ACA2604 Fiber-to-the-Home RF Amplifier Data Sheet - Rev 2.1 FEATURES • 50 - 870 MHz Operating Frequency • High Linearity: 65 dBc CTB/CSO (79 Chan.) • Low Equivalent Input Noise: 4.5 pA/rtHz • 22 dB Gain Adjust AC A • 400 Differential Input Impedance: No Transformer Required for Interface to Photodiode 26 • Single +5 V Supply 04 • 5 mm x 5 mm x 1 mm Surface Mount Package • RoHS Compliant Package • Pin Compatible with the ACA2601 APPLICATIONS • FTTH RF Amplifier Used in Conjunction With Triplexer in Fiber-Coax Line Terminals S29 Package 28 Pin QFN 5 mm x 5 mm x 1 mm PRODUCT DESCRIPTION The ANADIGICS ACA2604 amplifier for Fiber-to-theHome (FTTH) applications is intended to be used in conjunction with the triplexer in fiber-coax line terminals. The device is driven by, and amplifies the output of, the video downstream path photodiode. The high-impedance input of the ACA2604 eliminates the need for a costly transformer usually needed to interface to the photodiode, and a low equivalent input noise level offers excellent sensitivity. The device provides sufficient linearity to maintain low CTB and Supply Matching Circuit LNA CSO levels in full-bandwidth (132 channel) systems, even across a wide gain adjustment range. The ACA2604 is manufactured using ANADIGICS’s proven MESFET technology that offers state-of-theart reliability, temperature stability and ruggedness. The device operates from a single +5 V supply and is offered in a 5 mm x 5 mm x 1 mm surface mount package. Attenuator Control Voltage Controlled Attenuator ACA2604 Figure 1: Application Block Diagram 11/2008 RF Output Output Amplifier 1:1 Transmission Line Balun ACA2604 Figure 2: Pinout (X-ray Top View) Table 1: Pin Description 2 PIN NAME DESCRIPTION PIN NAME DESCRIPTION 1 NC No Connection 28 VCC_IN2 Input Stage Supply 1 2 RFIN1 RF Input 1 27 NC No Connection 3 NC No Connection 26 VAGC AGC Control Input 4 GND Ground 25 GND Ground 5 NC No Connection 24 VCC_AGC AGC Supply 6 RFIN2 RF Input 2 23 NC No Connection 7 NC No Connection 22 GND Ground 8 VCC_IN2 Input Stage Supply 2 21 VCC_OUT1 Output Stage Supply 1 9 GND Ground 20 RFOUT1 RF Output 1 10 IADJ_IN Input Stage Current Adjust 19 GND Ground 11 GND Ground 18 GND Ground 12 GND Ground 17 GND Ground 13 GND Ground 16 RFOUT2 RF Output 2 14 GND Ground 15 VCC_OUT2 Output Stage Supply 2 Data Sheet - Rev 2.1 11/2008 ACA2604 ELECTRICAL CHARACTERISTICS Table 2: Absolute Minimum and Maximum Ratings PARAMETER MIN MAX UNIT Supply Voltage (VCC) 0 +8 V AGC Voltage (VAGC) 0 +5 V RF Input Power (PIN) - +25 dBmV/ch Storage Temperature -65 +150 °C Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability. Table 3: Operating Ranges PARAMETER MIN TYP MAX UNIT 50 - 870 MHz Supply Voltage (VCC) - +5 - V RF Output Power (POUT) - +18 - dBmV/ch Case Temperature (TC) -40 - +110 °C Operating Frequency (f) COMMENTS The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications. Data Sheet - Rev 2.1 11/2008 3 ACA2604 Table 4: Electrical Specifications (TA = +25 °C, POUT = +18 dBmV, VCC = +5 V, 75 system, see Figure 3) PARAMETER MIN TYP MAX UNIT RF Gain over Temperature (1) 22.5 24.0 - dB Gain Tilt (2) VAGC = +3.0 V VAGC = +0.5 V 0.5 2.5 1.5 3.5 2.0 4.5 dB - 4.5 5.8 - dB - 1.0 1.0 - dB 20 22 - dB +0.5 - +3.0 V - -65 -60 dBc 79 Channels - -65 - dBc 79 Channels +47 - - dBm Equivalent Input Noise (EIN) (4) - 4.5 5.5 pA/rtHz EIN over Temperature (1), (4) - 5 - pA/rtHz Input Impedance - 400 - Output Return Loss (1), (6) -30 oC to +85 oC +85 oC to +100 oC 16 15 18 - - dB Current Consumption (1) - 230 295 mA Thermal Resistance - 18 25 Gain Tilt over Temperature VAGC = +3.0 V VAGC = +0.5 V Gain Adjustment Range Gain Adjust