ACA2604 1 GHz FTTx RF Amplifier Data Sheet - Rev 2.2 FEATURES • 50 - 1000 MHz Operating Frequency • High Linearity: 65 dBc CTB/CSO (79 Chan.) • Low Equivalent Input Noise: 4.5 pA/rtHz • 22 dB Gain Adjust AC A • 400 Differential Input Impedance: No Transformer Required for Interface to Photodiode 26 • Single +5 V Supply 04 • 5 mm x 5 mm x 1 mm Surface Mount Package • RoHS Compliant Package • Pin Compatible with the ACA2601 APPLICATIONS • FTTH RF Amplifier Used in Conjunction With Triplexer in Fiber-Coax Line Terminals S29 Package 28 Pin QFN 5 mm x 5 mm x 1 mm • Post photodiode RF Amplifier in FTTB video receivers for Multiple Dwelling Units (MDUs). PRODUCT DESCRIPTION The ANADIGICS ACA2604 amplifier is intended to be used in fiber-to-coax equipment, such as ONUs for FTTH systems incorporating RF overlay, or FTTB optical receivers for MDUs. The device is driven by, and amplifies the output of, the video downstream path photodiode. The high-impedance input of the ACA2604 eliminates the need for a costly transformer usually needed to interface to the photodiode, and a low equivalent input noise level offers excellent sensitivity. The device Supply Matching Circuit LNA provides sufficient linearity to maintain low CTB and CSO levels in full-bandwidth (132 channel) systems, even across a wide gain adjustment range. The ACA2604 is manufactured using ANADIGICS’s proven MESFET technology that offers state-of-theart reliability, temperature stability and ruggedness. The device operates from a single +5 V supply and is offered in a 5 mm x 5 mm x 1 mm surface mount package. Attenuator Control Voltage Controlled Attenuator ACA2604 Figure 1: Application Block Diagram 08/2008 RF Output Output Amplifier 1:1 Transmission Line Balun ACA2604 Figure 2: Pinout (X-ray Top View) Table 1: Pin Description 2 PIN NAME DESCRIPTION PIN NAME DESCRIPTION 1 NC No Connection 28 VCC_IN1 Input Stage Supply 1 2 RFIN1 RF Input 1 27 NC No Connection 3 NC No Connection 26 VAGC AGC Control Input 4 GND Ground 25 GND Ground 5 NC No Connection 24 VCC_AGC AGC Supply 6 RFIN2 RF Input 2 23 NC No Connection 7 NC No Connection 22 GND Ground 8 VCC_IN2 Input Stage Supply 2 21 VCC_OUT1 Output Stage Supply 1 9 GND Ground 20 RFOUT1 RF Output 1 10 IADJ_IN Input Stage Current Adjust 19 GND Ground 11 GND Ground 18 GND Ground 12 GND Ground 17 GND Ground 13 GND Ground 16 RFOUT2 RF Output 2 14 GND Ground 15 VCC_OUT2 Output Stage Supply 2 Data Sheet - Rev 2.2 08/2010 ACA2604 ELECTRICAL CHARACTERISTICS Table 2: Absolute Minimum and Maximum Ratings PARAMETER MIN MAX UNIT Supply Voltage (VCC) 0 +8 V AGC Voltage (VAGC) 0 +5 V RF Input Power (PIN) - +25 dBmV/ch Storage Temperature -65 +150 °C Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability. Table 3: Operating Ranges PARAMETER MIN TYP MAX UNIT 50 - 1000 MHz Supply Voltage (VCC) - +5 - V RF Output Power (POUT) - +18 - dBmV/ch Case Temperature (TC) -40 - +110 °C Operating Frequency (f) COMMENTS The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications. Data Sheet - Rev 2.2 08/2010 3 ACA2604 Table 4: Electrical Specifications - RFIN and RFOUT Characterizations (see Figure 3) ( VCC = +5 V, 75 system, TA = +25 °C) COMMENTS PARAMETER MIN TYP MAX UNIT RF Gain over Temperature (1) 