) Maskable 0FFFAh 29 Timer_B7 TBCCR1 to TBCCR6 CCIFGs, TBIFG (2) (4) Maskable 0FFF8h 28 Comparator_A+ CAIFG Maskable 0FFF6h 27 Watchdog Timer+ WDTIFG Maskable 0FFF4h 26 Timer_A3 TACCR0 CCIFG (4) Maskable 0FFF2h 25 Timer_A3 TACCR1 CCIFG TACCR2 CCIFG (2) (4) Maskable 0FFF0h 24 USCI_A0/USCI_B0 receive USCI_B0 I2C status UCA0RXIFG, UCB0RXIFG (2) (5) Maskable 0FFEEh 23 USCI_A0/USCI_B0 transmit USCI_B0 I2C receive or transmit UCA0TXIFG, UCB0TXIFG (2) (6) Maskable 0FFECh 22 ADC12 ADC12IFG (2) (4) Maskable 0FFEAh 21 0FFE8h 20 I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 (2) (4) Maskable 0FFE6h 19 I/O port P1 (eight flags) (2) (4) Maskable 0FFE4h 18 (2) (5) Maskable 0FFE2h 17 USCI_A1/USCI_B1 transmit USCI_B1 I2C receive or transmit UCA1TXIFG, UCB1TXIFG (2) (6) Maskable 0FFE0h 16 DMA DMA0IFG, DMA1IFG, DMA2IFG (2) (4) Maskable 0FFDEh 15 DAC12 DAC12_0IFG, DAC12_1IFG (2) (4) Maskable USCI_A1/USCI_B1 receive USCI_B1 I2C status See (1) (2) (3) (4) (5) (6) (7) (8) 16 P1IFG.0 to P1IFG.7 UCA1RXIFG, UCB1RXIFG (7) (8) 0FFDCh 14 0FFDAh to 0FFC0h 15 to 0, lowest A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges. Multiple source flags (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. Interrupt flags are located in the module. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. The address 0FFBEh is used as bootstrap loader security key (BSLSKEY). A 0AA55h at this location disables the BSL completely. A zero disables the erasure of the flash if an invalid password is supplied. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if necessary. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Special Function Registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. Legend rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is reset or set by PUC. Bit can be read and written. It is reset or set by POR. SFR bit is not present in device. Table 6. Interrupt Enable Register 1 and 2 Address 7 6 00h WDTIE OFIE NMIIE ACCVIE Address 5 4 1 0 ACCVIE NMIIE OFIE WDTIE rw-0 rw-0 rw-0 rw-0 2 Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. Oscillator fault interrupt enable (Non)maskable interrupt enable Flash access violation interrupt enable 7 6 5 4 01h UCA0RXIE UCA0TXIE UCB0RXIE UCB0TXIE 3 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw-0 rw-0 rw-0 rw-0 USCI_A0 receive interrupt enable USCI_A0 transmit interrupt enable USCI_B0 receive interrupt enable USCI_B0 transmit interrupt enable Table 7. Interrupt Flag Register 1 and 2 Address 7 6 5 02h WDTIFG OFIFG PORIFG RSTIFG NMIIFG Address 3 2 1 0 RSTIFG PORIFG OFIFG WDTIFG rw-0 rw-(0) rw-(1) rw-1 rw-(0) Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode. Flag set on oscillator fault. Power-On Reset interrupt flag. Set on VCC power-up. External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up. Set via RST/NMI pin 7 6 03h UCA0RXIFG UCA0TXIFG UCB0RXIFG UCB0TXIFG 4 NMIIFG 5 4 3 2 1 0 UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG rw-1 rw-0 rw-1 rw-0 USCI_A0 receive interrupt flag USCI_A0 transmit interrupt flag USCI_B0 receive interrupt flag USCI_B0 transmit interrupt flag Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 17 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Memory Organization Table 8. Memory Organization MSP430F2416 MSP430F2616 MSP430F2417 MSP430F2617 MSP430F2418 MSP430F2618 MSP430F2419 MSP430F2619 Size 92KB 92KB 116KB 120KB Main: interrupt vector Flash 0x0FFFF-0x0FFC0 0x0FFFF-0x0FFC0 0x0FFFF-0x0FFC0 0x0FFFF-0x0FFC0 Main: code memory Flash 0x18FFF-0x02100 0x19FFF-0x03100 0x1FFFF-0x03100 0x1FFFF-0x02100 RAM (total) Size 4KB 0x020FF-0x01100 8KB 0x030FF-0x01100 8KB 0x030FF-0x01100 4KB 0x020FF-0x01100 Extended Size 2KB 0x020FF-0x01900 6KB 0x030FF-0x01900 6KB 0x030FF-0x01900 2KB 0x020FF-0x01900 Mirrored Size 2KB 0x018FF-0x01100 2KB 0x018FF-0x01100 2KB 0x018FF-0x01100 2KB 0x018FF-0x01100 Memory Information memory Boot memory RAM (mirrored at 0x18FF to 0x01100) Peripherals Size 256 Byte 256 Byte 256 Byte 256 Byte Flash 0x010FF-0x01000 0x010FF-0x01000 0x010FF-0x01000 0x010FF-0x01000 Size 1KB 1KB 1KB 1KB ROM 0x00FFF-0x00C00 0x00FFF-0x00C00 0x00FFF-0x00C00 0x00FFF-0x00C00 Size 2KB 0x009FF-0x00200 2KB 0x009FF-0x00200 2KB 0x009FF-0x00200 2KB 0x009FF-0x00200 16-bit 0x001FF-0x00100 0x001FF-0x00100 0x001FF-0x00100 0x001FF-0x00100 8-bit 0x000FF-0x00010 0x000FF-0x00010 0x000FF-0x00010 0x000FF-0x00010 8-bit SFR 0x0000F-0x00000 0x0000F-0x00000 0x0000F-0x00000 0x0000F-0x00000 Bootstrap Loader (BSL) The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by a user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader (BSL) User's Guide (SLAU319). Table 9. BSL Pin Functions BSL FUNCTION PM, PN PACKAGE PINS ZQW PACKAGE PINS Data Transmit 13 - P1.1 H1 - P1.1 Data Receive 22 - P2.2 M3 - P2.2 Flash Memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A contains calibration data. After reset segment A is protected against programming and erasing. It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is required. • Flash content integrity check with marginal read modes 18 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144). DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. Oscillator and System Clock The clock system in the MSP430F241x and MSP430F261x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low-power low-frequency oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals: • Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator. • Main clock (MCLK), the system clock used by the CPU. • Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. Calibration Data Stored in Information Memory Segment A Calibration data is stored for the DCO and for the ADC12. It is organized in a tag-length-value (TLV) structure. Table 10. Tags Used by the TLV Structure ADDRESS VALUE TAG_DCO_30 NAME 0x10F6 0x01 DCO frequency calibration at VCC = 3 V and TA = 25°C at calibration TAG_ADC12_1 0x10DA 0x08 ADC12_1 calibration tag - 0xFE Identifier for empty memory areas TAG_EMPTY DESCRIPTION Table 11. Labels Used by the ADC Calibration Structure LABEL CONDITION AT CALIBRATION SIZE ADDRESS OFFSET CAL_ADC_25T85 INCHx = 0x1010, REF2_5 = 1, TA = 85°C word 0x000E CAL_ADC_25T30 INCHx = 0x1010, REF2_5 = 1, TA = 30°C word 0x000C CAL_ADC_25VREF_FACTOR REF2_5 = 1, TA = 30°C word 0x000A CAL_ADC_15T85 INCHx = 0x1010, REF2_5 = 0, TA = 85°C word 0x0008 CAL_ADC_15T30 INCHx = 0x1010, REF2_5 = 0, TA = 30°C word 0x0006 CAL_ADC_15VREF_FACTOR REF2_5 = 0, TA = 30°C word 0x0004 CAL_ADC_OFFSET External VREF = 1.5 V, fADC12CLK = 5 MHz word 0x0002 CAL_ADC_GAIN_FACTOR External VREF = 1.5 V, fADC12CLK = 5 MHz word 0x0000 CAL_BC1_1MHZ - byte 0x0007 CAL_DCO_1MHZ - byte 0x0006 CAL_BC1_8MHZ - byte 0x0005 CAL_DCO_8MHZ - byte 0x0004 CAL_BC1_12MHZ - byte 0x0003 CAL_DCO_12MHZ - byte 0x0002 CAL_BC1_16MHZ - byte 0x0001 CAL_DCO_16MHZ - byte 0x0000 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 19 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Brownout, Supply Voltage Supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM) (the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). Digital I/O There are up to eight 8-bit I/O ports implemented—ports P1 through P8: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt condition is possible. • Edge-selectable interrupt input capability for all the eight bits of port P1 and port P2. • Read and write access to port-control registers is supported by all instructions. • Each I/O has an individually programmable pullup or pulldown resistor. • Ports P7 and P8 can be accessed word-wise. Watchdog Timer (WDT+) The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals. Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16x16, 16x8, 8x16, and 8x8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. Universal Serial Communication Interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 pin or 4 pin) or I2C, and asynchronous combination protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. The USCI_A module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA. The USCI_B module provides support for SPI (3 pin or 4 pin) and I2C 20 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 12. Timer_A3 Signal Connections INPUT PIN NUMBER MODULE INPUT NAME MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 TA0 ZQW PM, PN DEVICE INPUT SIGNAL G2 - P1.0 12 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK OUTPUT PIN NUMBER PM, PN ZQW M2 - P2.1 21 - P2.1 TAINCLK INCLK H1 - P1.1 13 - P1.1 TA0 CCI0A 13 - P1.1 H1 - P1.1 M3 - P2.2 22 - P2.2 TA0 CCI0B 17 - P1.5 K1 - P1.5 27 - P2.7 L5 - P2.7 H2 - P1.2 14 - P1.2 DVSS GND DVCC VCC TA1 CCI1A 14 - P1.2 H2 - P1.2 CAOUT (internal) CCI1B CCR1 TA1 18 - P1.6 K2 - P1.6 DVSS GND 23 - P2.3 L3 - P2.3 DVCC VCC ADC12 (internal) DAC12_0 (internal) DAC12_1 (internal) J1 - P1.3 15 - P1.3 TA2 CCI2A ACLK (internal) 15 - P1.3 J1 - P1.3 CCI2B 19 - P1.7 L1 - P1.7 DVSS GND 24 - P2.4 L4 - P2.4 DVCC VCC Copyright © 2007–2012, Texas Instruments Incorporated CCR2 TA2 Submit Documentation Feedback 21 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Timer_B7 Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 13. Timer_B3, Timer_B7 Signal Connections INPUT PIN NUMBER MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 TB0 ZQW PM, PN K11 - P4.7 43 - P4.7 TBCLK TBCLK ACLK ACLK SMCLK SMCLK K11 - P4.7 43 - P4.7 TBCLK INCLK M9 - P4.0 36 - P4.0 TB0 CCI0A M9- P4.0 36 - P4.0 TB0 CCI0B DVSS GND DVCC VCC J9 - P4.1 37 - P4.1 TB1 CCI1A J9 - P4.1 37 - P4.1 TB1 CCI1B DVSS GND OUTPUT PIN NUMBER PM, PN ZQW 36 - P4.0 M9 - P4.0 ADC12 (internal) CCR1 TB1 37 - P4.1 DVCC VCC 38 - P4.2 TB2 CCI2A M10 - P4.2 38 - P4.2 TB2 CCI2B DAC_0 (internal) DVSS GND DAC_1 (internal) DVCC VCC L10 - P4.3 39 - P4.3 TB3 CCI3A L10 - P4.3 39 - P4.3 TB3 CCI3B DVSS GND DVCC VCC M11 - P4.4 40 - P4.4 TB4 CCI4A M11 - P4.4 40 - P4.4 TB4 CCI4B DVSS GND DVCC VCC M12 - P4.5 41 - P4.5 TB5 CCI5A M12 - P4.5 41 - P4.5 TB5 CCI5B DVSS GND DVCC VCC TB6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC 42 - P4.6 Submit Documentation Feedback J9 - P4.1 ADC12 (internal) M10 - P4.2 L12 - P4.6 22 MODULE INPUT NAME DEVICE INPUT SIGNAL CCR2 TB2 38 - P4.2 M10 - P4.2 CCR3 TB3 39 - P4.3 L10 - P4.3 CCR4 TB4 40 - P4.4 M11 - P4.4 CCR5 TB5 41 - P4.5 M12 - P4.5 CCR6 TB6 42 - P4.6 L12 - P4.6 Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Comparator_A+ The primary function of the Comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversionand-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. DAC12 The DAC12 module is a 12-bit R-ladder voltage-output digital-to-analog converter (DAC). The DAC12 may be used in 8-bit or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 23 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Peripheral File Map Table 14. Peripherals File Map MODULE DMA (1) DAC12 (1) (1) 24 REGISTER SHORT FORM ADDRESS DMA channel 2 transfer size DMA2SZ 0x01F2 DMA channel 2 destination address DMA2DA 0x01EE DMA channel 2 source address DMA2SA 0x01EA DMA channel 2 control DMA2CTL 0x01E8 DMA channel 1 transfer size DMA1SZ 0x01E6 DMA channel 1 destination address DMA1DA 0x01E2 DMA channel 1 source address DMA1SA 0x01DE DMA channel 1 control DMA1CTL 0x01DC DMA channel 0 transfer size DMA0SZ 0x01DA DMA channel 0 destination address DMA0DA 0x01D6 DMA