Control Voltage (5) CSO (5) OIP2 at 550 MHz (1), (2), (4) Gain Flatness over Temperature VAGC = +3.0 V VAGC = +0.5 V CTB COMMENTS (7) (1), (3), (4) o Max. gain at +3.0 V differential differential, 75 system C/W Notes: (1) Package slug temperature range of -30 to +100 oC. (2) Recorded tilt of the calculated best fit straight line from 50 to 870 MHz. (3) Flatness is the peak-to-peak deviation from the calculated best fit straight line. (4) Measured using application circuit with photodiode, as shown in Figure 16. (5) Measured at +21 dBmV output power, with 14 dB gain reduction. (6) Over the 50 to 870 MHz Frequency band. (7) Measured using two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction. 4 Data Sheet - Rev 2.1 11/2008 ACA2604 Figure 3: Test Circuit Data Sheet - Rev 2.1 11/2008 5 ACA2604 PERFORMANCE DATA Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 4: Gain vs. Frequency (TA = +25 oC, VCC = + 5 V) 30 25 Vagc=0.0V Vagc=0.2V Vagc=0.4V Vagc=0.6V Vagc=0.8V Vagc=1.0V Vagc=1.2V Vagc=1.4V Vagc=1.6V Vagc=1.8V Vagc=2.0V Vagc=2.2V Vagc=2.4V Vagc=2.6V Vagc=2.8V Vagc=3.0V Z21 (A/w) 20 15 10 5 0 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Figure 5: Output Return Loss vs. Frequency (TA = +25 oC, VCC = + 5 V) -5 -10 Vagc=0.0V Vagc=0.2V Vagc=0.4V Vagc=0.6V Vagc=0.8V Vagc=1.0V Vagc=1.2V Vagc=1.4V Vagc=1.6V Vagc=1.8V Vagc=2.0V Vagc=2.2V Vagc=2.4V Vagc=2.6V Vagc=2.8V Vagc=3.0V -15 S22 (dB) -20 -25 -30 -35 -40 0 100 200 300 400 500 600 Frequency (MHz) 6 Data Sheet - Rev 2.1 11/2008 700 800 900 1000 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 6: Gain Flatness to Best Fit Line Over Temperature (VCC = + 5 V, VAGC = +3.0 V) 2 1.5 Gain Flaness (dB) 1 0.5 Temperature 0 0 100 200 300 400 500 600 700 800 900 1000 +85C +25C -40C -0.5 -1 -1.5 -2 Frequency (MHz) Table 5: Gain Flatness to Best Fit Line (VAGC = +3.0 V) Temp (oC) Tilt (dB) Flatness (dB) 85 3.7 1.3 25 4.5 1.0 -40 5.1 0.9 The best fit line is calculated using the least mean squares method: y = m⋅ x +b m= ∑ (x ⋅ y )− ∑x b= Data Sheet - Rev 2.1 11/2008 2 − ∑ x⋅∑ y n (∑ x )2 n ∑ y − m⋅ ∑x n n 7 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 7: Output Return Loss Over Temperature (VCC = + 5 V, VAGC = +3.0 V) 0 -5 -10 S22 (dB) -15 85C 25C -40C -20 -25 -30 -35 -40 0 100 200 300 400 500 600 Frequency (MHz) 8 Data Sheet - Rev 2.1 11/2008 700 800 900 1000 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 8: Gain Flatness to Best Fit Line Over Temperature (VCC = + 5 V, VAGC = +1.6 V) 2 1.5 1 Gain Flaness (dB) 0.5 0 0 100 200 300 400 500 600 700 800 900 1000 +85C +25C -40C -0.5 -1 -1.5 -2 Frequency (MHz) Table 6: Gain Flatness to Best Fit Line (VAGC = +1.6 V) Temp (oC) Tilt (dB) Flatness (dB) 85 4.1 0.5 25 4.5 0.7 -40 5.1 0.8 The best fit line is calculated using the least mean squares method: y = m⋅ x +b m= ∑ (x ⋅ y )− ∑x b= Data Sheet - Rev 2.1 11/2008 2 − ∑x⋅∑ y n (∑ x )2 n ∑ y − m⋅ ∑x n n 9 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 9: Output Return Loss Over Temperature (VCC = + 5 V, VAGC = +1.6 V) 5 0 -5 S22 (dB) -10 -15 +85C +25C -40C -20 -25 -30 -35 -40 0 100 200 300 400 500 600 Frequency (MHz) 10 Data Sheet - Rev 2.1 11/2008 700 800 900 1000 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 10: Gain Flatness to Best Fit Line vs. Frequency Over Temperature (VCC = + 5 V, VAGC = 0 V) 2 1.5 1 Gain Flaness (dB) 0.5 +85C ` 0 0 100 200 300 400 500 +25C 600 700 800 900 1000 -40C -0.5 -1 -1.5 -2 Frequency (MHz) Table 7: Gain Flatness to Best Fit Line (VAGC = 0 V) Temp (oC) Tilt (dB) Flatness (dB) 85 5.2 1.2 25 5.8 1.0 -40 6.3 0.8 The best fit line is calculated using the least mean squares method: y = m⋅ x +b