22.5 24.0 - dB at 547.25 MHz 20 22 - dB 55.25 to 865.25 MHz +0.5 - +3.0 V Max. gain at +3.0 V - -65 -60 dBc - -65 - dBc +47 - - dBm - 400 - differential 16 15 18 - - dB 55.25 to 865.25 MHz Current Consumption over Temperature (1) - 250 295 mA Thermal Resistance - 18 25 8C/W Gain Adjustment Range Gain Adjust Control Voltage CTB (2) CSO (2) OIP2 (3) Input Impedance Output Return Loss over Temperature -30 oC to +85 oC +85 oC to +100 oC Table 5: Electrical Specifications - Optical in and RFOUT Characterizations ( VCC = +5 V, optical input, 75 output, TA = +25 °C) PARAMETER MIN TYP MAX UNIT Best linear filt - Tilt VAGC = +3.0 V VAGC = +0.5 V 0.5 2.5 1.5 3.5 2.0 4.5 dB 55.25 to 865.25 MHz Best linear fit - Tilt over Temperature(1) VAGC = +3.0 V VAGC = +0.5 V - 4.5 5.8 - dB 55.25 to 865.25 MHz Best linear fit - Gain Flatness VAGC = +3.0 V VAGC = +0.5 V - 0.8 0.8 2.0 2.0 dB 55.25 to 865.25 MHz (peak to peak deviation) Best linear fit - Gain Flatness over Temperature(1) VAGC = +3.0 V VAGC = +0.5 V - 1.0 1.0 - dB Equivalent Input Noise (EIN) - 4.5 5.5 pA/rt Hz 55.25 to 865.25 MHz Equivalent Input Noise over Temperature(1) - 5.0 - pA/rtHz 55.25 to 865.25 MHz COMMENTS 55.25 to 865.25 MHz (peak to peak deviation) Notes: (1) Temperature range of -30 to +100 8C referenced to the package slug. (2) 79 analog channels from 55.25 to 547.25 MHz, +21 dBmV output power, with 14 dB gain reduction by AGC (i.e. mid-range) (3) Two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction by AGC (i.e. mid- range) 4 Data Sheet - Rev 2.2 08/2010 ACA2604 Figure 3: Test Circuit Data Sheet - Rev 2.2 08/2010 5 ACA2604 PERFORMANCE DATA Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14. Figure vs.Frequency Frequency Figure4: 4: Z21 Z21 vs. over Vover AGC VAGC o CC = +5V ) +25C,V (TA( T=A =+25 C, VCC = + 5 V) 30 Vagc=0.0V 25 Vagc=0.2V Vagc=0.4V Vagc=0.6V Z21 ( Ampere/Watt ) 20 Vagc=0.8V Vagc=1.0V Vagc=1.2V Vagc=1.4V 15 Vagc=1.6V Vagc=1.8V Vagc=2.0V Vagc=2.2V 10 Vagc=2.4V Vagc=2.6V Vagc=2.8V 5 Vagc=3.0V 0 0 100 200 300 400 500 600 700 800 900 1000 Frequency ( MHz ) Figure 5: 5: Output Loss vs. Frequency over VAGC Figure Output Return Return Loss vs. Frequency over VAGC +25C,oC, VCCV = CC +5V)= + 5 V) (TA(T=A =+25 -5 -10 Vagc=0.0V Vagc=0.2V Vagc=0.4V -15 Vagc=0.6V Vagc=0.8V S22 (dB) Vagc=1.0V -20 Vagc=1.2V Vagc=1.4V Vagc=1.6V -25 Vagc=1.8V Vagc=2.0V Vagc=2.2V Vagc=2.4V -30 Vagc=2.6V Vagc=2.8V Vagc=3.0V -35 -40 0 100 200 300 400 500 600 Frequency ( MHz ) 6 Data Sheet - Rev 2.2 08/2010 700 800 900 1000 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14. Figure 6: Gain Flatness to Best Fit Line Over Temperature Figure 6: Gain Flatness To Best Fit Line vs. Frequency over Temperature VAGC = +3.0V (VCC =( V +CC 5 =V,+5V, VAGC = +3.0 V) ) 2 +85C 1.5 +25C -40C Gain Flaness (dB) 1 0.5 0 -0.5 -1 -1.5 -2 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Table 6: Gain Flatness to Best Fit Line (VAGC = +3.0 V) Temp (oC) Tilt (dB) Flatness (dB) 85 3.7 1.3 25 4.5 1.0 -40 5.1 0.9 The best fit line is calculated using the least mean squares method: y = m⋅ x +b m= ∑ (x ⋅ y )− ∑x b= Data Sheet - Rev 2.2 08/2010 2 − ∑ x⋅∑ y n (∑ x )2 n ∑ y − m⋅ ∑x n n 7 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14. Figure 7: Gain Flatness To Best Fit Line vs. Frequency over Temperature Figure 7: Gain Flatness to Best Fit Line Over Temperature VAGC = +1.6V) (VCC =(V+CC5=V,+5V, VAGC = +1.6 V) 2 +85C 1.5 +25C -40C Gain Flatness (dB) 1 0.5 0 -0.5 -1 -1.5 -2 0 100 200 300 400 500 600 700 Frequency (MHz) Table 7: Gain Flatness to Best Fit Line (VAGC = +1.6 V) 8 Temp (oC) Tilt (dB) Flatness (dB) 85 4.1 0.5 25 4.5 0.7 -40 5.1 0.8 Data Sheet - Rev 2.2 08/2010 800 900 1000 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14. Figure 8: Figure Gain Flatness to Best Line vs. Frequency 8: Gain Flatness ToFit Best Fit Line vs. FrequencyOver over Temperature Temperature VAGC==0+0.0V) (VCC = (V +CC 5 =V,+5V, VAGC V) 2 +85C 1.5 +25C -40C Gain Flaness (dB) 1 0.5 ` 0 -0.5 -1 -1.5 -2 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Table 8: Gain Flatness to Best Fit Line (VAGC = 0 V) Temp (oC) Tilt (dB) Flatness (dB) 85 5.2 1.2 25 5.8 1.0 -40 6.3 0.8 Data Sheet - Rev 2.2 08/2010 9 ACA2604 Performance data on this page measured using test circuit shown in Figure 3. Figure 9: CTB vs. Frequency (79 Analog channels (55.25 to 9: 547.25 MHz), +21 dBmV output power, Figure CTB vs Frequency 79 Analog channels (55.25 14 to 547.25MHz), +21dBmV output power, 14dB gain reduction by AGC with dB gain reduction by with AGC) -60 -61 -62 CTB (dBc) -63 -64 -65 -66 -67 -68 -69 -70 0 100 200 300 400 500 600 Frequency (MHz) Figure 10: Worst Case CSO vs. Frequency (79 Analog channels (55.25 to 547.25 MHz), dBmV output power, Figure 10: Worst Case CSO vs +21 Frequency 79 Analog channels (55.25 547.25MHz), +21dBmV output power, 14dB gain reduction by AGC withto14 dB gain reduction bywith AGC) -60 -62 -64 -66 -68 wst CSO (dBc) -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 0 100 200 300 Frequency (MHz) 10 Data Sheet - Rev 2.2 08/2010 400 500 600 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14. Figure 11: CTB Frequency vs. POPTvs. POPT Figure 11: vs. CTB vs. Frequency 79 Analog channels (55.25 to 547.25 MH), +17 dBmV at 109.25 MHz, 3.5% 79 Analog channels (55.25 to 547.25MH), +17dBmV @ 109.25MHz, 3.5% OMI/ch OMI/ch -60 Popt = -7dBm Popt = 0dBm Popt = +2dBm CTB (dBc) -65 -70 -75 -80 0 100 200 300 400 500 600 Frequency (MHz) Figure 12: CSO Frequency vs. POPTvs. Popt Figure 12: vs. CSO vs. Frequency 79 Analog channels (55.25 to 547.25MH), +17dBmV @ 109.25MHz, 3.5% OMI/ch) OMI/ch (79 Analog channels (55.25 to 547.25 MH), +17 dBmV at 109.25 MHz, 3.5% -60.00 Popt = -7dBm Popt = 0dBm Popt = +2dBm CSO (dBc) -65.00 -70.00 -75.00 -80.00 0 100 200 300 400 500 600 Frequency (MHz) Data Sheet - Rev 2.2 08/2010 11 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14. Figure Equivalent Input Noise vs. Frequency Figure13: 13: Equivalent Input Noise vs. Frequency = +25 C, VAGC = +3V) (TA(T = A25 8C, oV CCVcc = +5=V,+5V, VAGC = +3.0 V) 6 5 EIN (pA/rtHz) 4 3 2 1 0 0 100 200 300 400 500 600 Frequency (MHz) 12 Data Sheet - Rev 2.2 08/2010 700 800 900 1000 ACA2604 APPLICATION INFORMATION Figure 14: Application Circuit with Input Photodiode Data Sheet - Rev 2.2 08/2010 13 ACA2604 Table 9: Evaluation Board Parts List for 50 - 870 MHz Applications REF DESCRIPTION C18 0.6 pF; 0402 Cap C1 VENDOR VENDOR PART NO. 1 Murata Electronics GRM1555C1HR60BZ01 1 pF; 