channel 0 source address DMA0SA 0x01D2 DMA channel 0 control DMA0CTL 0x01D0 DMA module interrupt vector word DMAIV 0x0126 DMA module control 1 DMACTL1 0x0124 DMA module control 0 DMACTL0 0x0122 DAC12_1 data DAC12_1DAT 0x01CA DAC12_1 control DAC12_1CTL 0x01C2 DAC12_0 data DAC12_0DAT 0x01C8 DAC12_0 control DAC12_0CTL 0x01C0 MSP430F261x devices only Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Table 14. Peripherals File Map (continued) MODULE ADC12 REGISTER SHORT FORM ADDRESS Interrupt vector word register ADC12IV 0x01A8 Interrupt enable register ADC12IE 0x01A6 Interrupt flag register ADC12IFG 0x01A4 Control register 1 ADC12CTL1 0x01A2 Control register 0 ADC12CTL0 0x01A0 Conversion memory 15 ADC12MEM15 0x015E Conversion memory 14 ADC12MEM14 0x015C Conversion memory 13 ADC12MEM13 0x015A Conversion memory 12 ADC12MEM12 0x0158 Conversion memory 11 ADC12MEM11 0x0156 Conversion memory 10 ADC12MEM10 0x0154 Conversion memory 9 ADC12MEM9 0x0152 Conversion memory 8 ADC12MEM8 0x0150 Conversion memory 7 ADC12MEM7 0x014E Conversion memory 6 ADC12MEM6 0x014C Conversion memory 5 ADC12MEM5 0x014A Conversion memory 4 ADC12MEM4 0x0148 Conversion memory 3 ADC12MEM3 0x0146 Conversion memory 2 ADC12MEM2 0x0144 Conversion memory 1 ADC12MEM1 0x0142 Conversion memory 0 ADC12MEM0 0x0140 ADC memory-control register15 ADC12MCTL15 0x008F ADC memory-control register14 ADC12MCTL14 0x008E ADC memory-control register13 ADC12MCTL13 0x008D ADC memory-control register12 ADC12MCTL12 0x008C ADC memory-control register11 ADC12MCTL11 0x008B ADC memory-control register10 ADC12MCTL10 0x008A ADC memory-control register9 ADC12MCTL9 0x0089 ADC memory-control register8 ADC12MCTL8 0x0088 ADC memory-control register7 ADC12MCTL7 0x0087 ADC memory-control register6 ADC12MCTL6 0x0086 ADC memory-control register5 ADC12MCTL5 0x0085 ADC memory-control register4 ADC12MCTL4 0x0084 ADC memory-control register3 ADC12MCTL3 0x0083 ADC memory-control register2 ADC12MCTL2 0x0082 ADC memory-control register1 ADC12MCTL1 0x0081 ADC memory-control register0 ADC12MCTL0 0x0080 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 25 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Table 14. Peripherals File Map (continued) MODULE Timer_B7 Timer_A3 REGISTER SHORT FORM TBCCR6 0x019E Capture/compare register 5 TBCCR5 0x019C Capture/compare register 4 TBCCR4 0x019A Capture/compare register 3 TBCCR3 0x0198 Capture/compare register 2 TBCCR2 0x0196 Capture/compare register 1 TBCCR1 0x0194 Capture/compare register 0 TBCCR0 0x0192 Timer_B register TBR 0x0190 Capture/compare control 6 TBCCTL6 0x018E Capture/compare control 5 TBCCTL5 0x018C Capture/compare control 4 TBCCTL4 0x018A Capture/compare control 3 TBCCTL3 0x0188 Capture/compare control 2 TBCCTL2 0x0186 Capture/compare control 1 TBCCTL1 0x0184 Capture/compare control 0 TBCCTL0 0x0182 Timer_B control TBCTL 0x0180 Timer_B interrupt vector TBIV 0x011E Capture/compare register 2 TACCR2 0x0176 Capture/compare register 1 TACCR1 0x0174 Capture/compare register 0 TACCR0 0x0172 Timer_A register TAR 0x0170 Reserved 0x016E Reserved 0x016C Reserved 0x016A Reserved Hardware Multiplier Flash Watchdog 26 ADDRESS Capture/compare register 6 0x0168 Capture/compare control 2 TACCTL2 0x0166 Capture/compare control 1 TACCTL1 0x0164 Capture/compare control 0 TACCTL0 0x0162 Timer_A control TACTL 0x0160 Timer_A interrupt vector TAIV 0x012E Sum extend SUMEXT 0x013E Result high word RESHI 0x013C Result low word RESLO 0x013A Second operand OP2 0x0138 Multiply signed +accumulate/operand 1 MACS 0x0136 Multiply+accumulate/operand 1 MAC 0x0134 Multiply signed/operand 1 MPYS 0x0132 Multiply unsigned/operand 1 MPY 0x0130 Flash control 4 FCTL4 0x01BE Flash control 3 FCTL3 0x012C Flash control 2 FCTL2 0x012A Flash control 1 FCTL1 0x0128 Watchdog Timer control WDTCTL 0x0120 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Table 14. Peripherals File Map (continued) MODULE USCI_A0/B0 USCI_A1/B1 Comparator_A+ REGISTER SHORT FORM ADDRESS USCI_A0 auto baud rate control UCA0ABCTL 0x005D USCI_A0 transmit buffer UCA0TXBUF 0x0067 USCI_A0 receive buffer UCA0RXBUF 0x0066 USCI_A0 status UCA0STAT 0x0065 USCI_A0 modulation control UCA0MCTL 0x0064 USCI_A0 baud rate control 1 UCA0BR1 0x0063 USCI_A0 baud rate control 0 UCA0BR0 0x0062 USCI_A0 control 1 UCA0CTL1 0x0061 USCI_A0 control 0 UCA0CTL0 0x0060 USCI_A0 IrDA receive control UCA0IRRCTL 0x005F USCI_A0 IrDA transmit control UCA0IRTCLT 0x005E USCI_B0 transmit buffer UCB0TXBUF 0x006F USCI_B0 receive buffer UCB0RXBUF 0x006E USCI_B0 status UCB0STAT 0x006D USCI_B0 I2C Interrupt enable UCB0CIE 0x006C USCI_B0 baud rate control 1 UCB0BR1 0x006B USCI_B0 baud rate control 0 UCB0BR0 0x006A USCI_B0 control 1 UCB0CTL1 0x0069 USCI_B0 control 0 UCB0CTL0 0x0068 USCI_B0 I2C slave address UCB0SA 0x011A USCI_B0 I2C own address UCB0OA 0x0118 USCI_A1 auto baud rate control UCA1ABCTL 0x00CD USCI_A1 transmit buffer UCA1TXBUF 0x00D7 USCI_A1 receive buffer UCA1RXBUF 0x00D6 USCI_A1 status UCA1STAT 0x00D5 USCI_A1 modulation control UCA1MCTL 0x00D4 USCI_A1 baud rate control 1 UCA1BR1 0x00D3 USCI_A1 baud rate control 0 UCA1BR0 0x00D2 USCI_A1 control 1 UCA1CTL1 0x00D1 USCI_A1 control 0 UCA1CTL0 0x00D0 USCI_A1 IrDA receive control UCA1IRRCTL 0x00CF USCI_A1 IrDA transmit control UCA1IRTCLT 0x00CE USCI_B1 transmit buffer UCB1TXBUF 0x00DF USCI_B1 receive buffer UCB1RXBUF 0x00DE USCI_B1 status UCB1STAT 0x00DD USCI_B1 I2C Interrupt enable UCB1CIE 0x00DC USCI_B1 baud rate control 1 UCB1BR1 0x00DB USCI_B1 baud rate control 0 UCB1BR0 0x00DA USCI_B1 control 1 UCB1CTL1 0x00D9 USCI_B1 control 0 UCB1CTL0 0x00D8 USCI_B1 I2C slave address UCB1SA 0x017E USCI_B1 I2C own address UCB1OA 0x017C USCI_A1/B1 interrupt enable UC1IE 0x0006 USCI_A1/B1 interrupt flag UC1IFG 0x0007 Comparator_A port disable CAPD 0x005B Comparator_A control2 CACTL2 0x005A Comparator_A control1 CACTL1 0x0059 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 27 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Table 14. Peripherals File Map (continued) MODULE Basic Clock REGISTER SHORT FORM ADDRESS Basic clock system control 3 BCSCTL3 0x0053 Basic clock system control 2 BCSCTL2 0x0058 Basic clock system control 1 BCSCTL1 0x0057 DCO clock frequency control DCOCTL 0x0056 Brownout, SVS SVS control register (reset by brownout signal) SVSCTL 0x0055 Port PA (2) Port PA resistor enable PAREN 0x0014 Port PA selection PASEL 0x003E Port PA direction PADIR 0x003C Port PA output PAOUT 0x003A Port PA input PAIN 0x0038 Port P8 resistor enable P8REN 0x0015 Port P8 selection P8SEL 0x003F Port P8 direction P8DIR 0x003D Port P8 output P8OUT 0x003B Port P8 input P8IN 0x0039 Port P7 resistor enable P7REN 0x0014 Port P7 selection P7SEL 0x003E Port P7 direction P7DIR 0x003C Port P7 output P7OUT 0x003A Port P7 input P7IN 0x0038 Port P6 resistor enable P6REN 0x0013 Port P6 selection P6SEL 0x0037 Port P6 direction P6DIR 0x0036 Port P6 output P6OUT 0x0035 Port P6 input P6IN 0x0034 Port P5 resistor enable P5REN 0x0012 Port P5 selection P5SEL 0x0033 Port P5 direction P5DIR 0x0032 Port P5 output P5OUT 0x0031 Port P5 input P5IN 0x0030 Port P4 selection P4SEL 0x001F Port P4 resistor enable P4REN 0x0011 Port P4 direction P4DIR 0x001E Port P4 output P4OUT 0x001D Port P4 input P4IN 0x001C Port P3 resistor enable P3REN 0x0010 Port P3 selection P3SEL 0x001B Port P3 direction P3DIR 0x001A Port P3 output P3OUT 0x0019 Port P3 input P3IN 0x0018 Port P8 (2) Port P7 (3) Port P6 Port P5 Port P4 Port P3 (2) (3) 28 80-pin PN and 113-pin ZQW devices only 80-pin PN and 113-pin ZQW devices only Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Table 14. Peripherals File Map (continued) MODULE Port P2 REGISTER SHORT FORM ADDRESS Port P2 resistor enable P2REN 0x002F Port P2 selection P2SEL 0x002E Port P2 interrupt enable P2IE 0x002D Port P2 interrupt-edge select P2IES 0x002C Port P2 interrupt flag P2IFG 0x002B Port P2 direction P2DIR 0x002A Port P2 output P2OUT 0x0029 Port P2 input P2IN 0x0028 Port P1 resistor enable P1REN 0x0027 Port P1 selection P1SEL 0x0026 Port P1 interrupt enable P1IE 0x0025 Port P1 interrupt-edge select P1IES 0x0024 Port P1 interrupt flag P1IFG 0x0023 Port P1 direction P1DIR 0x0022 Port P1 output P1OUT 0x0021 Port P1 input P1IN 0x0020 Special Functions SFR interrupt flag 2 IFG2 0x0003 SFR interrupt flag 1 IFG1 0x0002 SFR interrupt enable 2 IE2 0x0001 SFR interrupt enable 1 IE1 0x0000 Port P1 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 29 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Absolute Maximum Ratings (1) Voltage applied at VCC to VSS -0.3 V to 4.1 V Voltage applied to any pin (2) -0.3 V to VCC + 0.3 V Diode current at any device terminal Storage temperature (3) Tstg (1) ±2 mA Unprogrammed device -55°C to 150°C Programmed device -55°C to 150°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. (2) (3) Recommended Operating Conditions VCC Supply voltage (AVCC = DVCC = VCC (1)) VSS Supply voltage (AVSS = DVSS = VSS) TA Operating free-air temperature Processor frequency (maximum MCLK frequency) (2) (3) fSYSTEM (1) (2) (3) MIN MAX During program execution 1.8 3.6 During flash program/erase 2.2 3.6 0 0 I version -40 85 T version -40 105 VCC = 1.8 V, Duty cycle = 50% ± 10% dc 4.15 VCC = 2.7 V, Duty cycle = 50% ± 10% dc 12 VCC ≥ 3.3 V, Duty cycle = 50% ± 10% dc 16 UNIT V V °C MHz It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power-up. The MSP430 CPU is clocked directly with MCLK. Both the high and low phases of MCLK must not exceed the pulse duration of the specified maximum frequency. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet. Legend : System Frequency −MHz 16 MHz Supply voltage range during flash memory programming 12 MHz Supply voltage range during program execution 7.5 MHz 4.15 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage −V Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area 30 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Electrical Characteristics Active Mode Supply Current Into VCC Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) PARAMETER IAM,1MHz IAM,1MHz IAM,4kHz IAM,100kHz (1) (2) Active mode (AM) current (1 MHz) Active mode (AM) current (1 MHz) Active mode (AM) current (4 kHz) Active mode (AM) current (100 kHz) TEST CONDITIONS TA VCC MIN TYP MAX 365 395 375 420 515 560 525 595 330 370 340 390 460 495 470 520 fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32768 Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 -40°C to 85°C fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32768 Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 -40°C to 85°C fMCLK = fSMCLK = fACLK = 32768 Hz/8 = 4096 Hz, fDCO = 0 Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 -40°C to 85°C 2.2 V 2.1 9 105°C 2.2 V 15 31 -40°C to 85°C 3V 3 11 105°C 3V 19 32 fMCLK = fSMCLK = fDCO(0, 0) ≈ 100 kHz, fACLK = 0 Hz, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1 -40°C to 85°C 2.2 V 67 86 105°C 2.2 V 80 99 -40°C to 85°C 3V 84 107 105°C 3V 99 128 105°C 2.2 V -40°C to 85°C 105°C 105°C 3V 2.2 V -40°C to 85°C 105°C 3V UNIT µA µA µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Typical Characteristics - Active Mode Supply Current (Into VCC) ACTIVE MODE CURRENT vs SUPPLY VOLTAGE (TA = 25°C) ACTIVE MODE CURRENT vs DCO FREQUENCY 7.0 10.0 9.0 6.0 TA = 25 °C 8.0 Active Mode Current − mA Active Mode Current − mA TA = 85 °C f DCO = 16 MHz f DCO = 12 MHz 7.0 6.0 5.0 f DCO = 8 MHz 4.0 3.0 4.0 TA = 85 °C 3.0 TA = 25 °C 2.0 2.0 f DCO = 1 MHz 1.0 1.0 0.0 1.5 2.0 2.5 3.0 3.5 VCC − Supply Voltage − V Figure 2. 