m= ∑ (x ⋅ y )− ∑x b= Data Sheet - Rev 2.1 11/2008 2 − ∑x⋅∑ y n (∑ x )2 n ∑ y − m⋅ ∑x n n 11 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 11: Output Return Loss Over Temperature (VCC = + 5 V, VAGC = 0 V) 0 -5 -10 S22 (dB) -15 +85C +25C -40C -20 -25 -30 -35 -40 0 100 200 300 400 500 600 Frequency (MHz) 12 Data Sheet - Rev 2.1 11/2008 700 800 900 1000 ACA2604 Performance data on this page measured using test circuit shown in Figure 3. Figure 12: CTB vs. Frequency (TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading, Optical Input Power = 0 dBm, RF Output Power = +18 dBmV) -60 -65 CTB (dBc) -70 -75 -80 -85 0 100 200 300 400 500 600 Frequency (MHz) Figure 13: CSO vs. Frequency (TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading, Optical Input Power = 0 dBm, RF Output Power = +18 dBmV) -50 -55 -60 CSO (dBc) -65 -70 -75 -80 -85 -90 0 100 200 300 400 500 600 Frequency (MHz) Data Sheet - Rev 2.1 11/2008 13 ACA2604 Performance data on this page measured using application circuit with input photodiode, as shown in Figure 15. Figure 14: Equivalent Input Noise vs. Frequency (TA = +25 oC, VCC = + 5 V, VAGC = +3.0 V) 6 5 EIN (pA/rtHz) 4 3 2 1 0 0 100 200 300 400 500 600 Frequency (MHz) 14 Data Sheet - Rev 2.1 11/2008 700 800 900 1000 D1 L2 L1 C1 Data Sheet - Rev 2.1 11/2008 C4 C5 L4 L3 C3 C2 +12 V FB2 R2 R1 7 6 5 4 3 2 1 C6 NC +5 V RFIN2 NC GND NC L5 ACA2604 28 V CC _IN1 V CC _IN2 8 C17 C13 V CC_OUT2 RFOUT2 GND GND GND RFOUT1 V CC_OUT1 27 NC GND 9 RFIN1 NC 26 V AGC IADJ_ IN 10 R3 25 GND GND 11 L9 C14 12 L8 24 VC C_ AGC GND FB1 C16 C15 23 NC GND 13 V AGC 22 GND GND 14 +5 V 15 16 17 18 19 20 21 +5 V C8 C7 L6 C11 C9 C10 C12 L7 +5 V T1 C18 L10 RF Output (75 Ohms) ACA2604 APPLICATION INFORMATION Figure 15: Application Circuit with Input Photodiode 15 ACA2604 Table 5: Evaluation Board Parts List REF DESCRIPTION C11, C18 0.5 pF; 0603 Cap C1 VENDOR VENDOR PART NO. 1 Murata Electronics GRM1885C1HR50CZ01D 1 pF; 0603 Cap 1 Murata Electronics GRM1885C1H1R0CZ01D C9, C10 270 pF; 0603 Cap 2 Murata Electronics GRM155R7H271KA01D C2, C3 470 pF; 0603 Cap 2 Murata Electronics GRM155R71H471KA01D C5 1000 pF; 0603 Cap 1 Murata Electronics GRM1885C1H102JA01D C6, C7, C12, C13, C15, C16 0.01 F; 0603 Cap 6 Murata Electronics GRM1885C1HR50CZ01D C4, C17 0.1 F; 0603 Cap 1 Murata Electronics GRM188F51C104ZA01D C14 1 F; 0603 Cap 1 Murata Electronics GRM188R61C105KA93D C8 47 F; Elect. Cap 25 V 1 Panasonic-ECG ECA-1EM470B L1, L2, L3, L4 30 nH; 0603 Ind 4 Coilcraft 0603CS-30NXJL L5, L6, L7, L8 330 nH; 1008 Ind 2 Coilcraft 1008CS-331XJLB R1, R2 1 k; 0603 Res 2 Panasonic-ECG ERJ-2GEJ102X T1 1:1 Balun Transformer; 0603 Cap 1 M/A-COM MABAES0029 D1 Analog Photodiode 1 ANADIGICS PD070-HL1-300 or PD070-HL2-300 Connector 75 N Male Panel Mount 1 Pasternack Enterprises PE4504 L9 Ferrite Chip 1 Murata BLM15HD102SN1D L10 7.5 nH; 0603 Ind 1 Coilcraft 0603CS-7N5 FB1, FB2 EMI Ferrite Chip 2 Murata Electronics BLM15HD182SN R3 20 0603 Res 1 Panasonic-ECG ERT-3GEYJ200W 16 QTY Data Sheet - Rev 2.1 11/2008 ACA2604 PACKAGE OUTLINE Figure 16: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN Data Sheet - Rev 2.1 11/2008 17 ACA2604 ORDERING INFORMATION ORDER NUMBER ACA2604RS29P8 TEMPERATURE RANGE PACKAGE DESCRIPTION COMPONENT PACKAGING -40 °C to +110 °C RoHS-Compliant 28 Pin QFN 5 mm x 5 mm x 1 mm Tape and Reel, 2500 pieces per Reel ANADIGICS, Inc. 141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132 URL: http://www.anadigics.com E-mail: [email protected] IMPORTANT NOTICE ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders. warning ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited. 18 Data Sheet - Rev 2.1 11/2008