0603 Cap 1 Murata Electronics GRM1885C1H1R0CZ01D C9, C10 270 pF; 0603 Cap 2 Murata Electronics GRM155R7H271KA01D C2, C3 470 pF; 0603 Cap 2 Murata Electronics GRM155R71H471KA01D C5 1000 pF; 0603 Cap 1 Murata Electronics GRM1885C1H102JA01D C6, C7, C12, C13, C15, C16 0.01 F; 0603 Cap 6 Murata Electronics GRM1885C1HR50CZ01D C4, C17 0.1 F; 0603 Cap 1 Murata Electronics GRM188F51C104ZA01D C14 1 F; 0603 Cap 1 Murata Electronics GRM188R61C105KA93D C8 47 F; Elect. Cap 25 V 1 Panasonic-ECG ECA-1EM470B L1, L2, L3, L4 30 nH; 0603 Ind 4 Coilcraft 0603HP-30NXJL L5, L6, L7, L8 330 nH; 1008 Ind 4 Coilcraft 1008CS-331XJLB R1, R2 1 k; 0603 Res 2 Panasonic-ECG ERJ-2GEJ102X R3 20 0603 Res 1 Panasonic-ECG ERT-3GEYJ200W R4 0 ; 0603 Res 1 Panasonic-ECG ERJ-3GE40R00V T1 1:1 Balun Transformer 1 M/A-COM MABA-009921-CT1A40 D1 Analog Photodiode 1 EGTRAN PD070-HL1-300 or PD070-HL2-300 Connector 75 N Male Panel Mount 1 Pasternack Enterprises PE4504 L10 7.5 nH; 0402 Ind 1 Murata LQG154S7N5J02D FB1, FB2 EMI Ferrite Chip 2 Murata Electronics BLM15HD182SN FB3 EMI Ferrite Chip 1 Murata BLM15HG102SN1D 14 QTY Data Sheet - Rev 2.2 08/2010 ACA2604 Table 10: Evaluation Board Parts List for 50 - 1000 MHz Applications REF DESCRIPTION C18 0.6 pF; 0402 Cap C1 QTY VENDOR VENDOR PART NO. 1 Murata Electronics GRM1555C1HR60BZ01 1.1 pF; 0603 Cap 1 Murata Electronics GRM1885C1H1R01CZ01D C9, C10 270 pF; 0603 Cap 2 Murata Electronics GRM155R7H271KA01D C2, C3 470 pF; 0603 Cap 2 Murata Electronics GRM155R71H471KA01D C5 1000 pF; 0603 Cap 1 Murata Electronics GRM1885C1H102JA01D C6, C7, C12, C13, C15, C16 0.01 F; 0603 Cap 6 Murata Electronics GRM1885C1HR50CZ01D C4, C17 0.1 F; 0603 Cap 1 Murata Electronics GRM188F51C104ZA01D C14 1 F; 0603 Cap 1 Murata Electronics GRM188R61C105KA93D C8 47 F; Elect. Cap 25 V 1 Panasonic-ECG ECA-1EM470B L1, L2 18 nH; 0603 Ind 2 Coilcraft 0603HP-1BNXJLU L3, L4 22 nH; 0603 Ind 2 Coilcraft 0603HP-22NXJLU L5, L6 120 nH; 1008 Ind 2 Coilcraft 0603LS-121XJLB L7, L8 180 nH; 0603 Ind 2 Coilcraft 0603LS-121XJLB R1, R2 1 k; 0603 Res 2 Panasonic-ECG ERJ-2GEJ102X R3 20 0603 Res 1 Panasonic-ECG ERT-3GEYJ200W R4 0 ; 0603 Res 1 Panasonic-ECG ERJ-3GEY0R00V T1 1:1 Balun Transformer 1 M/A-COM MABA-009921-CT1A40 D1 Analog Photodiode 1 EGTRAN PD070-HL1-300 or PD070-HL2-300 Connector 75 N Male Panel Mount 1 Pasternack Enterprises PE4504 L10 7.5 nH; 0402 Ind 1 Murata LQG154S7N5J02D FB1, FB2 EMI Ferrite Chip 2 Murata Electronics BLM15HD182SN FB3 EMI Ferrite Chip 1 Murata BLM15HG102SN1D Data Sheet - Rev 2.2 08/2010 15 ACA2604 PACKAGE OUTLINE Figure 15: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN 16 Data Sheet - Rev 2.2 08/2010 ACA2604 Figure 16: PCB Metal and Solder Mask Details Data Sheet - Rev 2.2 08/2010 17 ACA2604 ORDERING INFORMATION ORDER NUMBER ACA2604RS29P8 TEMPERATURE RANGE PACKAGE DESCRIPTION COMPONENT PACKAGING -40 °C to +110 °C RoHS-Compliant 28 Pin QFN 5 mm x 5 mm x 1 mm Tape and Reel, 2500 pieces per Reel ANADIGICS, Inc. 141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132 URL: http://www.anadigics.com E-mail: [email protected] IMPORTANT NOTICE ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders. warning ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited. 18 Data Sheet - Rev 2.2 08/2010