32 Submit Documentation Feedback 4.0 VCC = 3 V 5.0 0.0 0.0 VCC = 2.2 V 4.0 8.0 12.0 16.0 f DCO − DCO Frequency − MHz Figure 3. Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER ILPM0,1MHz ILPM0,100kHz ILPM2 ILPM3,LFXT1 Low-power mode 0 (LPM0) current (3) Low-power mode 0 (LPM0) current (3) Low-power mode 2 (LPM2) current (4) Low-power mode 3 (LPM3) current (3) TEST CONDITIONS TA fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, fACLK = 32,768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 -40°C to 85°C fMCLK = 0 MHz, fSMCLK = fDCO(0, 0) ≈ 100 kHz, fACLK = 0 Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1 -40°C to 85°C fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32,768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 -40°C to 85°C fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32,768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 105°C ILPM3,VLO fDCO = fMCLK = fSMCLK = 0 MHz, fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 Low-power mode 4 (LPM4) current (5) MAX 68 63 98 105 100 125 37 49 50 62 40 55 57 73 23 33 35 46 25 36 40 55 -40°C 0.8 1.2 25°C 1 1.3 4.6 7 105°C 105°C 3V 2.2 V -40°C to 85°C 105°C 105°C 3V 2.2 V -40°C to 85°C 105°C 85°C 3V 2.2 V 105°C 14 24 -40°C 0.9 1.3 1.1 1.5 5.5 8 105°C 17 30 -40°C 0.4 1 25°C 0.5 1 4.3 6.5 25°C 85°C 3V 2.2 V 105°C 14 24 -40°C 0.6 1.2 0.6 1.2 25°C 3V 5 7.5 105°C 16.5 29.5 -40°C 0.1 0.5 0.1 0.5 85°C 2.2 V 4 6 105°C 13 23 -40°C 0.2 0.5 0.2 0.5 4.7 7 14 24 25°C 85°C 3V 105°C (1) (2) (3) (4) (5) TYP 87 25°C ILPM4 2.2 V -40°C to 85°C 85°C fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 MIN 83 85°C Low-power mode 3 (LPM3) current (4) VCC (2) UNIT µA µA µA µA µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. Current for brownout and WDT clocked by SMCLK included. Current for brownout and WDT clocked by ACLK included. Current for brownout included. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 33 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Typical Characteristics - LPM4 Current ILPM4 − Low−power mode current − µA LPM4 CURRENT vs TEMPERATURE 16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 Vcc = 3.6 V 7.0 Vcc = 3.0 V 6.0 5.0 Vcc = 2.2 V 4.0 3.0 2.0 1.0 Vcc = 1.8 V 0.0 −40.0 −20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0 TA − Temperature − °C Figure 4. 34 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Schmitt-Trigger Inputs (Ports P1 Through P8, RST/NMI, JTAG, XIN, and XT2IN) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VIT+ TEST CONDITIONS Positive-going input threshold voltage VIT- Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ - VIT-) RPull Pullup/pulldown resistor For pullup: VIN = VSS, For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) VCC MIN TYP MAX 0.45 VCC 0.75 VCC 2.2 V 1.00 1.65 3V 1.35 2.25 0.25 VCC 0.55 VCC 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.2 1 3V 0.3 1 20 35 UNIT V V V 50 kΩ 5 pF XIN and XT2IN in bypass mode only Inputs (Ports P1 and P2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) External interrupt timing TEST CONDITIONS VCC MIN Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag (1) 2.2 V, 3 V MAX UNIT 20 ns An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals shorter than t(int). Leakage Current (Ports P1 Through P8) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) High-impedance leakage current TEST CONDITIONS VCC (1) (2) MIN 2.2 V, 3 V MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Standard Inputs (RST/NMI) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) VCC MIN MAX VIL Low-level input voltage PARAMETER 2.2 V, 3 V VSS VSS + 0.6 V VIH High-level input voltage 2.2 V, 3 V 0.8 VCC VCC V Copyright © 2007–2012, Texas Instruments Incorporated TEST CONDITIONS Submit Documentation Feedback UNIT 35 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Outputs (Ports P1 Through P8) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = -1.5 mA VOH (1) (2) MAX VCC - 0.25 VCC VCC - 0.6 VCC I(OHmax) = -1.5 mA (1) 3V VCC - 0.25 VCC I(OHmax) = -6 mA (2) 3V VCC - 0.6 VCC 2.2 V VSS VSS + 0.25 2.2 V VSS VSS + 0.6 I(OLmax) = 1.5 mA (1) 3V VSS VSS + 0.25 I(OLmax) = 6 mA (2) 3V VSS VSS + 0.6 (2) (1) I(OLmax) = 6 mA (2) Low-level output voltage TYP 2.2 V I(OLmax) = 1.5 mA VOL MIN 2.2 V I(OHmax) = -6 mA High-level output voltage VCC (1) UNIT V V The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±12 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. Output Frequency (Ports P1 Through P8) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fPx.y Port output frequency (with load) P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (1) fPort°CLK Clock output frequency P2.0/ACLK/CA2, P1.4/SMCLK, CL = 20 pF (2) t(Xdc) Duty cycle of output frequency 36 TYP MAX 2.2 V dc 10 3V dc 12 2.2 V dc 12 3V dc 16 30 50 70 P5.6/ACLK, CL = 20 pF, XT1 mode 40 50 60 P5.4/MCLK, CL = 20 pF, XT1 mode 40 60 50% 15 ns 50% + 15 ns P5.4/MCLK, CL = 20 pF, DCO P1.4/SMCLK, CL = 20 pF, DCO (2) MIN P5.6/ACLK, CL = 20 pF, LF mode P1.4/SMCLK, CL = 20 pF, XT2 mode (1) (2) VCC 40 60 50% 15 ns 50% + 15 ns UNIT MHz MHz % A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Typical Characteristics - Outputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 VCC = 2.2 V P4.5 TA = 25°C 20.0 I OL − Typical Low-Level Output Current − mA I OL − Typical Low-Level Output Current − mA 25.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P4.5 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 1.5 2.0 2.5 Figure 6. HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 3.0 3.5 0.0 VCC = 2.2 V P4.5 I OH − Typical High-Level Output Current − mA I OH − Typical High-Level Output Current − mA 1.0 Figure 5. 0.0 −5.0 −10.0 −15.0 TA = 85°C TA = 25°C −25.0 0.0 0.5 VOL − Low-Level Output Voltage − V VOL − Low-Level Output Voltage − V −20.0 TA = 25°C 0.5 1.0 1.5 2.0 VOH − High-Level Output Voltage − V Figure 7. Copyright © 2007–2012, Texas Instruments Incorporated 2.5 VCC = 3 V P4.5 −10.0 −20.0 −30.0 TA = 85°C −40.0 −50.0 0.0 TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output Voltage − V Figure 8. Submit Documentation Feedback 37 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com POR and Brownout Reset (BOR) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC(start) See Figure 9 dVCC/dt ≤ 3 V/s V(B_IT-) See Figure 9 through Figure 11 dVCC/dt ≤ 3 V/s Vhys(B_IT-) See Figure 9 dVCC/dt ≤ 3 V/s td(BOR) See Figure 9 t(reset) Pulse length needed at RST/NMI pin to accepted reset internally (1) VCC MIN TYP MAX 0.7 × V(B_IT-) 70 2.2 V, 3V 2 130 UNIT V 1.71 V 210 mV 2000 µs µs The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT-) + Vhys(B_IT-)is ≤ 1.8 V. VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 9. POR and BOR vs Supply Voltage 38 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Typical Characteristics - POR and BOR VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns t pw − Pulse Width − µs 1 ns t pw − Pulse Width − µs Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR jor BOR Signal VCC 2 t pw 3V VCC(drop) − V VCC = 3 V 1.5 Typical Conditions 1 VCC(drop) 0.5 0 0.001 t f = tr 1 t pw − Pulse Width − µs 1000 tf tr t pw − Pulse Width − µs Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR or BOR Signal Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 39 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Supply Voltage Supervisor (SVS), Supply Voltage Monitor (SVM) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 12) TYP 5 150 dVCC/dt ≤ 30 V/ms td(SVSon) SVSon, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0 (1) V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 12) 2000 150 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 12) Vhys(SVS_IT-) VCC/dt ≤ 3 V/s (see Figure 12), external voltage applied on A7 V(SVS_IT-) VCC/dt ≤ 3V/s (see Figure 12 and Figure 13) VCC/dt ≤ 3 V/s (see Figure 12 and Figure 13), external voltage applied on A7 ICC(SVS) (1) (2) (3) 40 (3) VLD ≠ 0, VCC = 2.2 V, 3 V MAX 70 µs 300 µs 12 µs 1.55 1.7 V 120 155 mV 0.004 × V(SVS_IT-) 0.016 × V(SVS_IT-) VLD = 15 4.4 20 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.60 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61 (2) VLD = 13 3.24 3.5 3.76 (2) VLD = 14 3.43 3.7 (2) 3.99 (2) VLD = 15 1.1 1.2 1.3 10 15 VLD = 2 to 14 UNIT V mV V µA tsettle is the settling time that the comparator output needs to have a stable level after VLD is switched from VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be >50 mV. The recommended operating voltage range is limited to 3.6 V. The current consumption of the SVS module is not included in the ICC current consumption data. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Software sets VLD >0: SVS is active AVCC V(SVS_IT−) V(SVSstart) Vhys(SVS_IT−) Vhys(B_IT−) V(B_IT−) VCC(start) Brownout Region Brownout Region Brownout 1 0 SVS out t d(BOR) t d(BOR) SVS Circuit is Active From VLD > to V CC < V( B_IT−) 1 0 td(SVSon) Set POR 1 td(SVSR) undefined 0 Figure 12. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 Rectangular Drop VCC(min) VCC(min) − V 1.5 Triangular Drop 1 1 ns 1 ns VCC 0.5 t pw 3V 0 1 10 100 1000 t pw − Pulse Width − µs VCC(min) t f = tr tf tr t − Pulse Width − µs Figure 13. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1) Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 41 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Main DCO Characteristics • • • All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. DCO control bits DCOx have a step size as defined by parameter SDCO. Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: faverage = 32 × fDCO(RSEL,DCO) × fDCO(RSEL,DCO+1) MOD × fDCO(RSEL,DCO) + (32 – MOD) × fDCO(RSEL,DCO+1) DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC Supply voltage TEST CONDITIONS VCC MIN TYP MAX RSELx < 14 1.8 3.6 RSELx = 14 2.2 3.6 RSELx = 15 3.0 3.6 UNIT V fDCO(0,0) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V, 3 V 0.06 0.14 MHz fDCO(0,3) DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V, 3 V 0.07 0.17 MHz fDCO(1,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V, 3 V 0.10 0.20 MHz fDCO(2,3) DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V, 3 V 0.14 0.28 MHz fDCO(3,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V, 3 V 0.20 0.40 MHz fDCO(4,3) DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V, 3 V 0.28 0.54 MHz fDCO(5,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V, 3 V 0.39 0.77 MHz fDCO(6,3) DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V, 3 V 0.54 1.06 MHz fDCO(7,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V, 3 V 0.80 1.50 MHz fDCO(8,3) DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V, 3 V 1.10 2.10 MHz fDCO(9,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V, 3 V 1.60 3.00 MHz fDCO(10,3) DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V, 3 V 2.50 4.30 MHz fDCO(11,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V, 3 V 3.00 5.50 MHz fDCO(12,3) DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V, 3 V 4.30 7.30 MHz fDCO(13,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V, 3 V 6.00 9.60 MHz fDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V, 3 V 8.60 13.9 MHz fDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz fDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO) 2.2 V, 3 V 1.55 ratio SDCO Frequency step between tap DCO and DCO+1 SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO) 2.2 V, 3 V 1.05 1.08 1.12 ratio Duty cycle Measured at P1.4/SMCLK 2.2 V, 3 V 40 50 60 42 Submit Documentation Feedback % Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Calibrated DCO Frequencies - Tolerance at Calibration over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Frequency tolerance at calibration TA VCC MIN TYP MAX UNIT 25°C 3V -1 ±0.2 +1 % 25°C 3V 0.990 1 1.010 MHz fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 3V 7.920 8 8.080 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 3V 11.88 12 12.12 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3V 15.84 16 16.16 MHz MAX UNIT Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) TA VCC 1-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±0.5 +2.5 % 8-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±1.0 +2.5 % 12-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±1.0 +2.5 % 16-MHz tolerance over temperature 0°C to 85°C 3V -3 ±2.0 +3 % 2.2 V 0.970 1 1.030 3V 0.975 1 1.025 3.6 V 0.970 1 1.030 2.2 V 7.760 8 8.40 3V 7.800 8 8.20 3.6 V 7.600 8 8.24 2.2 V 11.64 12 12.36 3V 11.64 12 12.36 3.6 V 11.64 12 12.36 3V 15.52 16 16.48 3.6 V 15.00 16 16.48 1-MHz calibration value 8-MHz calibration value 12-MHz calibration value 16-MHz calibration value TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 0°C to 85°C Copyright © 2007–2012, Texas Instruments Incorporated MIN TYP Submit Documentation Feedback MHz MHz MHz MHz 43 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Calibrated DCO Frequencies - Tolerance Over Supply Voltage VCC over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX 1-MHz tolerance over VCC 25°C 8-MHz tolerance over VCC 25°C 12-MHz tolerance over VCC 16-MHz tolerance over VCC UNIT 1.8 V to 3.6 V -3 ±2 +3 % 1.8 V to 3.6 V -3 ±2 +3 % 25°C 2.2 V to 3.6 V -3 ±2 +3 % 25°C 3 V to 3.6 V -6 ±2 +3 % fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 25°C 1.8 V to 3.6 V 0.97 1 1.03 MHz fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 1.8 V to 3.6 V 7.76 8 8.24 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3 V to 3.6 V 15 16 16.48 MHz MIN TYP MAX UNIT Calibrated DCO Frequencies - Overall Tolerance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC 1-MHz tolerance overall -40°C to 105°C 1.8 V to 3.6 V -5 ±2 +5 % 8-MHz tolerance overall -40°C to 105°C 1.8 V to 3.6 V -5 ±2 +5 % 12-MHz tolerance overall -40°C to 105°C 2.2 V to 3.6 V -5 ±2 +5 % 16-MHz tolerance overall -40°C to 105°C 3 V to 3.6 V -6 ±3 +6 % fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms -40°C to 105°C 1.8 V to 3.6 V 0.95 1 1.05 MHz fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms -40°C to 105°C 1.8 V to 3.6 V 7.6 8 8.4 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms -40°C to 105°C 2.2 V to 3.6 V 11.4 12 12.6 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms -40°C to 105°C 3 V to 3.6 V 15 16 17 MHz 44 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Typical Characteristics - Calibrated DCO Frequency CALIBRATED 1-MHz FREQUENCY vs SUPPLY VOLTAGE CALIBRATED 8-MHz FREQUENCY vs SUPPLY VOLTAGE 1.02 8.20 TA = 105 °C 8.15 8.10 Frequency − MHz Frequency − MHz 1.01 TA = 105 °C 1.00 TA = 85 °C TA = 25 °C 0.99 8.00 TA = 85 °C TA = 25 °C 7.95 TA = −40 °C 7.90 7.85 TA = −40 °C 0.98 1.5 8.05 2.0 2.5 3.0 3.5 7.80 1.5 4.0 2.0 VCC − Supply Voltage − V 2.5 4.0 VCC − Supply Voltage − V Figure 15. CALIBRATED 12-MHz FREQUENCY vs SUPPLY VOLTAGE CALIBRATED 16-MHz FREQUENCY vs SUPPLY VOLTAGE 16.1 12.1 16.0 TA = −40 °C TA = −40 °C Frequency − MHz Frequency − MHz 3.5 Figure 14. 12.2 TA = 25 °C 12.0 TA = 85 °C 11.9 TA = 105 °C 11.8 11.7 1.5 3.0 2.0 2.5 3.0 VCC − Supply Voltage − V Figure 16. Copyright © 2007–2012, Texas Instruments Incorporated 3.5 15.9 TA = 25 °C TA = 85 °C 15.8 TA = 105 °C 15.7 4.0 15.6 1.5 2.0 2.5 3.0 3.5 4.0 VCC − Supply Voltage − V Figure 17. Submit Documentation Feedback 45 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Wake-Up From Lower-Power Modes (LPM3, LPM4) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ tDCO,LPM3/4 2.2 V, 3 V (1) (2) 1.5 µs BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ tCPU,LPM3/4 UNIT 2 BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ DCO clock wake-up time from LPM3 or LPM4 (1) MAX 1 3V CPU wake-up time from LPM3 or LPM4 (2) 1 1 / fMCLK + tClock,LPM3/4 The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). Parameter applicable only if DCOCLK is used for MCLK. Typical Characteristics - DCO Clock Wake-Up Time From LPM3 or LPM4 DCO WAKE-UP TIME FROM LPM3 vs DCO FREQUENCY DCO Wake Time − µs 10.00 RSELx = 12 to 15 1.00 RSELx = 0 to 11 0.10 0.10 1.00 10.00 DCO Frequency − MHz Figure 18. 46 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 DCO With External Resistor ROSC (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fDCO,ROSC DCO output frequency with ROSC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, TA = 25°C DT Temperature drift DV Drift with VCC (1) VCC TYP UNIT 2.2 V 1.8 3V 1.95 DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V, 3 V ±0.1 %/°C DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V, 3 V 10 %/V MHz ROSC = 100 kΩ. Metal film resistor, type 0257, 0.6 W with 1% tolerance and TK = ±50 ppm/°C. Typical Characteristics - DCO With External Resistor ROSC DCO FREQUENCY vs ROSC VCC = 2.2 V, TA = 25°C DCO FREQUENCY vs ROSC VCC = 3 V, TA = 25°C 10.00 DCO Frequency − MHz DCO Frequency − MHz 10.00 RSELx = 4 1.00 0.10 0.01 10.00 100.00 1000.00 ROSC − External Resistor − kW Figure 19. Copyright © 2007–2012, Texas Instruments Incorporated 10000.00 RSELx = 4 1.00 0.10 0.01 10.00 100.00 1000.00 10000.00 ROSC − External Resistor − kW Figure 20. Submit Documentation Feedback 47 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Typical Characteristics - DCO With External Resistor ROSC (continued) DCO FREQUENCY vs TEMPERATURE VCC = 3 V DCO FREQUENCY vs SUPPLY VOLTAGE TA = 25°C 2.50 2.50 2.25 ROSC = 100k DCO Frequency − MHz 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 ROSC = 1M 0.25 −25.0 0.0 25.0 50.0 TA − Temperature − °C Figure 21. 48 ROSC = 100k 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 0.50 0.00 −50.0 DCO Frequency − MHz 2.25 Submit Documentation Feedback 75.0 ROSC = 1M 0.25 100.0 0.00 1.5 2.0 2.5 3.0 3.5 4.0 VCC − Supply Voltage − V Figure 22. Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Crystal Oscillator LFXT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 fLFXT1,LF,logic LFXT1 oscillator logic level square wave input frequency, XTS = 0, LFXT1Sx = 3, XCAPx = 0 LF mode OALF Oscillation allowance for LF crystals CL,eff fFault,LF (1) (2) (3) (4) Integrated effective load capacitance, LF mode (2) XTS = 0, LFXT1Sx = 0 or 1 VCC MIN TYP 1.8 V to 3.6 V 1.8 V to 3.6 V MAX 32768 10000 32768 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 6 pF 500 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 12 pF 200 UNIT Hz 50000 Hz kΩ XTS = 0, XCAPx = 0 1 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 Duty cycle, LF mode XTS = 0, Measured at P2.0/ACLK, fLFXT1,LF = 32768 Hz 2.2 V, 3 V 30 Oscillator fault frequency, LF mode (3) XTS = 0, LFXT1Sx = 3, XCAPx = 0 (4) 2.2 V, 3 V 10 50 pF 70 % 10000 Hz To improve EMI on the XT1 oscillator, the following guidelines should be observed. (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the crystal that is used. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift (1) dfVLO/dVCC VLO frequency supply voltage drift (2) (1) (2) TA -40°C to 85°C 105°C VCC MIN TYP MAX 4 12 20 2.2 V, 3 V 2.2 V, 3 V 25°C 1.8 V to 3.6 V 22 UNIT kHz 0.5 %/°C 4 %/V Calculated using the box method: I: (MAX(-40 to 85°C) - MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C - (-40°C)) T: (MAX(-40 to 105°C) - MIN(-40 to 105°C)) / MIN(-40 to 105°C) / (105°C - (-40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) - MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V - 1.8 V) Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Crystal Oscillator LFXT1, High-Frequency Mode (1) PARAMETER VCC MIN XTS = 1, LFXT1Sx = 0, XCAPx = 0 1.8 V to 3.6 V LFXT1 oscillator crystal frequency, HF mode 1 XTS = 1, LFXT1Sx = 1, XCAPx = 0 LFXT1 oscillator crystal frequency, HF mode 2 XTS = 1, LFXT1Sx = 2, XCAPx = 0 fLFXT1,HF0 LFXT1 oscillator crystal frequency, HF mode 0 fLFXT1,HF1 fLFXT1,HF2 TEST CONDITIONS MAX UNIT 0.4 1 MHz 1.8 V to 3.6 V 1 4 MHz 1.8 V to 3.6 V 2 10 2.2 V to 3.6 V 2 12 3 V to 3.6 V fLFXT1,HF,logic OAHF CL,eff LFXT1 oscillator logic-level square-wave input frequency, HF mode Oscillation allowance for HF crystals (see Figure 23 and Figure 24) Integrated effective load capacitance, HF mode (2) Duty cycle, HF mode fFault,HF (1) (2) (3) (4) (5) 50 Oscillator fault frequency (4) XTS = 1, LFXT1Sx = 3, XCAPx = 0 TYP 2 16 1.8 V to 3.6 V 0.4 10 2.2 V to 3.6 V 0.4 12 3 V to 3.6 V 0.4 16 XTS = 1, XCAPx = 0, LFXT1Sx = 0, fLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 XTS = 1, XCAPx = 0, LFXT1Sx = 1, fLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 XTS = 1, XCAPx = 0, LFXT1Sx = 2, fLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 XTS = 1, XCAPx = 0 (3) XTS = 1, XCAPx = 0, Measured at P2.0/ACLK, fLFXT1,HF = 10 MHz XTS = 1, XCAPx = 0, Measured at P2.0/ACLK, fLFXT1,HF = 16 MHz XTS = 1, LFXT1Sx = 3, XCAPx = 0 (5) 50 pF 60 2.2 V, 3 V % 40 2.2 V, 3 V MHz Ω 1 40 MHz 30 50 60 300 kHz To improve EMI on the XT2 oscillator the following guidelines should be observed: (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1) OSCILLATION ALLOWANCE vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C Oscillation Allowance − W 100000.00 10000.00 1000.00 LFXT1Sx = 2 100.00 LFXT1Sx =0 10.00 0.10 1.00 LFXT1Sx = 1 10.00 100.00 Crystal Frequency − MHz Figure 23. OSCILLATOR SUPPLY CURRENT vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C 1500 1400 XT Oscillator Supply Current − µA 1300 LFXT1Sx = 2 1200 1100 1000 900 800 700 600 500 400 300 LFXT1Sx = 1 200 100 LFXT1Sx = 0 0 0 4 8 12 16 20 Crystal Frequency − MHz Figure 24. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 51 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Crystal Oscillator XT2 (1) PARAMETER VCC MIN XT2Sx = 0 1.8 V to 3.6 V XT2 oscillator crystal frequency, mode 1 XT2Sx = 1 XT2 oscillator crystal frequency, mode 2 XT2Sx = 2 fXT2 XT2 oscillator crystal frequency, mode 0 fXT2 fXT2 TEST CONDITIONS MAX UNIT 0.4 1 MHz 1.8 V to 3.6 V 1 4 MHz 1.8 V to 2.2 V 2 10 2.2 V to 3.6 V 2 12 3 V to 3.6 V XT2 oscillator logic-level square-wave XT2Sx = 3 input frequency fXT2 Oscillation allowance (see Figure 25 and Figure 26) OA CL,eff Integrated effective load capacitance, HF mode (2) Duty cycle fFault (1) (2) (3) (4) (5) 52 Oscillator fault frequency, HF mode (4) TYP 2 16 1.8 V to 2.2 V 0.4 10 2.2 V to 3.6 V 0.4 12 3 V to 3.6 V 0.4 16 XT2Sx = 0, fXT2 = 1 MHz, CL,eff = 15 pF 2700 XT2Sx = 1, fXT2 = 4 MHz, CL,eff = 15 pF 800 XT2Sx = 2, fXT2 = 16 MHz, CL,eff = 15 pF 300 See (3) Measured at P1.4/SMCLK, fXT2 = 10 MHz Measured at P1.4/SMCLK, fXT2 = 16 MHz XT2Sx = 3 (5) MHz Ω 1 pF 40 50 60 40 50 60 2.2 V, 3 V 2.2 V, 3 V MHz % 30 300 kHz To improve EMI on the XT2 oscillator the following guidelines should be observed: (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT. (d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Typical Characteristics - XT2 Oscillator OSCILLATION ALLOWANCE vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C Oscillation Allowance − W 100000.00 10000.00 1000.00 XT2Sx = 2 100.00 XT2Sx = 1 XT2Sx = 0 10.00 0.10 1.00 10.00 100.00 Crystal Frequency − MHz Figure 25. XT Oscillator Supply Current − µA OSCILLATOR SUPPLY CURRENT vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C 1600 1500 1400 1300 1200 1100 1000 900 XT2Sx = 2 800 700 600 500 400 300 200 100 0 XT2Sx = 1 XT2Sx = 0 0 4 8 12 16 20 Crystal Frequency − MHz Figure 26. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 53 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTA Timer_A clock frequency Internal: SMCLK, ACLK External: TACLK, INCLK Duty cycle = 50% ± 10% tTA,cap Timer_A capture timing TA0, TA1, TA2 VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V, 3 V 20 UNIT MHz ns Timer_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer_B clock frequency Internal: SMCLK, ACLK External: TACLK, INCLK Duty cycle = 50% ± 10% tTB,cap Timer_B capture timing TB0, TB1, TB2 54 Submit Documentation Feedback VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V, 3 V 20 UNIT MHz ns Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) (1) tτ UART receive deglitch time (2) (1) (2) CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% 2.2 V, 3 V MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 150 600 3V 50 100 600 MIN MAX UNIT fSYSTEM MHz ns The DCO wake-up time must be considered in LPM3 or LPM4 for baud rates above 1 MHz. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. USCI (SPI Master Mode) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 27 and Figure 28) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (1) TEST CONDITIONS VCC SMCLK, ACLK Duty cycle = 50% ± 10% UCLK edge to SIMO valid, CL = 20 pF 2.2 V 110 3V 75 2.2 V 0 3V 0 ns ns 2.2 V 30 3V 20 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. USCI (SPI Slave Mode) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 29 and Figure 30) PARAMETER TEST CONDITIONS VCC MIN TYP MAX tSTE,LEAD STE lead time, STE low to clock 2.2 V, 3 V tSTE,LAG STE lag time, Last clock to STE high 2.2 V, 3 V tSTE,ACC STE access time, STE low to SOMI data out 2.2 V, 3 V 50 ns tSTE,DIS STE disable time, STE high to SOMI high impedance 2.2 V, 3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (1) UCLK edge to SOMI valid, CL = 20 pF 50 UNIT ns 10 2.2 V 20 3V 15 2.2 V 10 3V 10 ns ns ns 2.2 V 75 110 3V 50 75 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)). For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 55 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 27. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tHD,MI tSU,MI SOMI tVALID,MO SIMO Figure 28. SPI Master Mode, CKPH = 1 56 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 29. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 30. SPI Slave Mode, CKPH = 1 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 31) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V, 3 V 0 tSU,DAT Data setup time 2.2 V, 3 V 250 ns tSU,STO Setup time for STOP 2.2 V, 3 V 4 µs tSP Pulse duration of spikes suppressed by input filter 2.2 V 50 150 600 3V 50 100 600 2.2 V, 3 V fSCL ≤ 100 kHz fSCL > 100 kHz fSCL ≤ 100 kHz fSCL > 100 kHz tHD,STA 2.2 V, 3 V 2.2 V, 3 V 0 4 µs 0.6 4.7 µs 0.6 ns ns tSU,STA tHD,STA SDA 1/fSCL tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 31. I2C Mode Timing 58 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Comparator_A+ (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS I(DD) CAON = 1, CARSEL = 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3, No load at P2 3/CA0/TA1 and P2.4/CA1/TA2 VCC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 UNIT µA µA VIC Common-mode input voltage range CAON = 1 2.2 V, 3 V 0 V(Ref025) (Voltage at 0.25 VCC node) ÷ VCC PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P2 3/CA0/TA1 and P2.4/CA1/TA2 2.2 V, 3 V 0.23 0.24 0.25 V(Ref050) (Voltage at 0.5 VCC node) PCA0 = 1, CARSEL = 1, CAREF = 2, ÷ VCC No load at P2 3/CA0/TA1 and P2.4/CA1/TA2 2.2 V, 3 V 0.47 0.48 0.5 See Figure 35 and Figure 36 2.2 V 390 480 540 V(RefVT) 3V 400 490 550 V(offset) Offset voltage (2) 2.2 V, 3 V -30 30 mV Vhys Input hysteresis 2.2 V, 3 V 0 0.7 1.4 mV TA = 25°C, Overdrive 10 mV, Without filter: CAF = 0 2.2 V 80 165 300 t(response) Response time, low to high and high to low (3) (see Figure 32 and Figure 33) 3V 70 120 240 TA = 25°C, Overdrive 10 mV, With filter: CAF = 1 2.2 V 1.4 1.9 2.8 3V 0.9 1.5 2.2 (1) (2) (3) PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P2 3/CA0/TA1 and P2.4/CA1/TA2, TA = 85°C CAON = 1 VCC - 1 V mV ns µs The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.y) specification. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step and with Comparator_A+ already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 0V www.ti.com VCC 0 1 CAF CAON To Internal Modules Low Pass Filter + _ V+ V− 0 0 1 1 CAOUT Set CAIFG Flag τ ≈ 2.0 µs Figure 32. Comparator_A+ Module Block Diagram VCAOUT Overdrive V− 400 mV t (response) V+ Figure 33. Overdrive Definition CASHORT CA0 CA1 1 VIN + − Comparator_A+ CASHORT = 1 IOUT = 10µA Figure 34. Comparator_A+ Short Resistance Test Condition 60 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Typical Characteristics, Comparator_A+ V(RefVT) vs TEMPERATURE (VCC = 3 V) V(RefVT) vs TEMPERATURE (VCC = 2.2 V) 650 650 VCC = 2.2 V 600 V(REFVT) − Reference Volts −mV V(REFVT) − Reference Volts −mV VCC = 3 V Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 TA − Free-Air Temperature − °C −5 15 35 55 75 95 TA − Free-Air Temperature − °C Figure 35. Figure 36. SHORT RESISTANCE vs VIN/VCC Short Resistance − kW 100.00 VCC = 1.8V VCC = 2.2V 10.00 VCC = 3.0V VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 1.0 VIN/VCC − Normalized Input Voltage − V/V Figure 37. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 61 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com 12-Bit ADC Power Supply and Input Range Conditions (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(P6.x/Ax) Analog input voltage range (2) All P6.0/A0 to P6.7/A7 terminals, Analog inputs selected in ADC12MCTLx register, P6Sel.x = 1, 0 ≤ × ≤ 7, V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC) IADC12 Operating supply current into AVCC terminal (3) fADC12CLK = 5 MHz, ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 IREF+ Operating supply current into AVCC terminal (4) fADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 0 CI Input capacitance (5) Only one terminal can be selected at one time, P6.x/Ax RI Input MUX ON resistance (5) 0 V ≤ VAx ≤ VAVCC (1) (2) (3) (4) (5) MIN TYP MAX UNIT 2.2 3.6 V 0 VAVCC V 2.2 V 0.65 0.8 3V 0.8 1 3V 0.5 0.7 2.2 V 0.5 0.7 3V 0.5 0.7 2.2 V 3V mA mA mA 40 pF 2000 Ω The leakage current is defined in the leakage current table with P6.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR-for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables settling of the built-in reference before starting an A/D conversion. Not production tested, limits verified by design. 12-Bit ADC External Reference (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC (2) VeREF+ Positive external reference voltage input VeREF+ > VREF-/VeREF- VREF-/VeREF- Negative external reference voltage input VeREF+ > VREF-/VeREF- (3) MIN MAX 1.4 VAVCC 0 UNIT V 1.2 V 1.4 VAVCC V (VeREF+ - VREF/VeREF-) Differential external reference voltage input VeREF+ > VREF-/VeREF- IVeREF+ Static leakage current 0 V ≤ VeREF+ ≤ VAVCC 2.2 V, 3 V ±1 µA IVREF-/VeREF- Static leakage current 0 V ≤ VeREF-≤ VAVCC 2.2 V, 3 V ±1 µA (1) (2) (3) (4) 62 (4) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 12-Bit ADC Built-In Reference over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Positive built-in reference voltage output VREF+ AVCC(min) AVCC minimum voltage, positive built-in reference active TA REF2_5V = 1 for 2.5 V, IVREF+max ≤ IVREF+ ≤ IVREF+min -40°C to 85°C REF2_5V = 0 for 1.5 V, IVREF+max ≤ IVREF+ ≤ IVREF+min -40°C to 85°C 105°C 105°C Load-current regulation, VREF+ terminal (1) IL(VREF)+ 3V 2.2 V, 3 V 2.4 2.5 2.6 2.5 2.64 1.44 1.5 1.56 1.42 1.5 1.57 2.8 REF2_5V = 1, -1 mA ≤ IVREF+ ≤ IVREF+min 2.9 IVREF+ = 500 µA ± 100 µA, Analog input voltage ≈ 0.75 V, REF2_5V = 0 MAX 2.37 REF2_5V = 1, -0.5 mA ≤ IVREF+ ≤ IVREF+min UNIT V V 2.2 V 0.01 -0.5 3V 0.01 -1 mA 2.2 V ±2 3V ±2 IVREF+ = 500 µA ± 100 µA, Analog input voltage ≈ 1.25 V, REF2_5V = 1 3V ±2 LSB 3V 20 ns Load current regulation, VREF+ terminal (2) IVREF+ = 100 µA → 900 µA, CVREF+ = 5 µF, ax ≈ 0.5 × VREF+, Error of conversion result ≤ 1 LSB CVREF+ Capacitance at pin VREF+ (3) REFON = 1, 0 mA ≤ IVREF+ ≤ IVREF+max 2.2 V, 3 V TREF+ Temperature coefficient of built-in reference (2) IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA 2.2 V, 3 V tREFON Settle time of internal reference voltage (see Figure 38 ) (4) (2) IVREF+ = 0.5 mA, CVREF+ = 10 µF, VREF+ = 1.5 V, VAVCC = 2.2 V 2.2 V (4) NOM 2.2 IDL(VREF) + (1) (2) (3) MIN REF2_5V = 0, IVREF+max ≤ IVREF+ ≤ IVREF+min Load current out of VREF+terminal IVREF+ VCC 5 LSB 10 µF ±100 ppm/°C 17 ms Not production tested, limits characterized. Not production tested, limits verified by design. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF-/VeREF- and AVSS: 10 µF tantalum and 100 nF ceramic. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. CVREF+ 100 µF t REFON ≈ .66 x CVREF+ [ms] with C VREF+ in µF 10 µF 1 µF 0 1 ms 10 ms 100 ms t REFON Figure 38. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 63 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com From Power Supply DVCC + − DVSS 10 µ F 100 nF AVCC + − AVSS 10 µ F Apply External Reference [VeREF+] or Use Internal Reference [VREF+] Apply External Reference 100 nF VREF+ or V eREF+ + − 10 µ F 100 nF VREF−/VeREF− + − 10 µ F MSP430F261x MSP430F241x 100 nF Figure 39. Supply Voltage and Reference Voltage Design VREF-/VeREF- External Supply From Power Supply DVCC + − DVSS 10 µ F 100 nF AVCC + − AVSS 10 µ F Apply External Reference [V eREF+] or Use Internal Reference [V REF+] 100 nF VREF+ or V eREF+ + − 10 µ F Reference Is Internally Switched to A VSS MSP430F261x MSP430F241x 100 nF VREF−/VeREF− Figure 40. Supply Voltage and Reference Voltage Design VREF-/VeREF-= AVSS, Internally Connected 64 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 12-Bit ADC Timing Parameters over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS fADC12CLK fADC12OSC tCONVERT Internal ADC12 oscillator Conversion time tADC12ON Turn-on settling time of the ADC (1) tSample Sampling time (1) (2) (3) (1) VCC MIN For specified performance of ADC12 linearity parameters 2.2 V, 3 V 0.45 5 6.3 MHz ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V, 3 V 3.7 5 6.3 MHz CVREF+ ≥ 5 µF, Internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz 2.2 V, 3 V 2.06 3.51 13 × ADC12DIV × 1/fADC12CLK External fADC12CLK from ACLK, MCLK, or SMCLK, ADC12SSEL ≠ 0 See TYP MAX UNIT (2) RS = 400 Ω,RI = 1000 Ω, CI = 30 pF, τ = [RS +RI] × CI (3) µs 100 3V 1220 2.2 V 1400 µs ns ns Limits verified by design The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) × (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance 12-Bit ADC Linearity Parameters over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ - VREF-/VeREF-) min ≤ 1.6 V VCC EI Integral linearity error ED Differential linearity (VeREF+ - VREF-/VeREF-) min ≤ (VeREF+ - VREF-/VeREF-), error CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V EO Offset error (VeREF+ - VREF-/VeREF-) min ≤ (VeREF+ - VREF-/VeREF-), Internal impedance of source RS < 100 Ω, CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V EG Gain error (VeREF+ - VREF-/VeREF-) min ≤ (VeREF+ - VREF-/VeREF-), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) ET Total unadjusted error (VeREF+ - VREF-/VeREF-) min ≤ (VeREF+ -VREF-/VeREF-), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 1.6 V < (VeREF+ - VREF-/VeREF-) min ≤ VAVCC Copyright © 2007–2012, Texas Instruments Incorporated MIN TYP MAX ±2 2.2 V, 3 V ±1.7 UNIT LSB ±1 LSB ±2 ±4 LSB 2.2 V, 3 V ±1.1 ±2 LSB 2.2 V, 3 V ±2 ±5 LSB Submit Documentation Feedback 65 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com 12-Bit ADC Temperature Sensor and Built-In VMID over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Operating supply current into AVCC terminal (1) ISENSOR VSENSOR (2) (3) TCSENSOR REFON = 0, INCH = 0Ah, ADC12ON = 1, TA = 25°C ADC12ON = 1, INCH = 0Ah, TA = 0°C (3) tSENSOR(sample) VCC ADC12ON = 1, INCH = 0Ah (3) Sample time required if channel 10 is selected (4) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB MIN TYP MAX 2.2 V 40 120 3V 60 160 2.2 V 986 3V 986 2.2 V 3.55 3V 3.55 2.2 V 30 3V 30 mV/°C µs Current into divider ADC12ON = 1, INCH = 0Bh at channel 11 (5) 2.2 V NA (5) 3V NA (5) VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is approximately 0.5 × VAVCC 2.2 V 1.1 1.1 ± 0.04 3V 1.5 1.5 ± 0.04 tVMID(sample) Sample time required if channel 11 is selected (6) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB (1) (2) (3) (4) (5) (6) 1400 3V 1220 µA mV IVMID 2.2 V UNIT µA V ns The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1), or (ADC12ON = 1 AND INCH = 0Ah and sample signal is high). Therefore it includes the constant current through the sensor and the reference. The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. Limits characterized The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on) No additional current is needed. The VMID is used during sampling. The on-time tVMID(on) is included in the sampling time tVMID(sample), no additional on time is needed. 12-Bit DAC Supply Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC Supply current, single DAC channel (1) (2) IDD PSRR (1) (2) (3) (4) 66 Analog supply voltage Power-supply rejection ratio (3) (4) TEST CONDITIONS VCC TA AVCC = DVCC, AVSS = DVSS = 0 V MIN TYP 2.2 MAX 3.6 -40°C to 85°C 50 110 105°C 69 150 DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0x0800 2.2 V, 3 V DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC 2.2 V, 3 V 50 130 DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+= AVCC 2.2 V, 3 V 200 440 DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC 2.2 V, 3 V 700 1500 2.2 V 70 3V 70 DAC12_xDAT = 800h, VREF = 1.5 V, ΔAVCC = 100 mV DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V, ΔAVCC = 100 mV UNIT V µA dB No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. PSRR = 20 × log(ΔAVCC/ΔVDAC12_xOUT) VREF is applied externally. The internal reference is not used. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 12-Bit DAC Linearity Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Resolution DNL MIN 12-bit monotonic Integral nonlinearity (1) INL VCC Differential nonlinearity (1) Offset voltage without calibration (1) (2) EO Offset voltage with calibration (1) (2) dE(O)/dT Offset error temperature coefficient (3) EG Gain error (3) dE(G)/dT Gain temperature coefficient (3) tOffset_Cal Time for offset calibration (4) TYP 2.2 V VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V bits ±2.0 (4) ±8.0 LSB ±0.4 ±1.0 LSB ±21 mV ±2.5 2.2 V, 3 V VREF = 1.5 V 2.2 V VREF = 2.5 V 3V 30 µV/C ±3.50 10 2.2 V, 3 V % FSR ppm of FSR/°C 100 DAC12AMPx = 3, 5 2.2 V, 3 V 32 DAC12AMPx = 4, 6, 7 (2) (3) UNIT 12 VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 DAC12AMPx = 2 (1) MAX ms 6 Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + b × x. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1. The offset calibration works on the output operational amplifier. Offset calibration is triggered setting bit DAC12CALON. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + b × x. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx= {0, 1}. The DAC12 module should be configured prior to initiating calibration. Port activity during calibration may affect accuracy and is not recommended. DAC V OUT DAC Output VR+ RLoad = Ideal transfer function AV CC 2 CLoad = 100pF Offset Error Positive Negative Gain Error DAC Code Figure 41. Linearity Test Load Conditions and Gain/Offset Definition Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 67 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Typical Characteristics - 12-Bit DAC, Linearity Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL INL ERROR vs DIGITAL INPUT DATA 4 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 INL − Integral Nonlinearity Error − LSB 3 2 1 0 −1 −2 −3 −4 0 512 1024 1536 2048 2560 3072 3584 4095 2560 3072 3584 4095 DAC12_xDAT − Digital Code Figure 42. TYPICAL DNL ERROR vs DIGITAL INPUT DATA DNL − Differential Nonlinearity Error − LSB 2.0 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 1.5 1.0 0.5 0.0 −0.5 −1.0 −1.5 −2.0 0 512 1024 1536 2048 DAC12_xDAT − Digital Code Figure 43. 68 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 12-Bit DAC Output Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 Output voltage range (1) (see Figure 44) VO RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 Maximum DAC12 load capacitance IL(DAC12) Maximum DAC12 load current 0 0.005 AVCC 0.05 AVCC 0 0.1 AVCC 0.13 AVCC 2.2 V, 3 V 2.2 V 3V RO/P(DAC12) RLoad = 3 kΩ, VO/P(DAC12) = AVCC, DAC12AMPx = 7, DAC12_xDAT = 0FFFh 100 -0.5 0.5 -1 1 2.2 V, 3 V RLoad = 3 kΩ, 0.3 V < VO/P(DAC12) < AVCC - 0.3 V, DAC12AMPx = 7 (1) UNIT V RLoad = 3 kΩ, VO/P(DAC12) = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0h Output resistance (see Figure 44) MAX 2.2 V, 3 V RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 CL(DAC12) TYP 150 250 150 250 1 4 pF mA Ω Data is valid after the offset calibration of the output amplifier. ILoad RO/P(DAC12_x) Max RLoad AV CC DAC12 2 O/P(DAC12_x) CLoad= 100pF Min 0.3 AV CC −0.3V VOUT AV CC Figure 44. DAC12_x Output Resistance Tests 12-Bit DAC Reference Input Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VeREF+ Reference input voltage range TEST CONDITIONS DAC12IR = 0 (1) (2) DAC12IR = 1 (3) (4) VCC 2.2 V, 3 V DAC12_0 IR = DAC12_1 IR = 0 Ri(VREF+), Ri(VeREF+) Reference input resistance DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx (5) (1) (2) (3) (4) (5) TYP MAX AVCC / 3 AVCC + 0.2 AVCC AVCC + 0.2 20 DAC12_0 IR = 1, DAC12_1 IR = 0 DAC12_0 IR = 0, DAC12_1 IR = 1 MIN 2.2 V, 3 V UNIT V MΩ 40 48 56 20 24 28 kΩ For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC - VE(O)] / [3 × (1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC - VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 69 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com 12-Bit DAC Dynamic Specifications VREF = VCC, DAC12IR = 1 (see Figure 45 and Figure 46), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tON DAC12 on-time TEST CONDITIONS DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (1) (see Figure 45) VCC MIN DAC12AMPx = 0 → {5, 6} Settling time, full scale DAC12_xDAT = 80h → F7Fh → 80h MAX 60 120 15 30 6 12 100 200 40 80 15 30 2.2 V, 3 V DAC12AMPx = 0 → 7 DAC12AMPx = 2 tS(FS) TYP DAC12AMPx = 0 → {2, 3, 4} DAC12AMPx = 3, 5 2.2 V, 3 V DAC12AMPx = 4, 6, 7 tS(C-C) Settling time, code to code DAC12AMPx = 2 DAC12_xDAT = 3F8h → 408h → 3F8h BF8h → C08h → BF8h Slew rate (2) DAC12AMPx = 3, 5 2.2 V, 3 V 2 DAC12AMPx = 4, 6, 7 DAC12_xDAT = 80h → F7Fh → 80h DAC12AMPx = 3, 5 2.2 V, 3 V 0.05 0.12 0.35 0.7 1.5 DAC12AMPx = 2 DAC12_xDAT = 80h → F7Fh → 80h BW-3dB Channel-tochannel crosstalk (1) (see Figure 48) (1) (2) µs V/µs 2.7 600 DAC12AMPx = 3, 5 2.2 V, 3 V 150 DAC12AMPx = 4, 6, 7 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 47) µs 1 DAC12AMPx = 4, 6, 7 Glitch energy, full scale µs 5 DAC12AMPx = 2 SR UNIT DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 40 2.2 V, 3 V DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, fDAC12_1OUT = 10 kHz, Duty cycle = 50% nV-s 30 180 kHz 550 -80 DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz, Duty cycle = 50% 2.2 V, 3 V dB -80 RLoad and CLoad are connected to AVSS (not AVCC/2) in Figure 45. Slew rate applies to output voltage steps ≥ 200 mV. Conversion 1 VOUT DAC Output ILoad RLoad = 3 kΩ Glitch Energy Conversion 2 Conversion 3 +/− 1/2 LSB AV CC 2 RO/P(DAC12.x) +/− 1/2 LSB CLoad = 100pF tsettleLH tsettleHL Figure 45. Settling Time and Glitch Energy Testing 70 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRLH tSRHL Figure 46. Slew Rate Testing ILoad Ve REF+ RLoad = 3 kΩ AV CC DAC12_x 2 DACx AC CLoad = 100pF DC Figure 47. Test Conditions for 3-dB Bandwidth Specification ILoad RLoad AV CC DAC12_0 2 DAC0 DAC12_xDAT 080h 7F7h 080h 7F7h 080h V OUT CLoad= 100pF VREF+ ILoad Ve V DAC12_yOUT RLoad AV CC DAC12_1 V DAC12_xOUT 2 DAC1 fToggle CLoad= 100pF Figure 48. Crosstalk Test Conditions Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 71 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC(PGM/ERASE) Program and erase supply voltage 2.2 3.6 V fFTG Flash timing generator frequency 257 476 kHz IPGM Supply current from VCC during program 2.2 V/3.6 V 1 5 mA IERASE Supply current from VCC during erase 2.2 V/3.6 V 1 7 mA 10 ms tCPT Cumulative program time (1) 2.2 V/3.6 V tCMErase Cumulative mass erase time 2.2 V/3.6 V 20 ms 104 Program and erase endurance 105 cycles tRetention Data retention duration TJ = 25°C tWord Word or byte program time (2) 30 tFTG tBlock, Block program time for first byte or word (2) 25 tFTG Block program time for each additional byte or word (2) 18 tFTG Block program end-sequence wait time (2) 6 tFTG Mass erase time (2) 10593 tFTG Segment erase time (2) 4819 tFTG 0 tBlock, 1-63 tBlock, End tMass Erase tSeg Erase (1) (2) 100 years The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG). RAM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER V(RAMh) (1) RAM retention supply voltage (1) TEST CONDITIONS MIN CPU halted MAX UNIT 1.6 V This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. JTAG Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fTCK TCK input frequency (1) RInternal Internal pullup resistance on TMS, TCK, and TDI/TCLK (2) (1) (2) VCC MIN TYP MAX 2.2 V 0 5 3V 0 10 2.2 V, 3 V 25 60 90 MIN MAX UNIT MHz kΩ fTCK may be restricted to meet the timing requirements of the module selected. TMS, TCK, and TDI/TCLK pullup resistors are implemented in all versions. JTAG Fuse (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TEST for fuse blow IFB Supply current into TEST during fuse blow tFB Time to blow fuse (1) 72 TEST CONDITIONS TA = 25°C 2.5 6 UNIT V 7 V 100 mA 1 ms Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible, and JTAG is switched to bypass mode. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 APPLICATION INFORMATION Port P1 (P1.0 to P1.7), Input/Output With Schmitt Trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1.0/TACLK/CAOUT P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1SEL.x P1IN.x EN Module X IN D P1IE.x EN P1IRQ.x Q Set P1IFG.x P1SEL.x Interrupt Edge Select P1IES.x Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 73 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Table 15. Port P1 (P1.0 to P1.7) Pin Functions PIN NAME (P1.x) x P1.0/TACLK/CAOUT 0 FUNCTION P1.0 (I/O) 1 2 0 0 1 CAOUT 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI1A 0 1 Timer_A3.TA1 1 1 I: 0; O: 1 0 Timer_A3.CCI2A 0 1 Timer_A3.TA2 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 P1.3 (I/O) P1.3/TA2 3 P1.4/SMCLK 4 P1.5/TA0 5 P1.6/TA1 P1.7/TA2 74 6 7 P1SEL.x I: 0; O: 1 P1.2 (I/O) P1.2/TA1 P1DIR.x Timer_A3.TACLK P1.1 (I/O) P1.1/TA0 CONTROL BITS / SIGNALS P1.4 (I/O) SMCLK P1.5 (I/O) Timer_A3.TA0 P1.6 (I/O) Timer_A3.TA1 P1.7 (I/O) Timer_A3.TA2 Submit Documentation Feedback 1 1 I: 0; O: 1 0 1 1 Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Port P2 (P2.0 to P2.4, P2.6, and P2.7), Input/Output With Schmitt Trigger Pad Logic To Comparator_A From Comparator_A CAPD.x P2REN.x P2DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS Bus Keeper EN P2SEL.x P2IN.x P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.6/ADC12CLK/DMAE0/CA6 P2.7/TA0/CA7 EN D Module X IN P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x P2IES.x Interrupt Edge Select Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 75 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Table 16. Port P2 (P2.0 to P2.4, P2.6, and P2.7) Pin Functions PIN NAME (P2.x) P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.6/ADC12CLK/ DMAE0 (2)/CA6 P2.7/TA0/CA7 (1) (2) 76 x 0 1 2 3 4 6 7 FUNCTION CONTROL BITS / SIGNALS (1) CAPD.x P2DIR.x P2SEL.x P2.0 (I/O) 0 I: 0; O: 1 0 ACLK 0 1 1 CA2 1 X X P2.1 (I/O) 0 I: 0; O: 1 0 Timer_A3.INCLK 0 0 1 DVSS 0 1 1 CA3 1 X X P2.2 (I/O) 0 I: 0; O: 1 0 CAOUT 0 1 1 Timer_A3.CCI0B 0 0 1 CA4 1 X X P2.3 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA1 0 1 1 CA0 1 X X P2.4 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA2 0 1 X CA1 1 X 1 P2.6 (I/O) 0 I: 0; O: 1 0 ADC12CLK 0 1 1 DMAE0 0 0 1 CA6 1 X X P2.7 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA0 0 1 1 CA7 1 X X X = Don't care MSP430F261x devices only Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Port P2 (P2.5), Input/Output With Schmitt Trigger Pad Logic To Comparator From Comparator CAPD.5 To DCO in DCO DCOR P2REN.5 P2DIR.5 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.5 DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q Set P2SEL.5 P2IES.5 Interrupt Edge Select Table 17. Port P2 (P2.5) Pin Functions PIN NAME (P2.x) x FUNCTION P2.5 (I/O) P2.5/ROSC/CA5 (1) (2) 5 ROSC (2) CONTROL BITS / SIGNALS (1) CAPD DCOR P2DIR.5 P2SEL.5 0 0 I: 0; O: 1 0 X 0 1 X DVSS 0 0 1 1 CA5 1 or selected 0 X X X = Don't care If ROSC is used, it is connected to an external resistor. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 77 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Port P3 (P3.0 to P3.7), Input/Output With Schmitt Trigger Pad Logic P3REN.x P3DIR.x Module direction P3OUT.x Module X OUT 0 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 0 1 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P3SEL.x P3IN.x EN Module X IN D Table 18. Port P3 (P3.0 to P3.7) Pin Functions PIN NAME (P3.x) P3.0/UCB0STE/ UCA0CLK x 0 P3.1/UCB0SIMO/ UCB0SDA 1 P3.2/UCB0SOMI/ UCB0SCL 2 P3.3/UCB0CLK/ UCA0STE 3 P3.4/UCA0TXD/ UCA0SIMO 4 P3.5/UCA0RXD/ UCA0SOMI 5 P3.6/UCA1TXD/ UCA1SIMO 6 P3.7/UCA1RXD/ UCA1SOMI 7 (1) (2) (3) (4) (5) 78 FUNCTION P3.0 (I/O) UCB0STE/UCA0CLK (2) (3) P3.1 (I/O) UCB0SIMO/UCB0SDA (4) (5) P3.2 (I/O) UCB0SOMI/UCB0SCL (4) (5) P3.3 (I/O) UCB0CLK/UCA0STE (4) P3.4 (I/O) UCA0TXD/UCA0SIMO (4) P3.5 (I/O) UCA0RXD/UCA0SOMI (4) P3.6 (I/O) UCA1TXD/UCA1SIMO (4) P3.7 (I/O) UCA1RXD/UCA1SOMI (4) CONTROL BITS / SIGNALS (1) P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care The pin direction is controlled by the USCI module. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_A0/B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. The pin direction is controlled by the USCI module. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Port P4 (P4.0 to P4.7), Input/Output With Schmitt Trigger Pad Logic P4REN.x P4DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 P4.5/TB5 P4.6/TB6 P4.7/TBCLK P4SEL.x P4IN.x EN Module X IN D Table 19. Port P4 (P4.0 to P4.7) Pin Functions PIN NAME (P4.x) x FUNCTION P4.0 (I/O) P4.0/TB0 0 1 2 0 0 1 Timer_B7.TB0 1 1 I: 0; O: 1 0 Timer_B7.CCI1A and Timer_B7.CCI1B 0 1 Timer_B7.TB1 1 1 I: 0; O: 1 0 Timer_B7.CCI2A and Timer_B7.CCI2B 0 1 Timer_B7.TB2 1 1 I: 0; O: 1 0 Timer_B7.CCI3A and Timer_B7.CCI3B 0 1 Timer_B7.TB3 1 1 I: 0; O: 1 0 0 1 P4.3 (I/O) P4.3/TB3 3 P4.4 (I/O) P4.4/TB4 4 Timer_B7.CCI4A and Timer_B7.CCI4B Timer_B7.TB4 P4.5 (I/O) P4.5/TB5 5 Timer_B7.CCI5A and Timer_B7.CCI5B Timer_B7.TB5 P4.6 (I/O) P4.6/TB6 6 Timer_B7.CCI6A and Timer_B7.CCI6B Timer_B7.TB6 P4.7/TBCLK (1) 7 P4SEL.x I: 0; O: 1 P4.2 (I/O) P4.2/TB2 P4DIR.x Timer_B7.CCI0A and Timer_B7.CCI0B P4.1 (I/O) P4.1/TB1 CONTROL BITS / SIGNALS (1) P4.7 (I/O) Timer_B7.TBCLK 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 1 1 X = Don't care Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 79 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Port P5 (P5.0 to P5.7), Input/Output With Schmitt Trigger Pad Logic P5REN.x P5DIR.x 0 Module Direction 1 P5OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P5.0/UCB1STE/UCA1CLK P5.1/UCB1SIMO/UCB1SDA P5.2/UCB1SOMI/UCB1SCL P5.3/UCB1CLK/UCA1STE P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH/SVSOUT P5SEL.x P5IN.x EN Module X IN D Table 20. Port P5 (P5.0 to P5.7) Pin Functions PIN NAME (P5.x) P5.0/UCB1STE/ UCA1CLK x 0 P5.1/UCB1SIMO/ UCB1SDA 1 P5.2/UCB1SOMI/ UCB1SCL 2 P5.3/UCB1CLK/ UCA1STE 3 P5.4/MCLK 4 P5.5/SMCLK 5 P5.6/ACLK 6 P5.7/TBOUTH/SVSOUT 7 (1) (2) (3) (4) 80 FUNCTION P5.0 (I/O) UCB1STE/UCA1CLK (2) (3) P5.1 (I/O) UCB1SIMO/UCB1SDA (2) (4) P5.2 (I/O) UCB1SOMI/UCB1SCL (2) (4) P5.3 (I/O) UCB1CLK/UCA1STE (2) CONTROL BITS / SIGNALS (1) P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 P5.7 (I/O) I: 0; O: 1 0 TBOUTH 0 1 SVSOUT 1 1 P5.0 (I/O) MCLK P5.1 (I/O) SMCLK P5.2 (I/O) ACLK X = Don't care The pin direction is controlled by the USCI module. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI_A1/B1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Port P6 (P6.0 to P6.4), Input/Output With Schmitt Trigger Pad Logic ADC12 Ax P6REN.x P6DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.x DVSS P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Table 21. Port P6 (P6.0 to P6.4) Pin Functions PIN NAME (P6.x) x P6.0/A0 0 P6.1/A1 1 P6.2/A2 2 P6.3/A3 3 P6.4/A4 (1) (2) 4 FUNCTION P6.0 (I/O) A0 (2) P6.1 (I/O) A1 (2) P6.2 (I/O) A2 (2) P6.3 (I/O) A3 (2) P6.4 (I/O) A4 (2) CONTROL BITS / SIGNALS (1) P6DIR.x P6SEL.x INCH.x I: 0; O: 1 0 0 X 1 1 (y = 0) I: 0; O: 1 0 0 X 1 1 (y = 1) I: 0; O: 1 0 0 X 1 1 (y = 2) I: 0; O: 1 0 0 1 (y = 3) X 1 I: 0; O: 1 0 0 X 1 1 (y = 4) X = Don't care The ADC12 channel Ax is connected to AVSS internally if not selected. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 81 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Port P6 (P6.5 and P6.6), Input/Output With Schmitt Trigger Pad Logic DAC12_0OUT DAC12AMP > 0 ADC12 Ax ADC12 Ax P6REN.x P6DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.x DVSS P6.5/A5/DAC1 P6.6/A6/DAC0 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Table 22. Port P6 (P6.5 and P6.6) Pin Functions PIN NAME (P6.x) x FUNCTION P6.5 (I/O) P6.5/A5/DAC1 (2) 5 CONTROL BITS / SIGNALS (1) P6DIR.x P6SEL.x DAC12AMP > 0 INCH.y 0 I: 0; O: 1 0 0 DVSS 1 1 0 0 A5 (3) X X 0 1 (y = 5) DAC1 (DAC12OPS = 1) (4) X X 1 0 I: 0; O: 1 0 0 0 DVSS 1 1 0 0 (6) X X 0 1 (y = 6) X X 1 0 P6.6 (I/O) P6.6/A6/DAC0 (5) 6 A6 DAC0 (DAC12OPS = 0) (7) (1) (2) (3) (4) (5) (6) (7) 82 X = Don't care MSP430F261x devices only The ADC12 channel Ax is connected to AVSS internally if not selected. The DAC outputs are floating if not selected. MSP430F261x devices only The ADC12 channel Ax is connected to AVSS internally if not selected. The DAC outputs are floating if not selected. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Port P6 (P6.7), Input/Output With Schmitt Trigger Pad Logic to SVS Mux VLD = 15 DAC12_0OUT DAC12AMP > 0 ADC12 A7 from ADC12 P6REN.7 P6DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.7 DVSS P6.7/A7/DAC1/SVSIN Bus Keeper EN P6SEL.7 P6IN.7 EN Module X IN D Table 23. Port P6 (P6.7) Pin Functions PIN NAME (P6.x) x FUNCTION P6DIR.x P6SEL.x INCH.y DAC12AMP>0 I: 0; O: 1 0 0 0 DVSS 1 1 0 0 (3) P6.7 (I/O) P6.7/A7/DAC1 (2)/ SVSIN (2) (1) (2) (3) (4) 7 CONTROL BITS / SIGNALS (1) A7 X 1 1 (y = 7) 0 DAC1 (DAC12OPS = 0) (4) X 1 0 1 SVSIN (VLD = 15) X 1 0 0 X = Don't care MSP430F261x devices only The ADC12 channel Ax is connected to AVSS internally if not selected. The DAC outputs are floating if not selected. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 83 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Port P7 (P7.0 to P7.7), Input/Output With Schmitt Trigger (5) Pad Logic P7REN.x P7DIR.x 0 0 1 P7OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P7.0 P7.1 P7.2 P7.3 P7.4 P7.5 P7.6 P7.7 P7SEL.x P7IN.x EN D Module X IN Table 24. Port P7 (P7.0 to P7.7) Pin Functions (1) PIN NAME (P7.x) P7.0 x 0 P7.1 1 P7.2 2 P7.3 3 P7.4 4 P7.5 5 P7.6 6 P7.7 (5) (1) (2) 84 7 FUNCTION P7.0 (I/O) Input P7.1 (I/O) Input P7.2 (I/O) Input P7.3 (I/O) Input P7.4 (I/O) Input P7.5 (I/O) Input P7.6 (I/O) Input P7.7 (I/O) Input CONTROL BITS / SIGNALS (2) P7DIR.x P7SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 80-pin devices only 80-pin devices only X = Don't care Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Port P8 (P8.0 to P8.5), Input/Output With Schmitt Trigger (3) Pad Logic P8REN.x P8DIR.x 0 0 1 P8OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8SEL.x P8IN.x EN Module X IN D Table 25. Port P8 (P8.0 to P8.5) Pin Functions (1) PIN NAME (P8.x) P8.0 P8.1 x 0 1 P8.2 2 P8.3 3 P8.4 4 P8.5 5 (3) (1) (2) FUNCTION P8.0 (I/O) Input P8.1 (I/O) Input P8.2 (I/O) Input P8.3 (I/O) Input P8.4 (I/O) Input P8.5 (I/O) Input CONTROL BITS / SIGNALS (2) P8DIR.x P8SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 80-pin devices only 80-pin devices only X = Don't care Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 85 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com Port P8 (P8.6), Input/Output With Schmitt Trigger (3) BCSCTL3.XT2Sx = 11 0 XT2CLK 1 From P8.7/XIN P8.7/XT2IN XT2 off Pad Logic P8SEL.7 P8REN.6 P8DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.6 DVSS P8.6/XT2OUT Bus Keeper EN P8SEL.6 P8IN.6 EN Module X IN D Table 26. Port P8 (P8.6) Pin Functions (1) PIN NAME (P8.x) x FUNCTION P8.6 (I/O) P8.6/XT2OUT (3) (1) 86 6 CONTROL BITS / SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 XT2OUT (default) 0 1 DVSS 1 1 80-pin devices only 80-pin devices only Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 Port P8 (P8.7), Input/Output With Schmitt Trigger (2) BCSCTL3.XT2Sx = 11 P8.6/XT2OUT XT2 off 0 XT2CLK 1 Pad Logic P8SEL.6 P8REN.7 0 P8DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.7 DVSS P8.7/XT2IN P8SEL.7 Bus Keeper EN P8IN.7 EN D Module X IN Table 27. Port P8 (P8.7) Pin Functions (1) PIN NAME (P8.x) x FUNCTION P8DIR.x P8SEL.x I: 0; O: 1 0 XT2IN (default) 0 1 VSS 1 1 P8.7 (I/O) P8.7/XT2IN (2) (1) 7 CONTROL BITS / SIGNALS 80-pin devices only 80-pin devices only Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 87 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com JTAG Pins: TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger TDO Controlled by JT AG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn and Test Fuse Test TDI/TCLK and Emulation Module DVCC TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK 88 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F261x MSP430F241x www.ti.com SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 JTAG Fuse Check Mode MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 49). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITF ITDI/TCLK Figure 49. Fuse Check Mode Current Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 89 MSP430F261x MSP430F241x SLAS541K – JUNE 2007 – REVISED NOVEMBER 2012 www.ti.com REVISION HISTORY LITERATURE NUMBER DESCRIPTION SLAS541 Product Preview release SLAS541A Production Data release Corrected the format and the content shown on the first page. Corrected pin number of P3.6 and P3.7 in 64-pin package in the terminal function list. Corrected the port schematics. Corrected "calibration data" section (page 20). Typos and formatting corrected. Added the figure "typical characteristics - LPM4 current" (Page 33). SLAS541B Added preview of MSP430F261x BGA devices. SLAS541C Release to market of MSP430F261x BGA devices SLAS541D Added the ESD disclaimer (page 1). Added reserved BGA pins to the terminal function list (pages 10 and following). Corrected the references in the output port parameters (page 36). Corrected the cumulative program time of the flash (page 75). SLAS541E Corrected LFXT1Sx values in Figures 23 and 24 (page 52). Corrected XT2Sx values in Figures 25 and 26 (page 54). Corrected tCMErase MIN value from 200 ms to 20 ms and removed two notes in the flash memory table (page 75). SLAS541F Renamed Tags Used by the ADC Calibration Tags table to Tags used by the TLV Structure (page 20). Changed value of TAG_ADC12_1 from 0x10 to 0x08 in Tags used by the TLV Structure (page 20). Added CAOUT to P1.0/TACLK, Changed Timer_A3.CCI0A to Timer_A3.CCI1A and Timer_A3.TA0 to Timer_A3.TA1 in P1.2/TA1 row, Changed Timer_A3.CCI0A to Timer_A3.CCI2A and Timer_A3.TA0 to Timer_A3.TA2 in P1.3/TA2 row in Port P1 (P1.0 to P1.7) pin functions table (page 78). Changed TA0 to Timer_A3.CCI0B in P2.2/CAOUT/TA0/CA4 row of Port P2.0, P2.3, P2.4, P2.6 and P2.7 pin functions table (page 80). SLAS541G Changed limits on td(SVSon) parameter (page 40) SLAS541H Changed Control Bits/Signals in Table 21, Table 22, and Table 23. Changed crystal signal names in Table 26 and Table 27. SLAS541I Changed Tstg, Programmed device, to -55°C to 150°C in Absolute Maximum Ratings. SLAS541J Added nonmagnetic package option to Description and Table 1. SLAS541K Changed P8.6/XT2OUT and P8.7/XT2IN to I/O in Table 2. 90 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 28-Feb-2014 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F2416TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2416T MSP430F2416TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2416T MSP430F2416TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2416T MSP430F2416TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2416T MSP430F2416TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2416T MSP430F2416TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2416T MSP430F2417TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2417T MSP430F2417TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2417T MSP430F2417TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2417T MSP430F2417TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2417T MSP430F2417TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2417T MSP430F2417TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2417T MSP430F2418TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2418T MSP430F2418TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2418T MSP430F2418TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2418T Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 28-Feb-2014 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F2418TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2418T MSP430F2418TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2418T MSP430F2418TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2418T MSP430F2419TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2419T MSP430F2419TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2419T MSP430F2419TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2419T MSP430F2419TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2419T MSP430F2419TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2419T MSP430F2419TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2419T MSP430F2616TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2616T MSP430F2616TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2616T MSP430F2616TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2616T MSP430F2616TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2616T MSP430F2616TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2616T MSP430F2616TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2616T Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 28-Feb-2014 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F2617TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2617T MSP430F2617TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2617T MSP430F2617TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2617T MSP430F2617TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2617T MSP430F2617TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2617T MSP430F2617TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2617T MSP430F2618TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2618T MSP430F2618TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2618T MSP430F2618TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2618T MSP430F2618TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2618T MSP430F2618TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2618T MSP430F2618TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2618T MSP430F2619TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2619T REV # MSP430F2619TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2619T REV # MSP430F2619TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2619T MSP430F2619TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 M430F2619T Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 28-Feb-2014 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F2619TZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2619T MSP430F2619TZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 M430F2619T (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Feb-2014 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF MSP430F2618 : • Enhanced Product: MSP430F2618-EP NOTE: Qualified Version Definitions: • Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 5 PACKAGE MATERIALS INFORMATION www.ti.com 7-Nov-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device MSP430F2416TPMR MSP430F2416TPNR MSP430F2416TZQWR Package Package Pins Type Drawing LQFP LQFP BGA MI CROSTA R JUNI OR PM SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F2417TPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 MSP430F2417TPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F2417TZQWR BGA MI CROSTA R JUNI OR MSP430F2418TPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 MSP430F2418TPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F2418TZQWR BGA MI CROSTA R JUNI OR MSP430F2419TPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 MSP430F2419TPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F2419TZQWR BGA MI ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 7-Nov-2013 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant CROSTA R JUNI OR MSP430F2616TPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 MSP430F2616TPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F2616TZQWR BGA MI CROSTA R JUNI OR MSP430F2617TPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 MSP430F2617TPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F2617TZQWR BGA MI CROSTA R JUNI OR MSP430F2618TPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 MSP430F2618TPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F2618TZQWR BGA MI CROSTA R JUNI OR MSP430F2619TPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2 MSP430F2619TPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F2619TZQWR BGA MI CROSTA R JUNI OR Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 7-Nov-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F2416TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2416TPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F2416TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F2417TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2417TPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F2417TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F2418TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2418TPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F2418TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F2419TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2419TPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F2419TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F2616TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2616TPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F2616TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F2617TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2617TPNR LQFP PN 80 1000 367.0 367.0 45.0 Pack Materials-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 7-Nov-2013 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F2617TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F2618TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2618TPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F2618TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F2619TPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F2619TPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F2619TZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 Pack Materials-Page 4 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996 PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated