ACA2601 Fiber-to-the-Home RF Amplifier PRELIMINARY DATA SHEET - Rev 1.4 FEATURES • 50 - 870 MHz Operating Frequency • High Linearity: 65 dBc CTB/CSO (79 Chan.) • Low Equivalent Input Noise: 4.5 pA/rtHz • 20 dB Gain Adjust • 400 Ω Differential Input Impedance: No Transformer Required for Interface to Photodiode • Single +5 V Supply • 5 mm x 5 mm x 1 mm Surface Mount Package • RoHS Compliant Package APPLICATIONS • FTTH RF Amplifier Used in Conjunction With Triplexer in Fiber-Coax Line Terminals S29 Package 28 Pin QFN 5 mm x 5 mm x 1 mm PRODUCT DESCRIPTION The ANADIGICS ACA2601 amplifier for Fiber-to-theHome (FTTH) applications is intended to be used in conjunction with the triplexer in fiber-coax line terminals. The device is driven by, and amplifies the output of, the video downstream path photodiode. The high-impedance input of the ACA2601 eliminates the need for a costly transformer usually needed to interface to the photodiode, and a low equivalent input noise level offers excellent sensitivity. The device provides sufficient linearity to Supply Matching Circuit LNA maintain low CTB and CSO levels in full-bandwidth (132 channel) systems, even across a wide gain adjustment range. The ACA2601 is manufactured using ANADIGICS’s proven MESFET technology that offers state-of-theart reliability, temperature stability and ruggedness. The device operates from a single +5V supply and is offered in a 5 mm x 5 mm x 1 mm surface mount package. Attenuator Control Voltage Controlled Attenuator ACA2601 Figure 1: Application Block Diagram 01/2006 RF Output Output Amplifier 1:1 Transmission Line Balun VCC_IN1 NC VAGC GND VCC_AGC NC GND 28 27 26 25 24 23 22 ACA2601 4 18 GND NC 5 17 GND RFIN2 6 16 RFOUT2 NC 7 15 VCC_OUT2 VCC_IN2 14 GND GND GND 13 19 GND 3 12 NC NC RFOUT1 11 20 10 2 GND RFIN1 IADJ_IN VCC_OUT1 9 21 GND 1 8 NC Figure 2: Pinout (X-ray Top View) Table 1: Pin Description 2 PIN NAME DESCRIPTION PIN NAME DESCRIPTION 1 NC No Connection 28 VCC_IN2 Input Stage Supply 1 2 RFIN1 RF Input 1 27 NC No Connection 3 NC No Connection 26 VAGC AGC Control Input 4 GND Ground 25 GND Ground 5 NC No Connection 24 VCC_AGC AGC Supply 6 RFIN2 RF Input 2 23 NC No Connection 7 NC No Connection 22 GND Ground 8 VCC_IN2 Input Stage Supply 2 21 VCC_OUT1 Output Stage Supply 1 9 GND Ground 20 RFOUT1 RF Output 1 10 IADJ_IN Input Stage Current Adjust 19 GND Ground 11 GND Ground 18 GND Ground 12 NC No Connection 17 GND Ground 13 GND Ground 16 RFOUT2 RF Output 2 14 GND Ground 15 VCC_OUT2 Output Stage Supply 2 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 ACA2601 ELECTRICAL CHARACTERISTICS Table 2: Absolute Minimum and Maximum Ratings PARAMETER MIN MAX UNIT Supply Voltage (VCC) 0 +8 V AGC Voltage (VAGC) 0 +5 V RF Input Power (PIN) - +25 dBmV Storage Temperature -65 +150 °C Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability. Table 3: Operating Ranges PARAMETER MIN TYP MAX UNIT 50 - 870 MHz Supply Voltage (VCC) - +5 - V RF Output Power (POUT) - +18 - dBmV Case Temperature (TC) -40 - +110 °C Operating Frequency (f) COMMENTS The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications. PRELIMINARY DATA SHEET - Rev 1.4 01/2006 3 ACA2601 Table 4: Electrical Specifications (TA = +25 °C, POUT = +18 dBmV, VCC = +5 V, 75 Ω system, see Figure 3) MIN TYP MAX UNIT 20 20.7 - dB 0.5 2.5 1.5 3.5 2.0 4.5 dB 0 2.25 1.5 - 3.0 4.75 dB - 0.7 0.5 1.5 1.0 dB 20 22 - dB +0.5 - +3.0 V - -65 -60 dB c 79 Channels - -65 - dB c 79 Channels +47 - - dB m - 4.5 5.5 pA/rtHz - 5 6 pA/rtHz - 400 - Ω Output Return Loss (1), (6) -30 oC to +85 oC +85 oC to +100 oC 16 15 18 - - dB Current Consumption (1) - 230 295 mA Thermal Resistance - 18 25 PARAMETER RF Gain over Temperature (1) COMMENTS at 550 MHz (2) Gain Tilt VAGC = +3.0 V VAGC = +0.5 V Gain Tilt over Temperature VAGC = +3.0 V VAGC = +0.5 V (1), (2) Gain Flatness over Temperature VAGC = +3.0 V VAGC = +0.5 V Gain Adjustment Range Gain Adjust Control Voltage CTB (5) CSO (5) OIP2 (7) Equivalent Input Noise (EIN) (4) EIN over Temperature (1), (4) Input Impedance (1), (3) o Max. gain at +3.0 V differential differential, 75 Ω system C/W Notes: (1) Package slug temperature range of -30 to +100 oC. (2) Recorded tilt of the calculated best fit straight line from 50 to 870 MHz. (3) Flatness is the peak-to-peak deviation from the calculated best fit straight line. (4) Measured using application circuit with photodiode, as shown in Figure 16. (5) Measured at +18 dBmV output power, with 14 dB gain reduction. (6) Over the 50 to 870 MHz Frequency band. (7) Measured using two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction. 4 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 ACA2601 +5V +5V 0.01 uF 0.01 uF 680 nH 270 nH 180 pF 470 pF RF Input 4:1 Balun 18 nH 18 nH 1:1 Balun Atten 470 pF RF Output 180 pF 680 nH 270 nH 0.01 uF 0.01 uF +5V +5V VAGC Figure 3: Test Circuit PRELIMINARY DATA SHEET - Rev 1.4 01/2006 5 ACA2601 PERFORMANCE DATA All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 4: Gain vs. Frequency (TA = +25 oC, VCC = + 5 V) 40 35 Vagc=3.0V Vagc=2.5V Vagc=2.0V Vagc=1.9V Vagc=1.8V Vagc=1.7V Vagc=1.6V Vagc=1.5V Vagc=1.3V Vagc=1.0V Vagc=0.5V Vagc=0.0V Gain (Amps/Watt) 30 25 20 15 10 5 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Figure 5: Output Return Loss vs. Frequency (TA = +25 oC, VCC = + 5 V) -5 Output Return Loss (dB) -10 -15 Vagc=3.0V Vagc=2.5V Vagc=2.0V Vagc=1.9V Vagc=1.8V Vagc=1.5V Vagc=1.0V Vagc=0.0V -20 -25 -30 -35 -40 0 100 200 300 400 500 600 700 800 Frequency (MHz) 6 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 900 1000 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 6: Gain Flatness To Best Fit Line over Temperature (VCC = + 5 V, VAGC = +3.0 V) 2 1.5 Gain Flatness (dB) 1 Temperature 0.5 +115C +100C +60C +40C +15C -5C -25C -35C 0 -0.5 -1 -1.5 -2 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Table 5: Gain Flatness to Best Fit Line (VAGC = +3.0 V) Temp (oC) Tilt (dB) Flatness (dB) 115 3.5 2 100 3.8 1.8 60 4.4 1.5 40 4.7 1.4 15 5 1.3 -5 5.2 1.2 -25 5.4 1.2 -35 5.6 1.3 The best fit line is calculated using the least mean squares method: y = m⋅ x +b m= ∑ (x ⋅ y )− ∑x b= 2 − ∑ x⋅∑ y n (∑ x )2 n ∑ y − m⋅ ∑ x n n n = number of points PRELIMINARY DATA SHEET - Rev 1.4 01/2006 7 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 7: Output Return Loss over Temperature (VCC = + 5 V, VAGC = +3.0V) 0 Output Return Loss (dB) -5 -10 -15 +115C +100C +60C +40C +15C -5C -25C -35C -20 -25 -30 -35 -40 0 100 200 300 400 500 600 700 Frequency (MHz) 8 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 800 900 1000 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 8: Gain Flatness To Best Fit Line over Temperature (VCC = + 5 V, VAGC = +1.6 V) 2 1.5 Gain Flatness (dB) 1 +115C +100C +60C 0.5 +40C 0 +15C -5C -25C -0.5 -35C -1 -1.5 -2 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Table 6: Gain Flatness to Best Fit Line (VAGC = +1.6 V) Temp (oC) Tilt (dB) Flatness (dB) 115 3.8 2.3 100 4.1 1.9 60 4.7 0.9 40 5.1 1.2 15 5.5 1.6 -5 5.8 1.9 -25 6 1.9 -35 6 1.6 The best fit line is calculated using the least mean squares method: y = m⋅ x +b m= ∑ (x ⋅ y )− ∑x b= 2 − ∑ x⋅∑ y n (∑ x )2 n ∑ y − m⋅ ∑ x n n n = number of points PRELIMINARY DATA SHEET - Rev 1.4 01/2006 9 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 9: Output Return Loss over Temperature (VCC = + 5 V, VAGC = +1.6 V) 0 Output Return Loss (dB) -5 -10 -15 +115C +100C +60C +40C +15C -5C -25C -35C -20 -25 -30 -35 -40 0 100 200 300 400 500 600 700 Frequency (MHz) 10 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 800 900 1000 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 10: Gain Flatness To Best Fit Line vs. Frequency over Temperature (VCC = + 5 V, VAGC = 0 V) 2 1.5 Gain Flatness (dB) 1 +115C +100C +60C +40C +15C -5C -25C -35C 0.5 0 -0.5 -1 -1.5 -2 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Table 7: Gain Flatness to Best Fit Line (VAGC = 0 V) Temp (oC) Tilt (dB) Flatness (dB) 115 5.4 1.2 100 5.7 1.2 60 6.1 1.1 40 6.3 1.1 15 6.6 1.1 -5 6.8 1.2 -25 6.9 1.3 -35 7 1.5 The best fit line is calculated using the least mean squares method: y = m⋅ x +b m= ∑ (x ⋅ y )− ∑x b= 2 − ∑ x⋅∑ y n (∑ x )2 n ∑ y − m⋅ ∑ x n n n = number of points PRELIMINARY DATA SHEET - Rev 1.4 01/2006 11 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 11: Output Return Loss over Temperature (VCC = + 5 V, VAGC = 0 V) 0 Output Return Loss (dB) -5 -10 -15 +115C +100C +60C +40C +15C -5C -25C -35C -20 -25 -30 -35 -40 0 100 200 300 400 500 600 700 Frequency (MHz) 12 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 800 900 1000 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 12: CTB vs. Frequency (TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading, Optical Input Power = 0 dBm, RF Output Power = +18 dBmV) -50 -55 CTB (dBc) -60 -65 -70 -75 -80 0 100 200 300 400 500 600 700 800 900 1000 900 1000 Frequency (MHz) Figure 13: CSO vs. Frequency (TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading, Optical Input Power = 0 dBm, RF Output Power = +18 dBmV) -50 -55 CSO (dBc) -60 -65 -70 -75 -80 0 100 200 300 400 500 600 700 800 Frequency (MHz) PRELIMINARY DATA SHEET - Rev 1.4 01/2006 13 ACA2601 All performance data measured using application circuit with input photodiode, as shown in Figure 16. Figure 14: Equivalent Input Noise vs. Frequency (TA = +25 oC, VCC = + 5 V, VAGC = +3.0) 6 Equivalent Input Noise (pA/rtHz) 5 4 3 2 1 0 0 100 200 300 400 500 600 700 800 900 1000 Frequency (MHz) Figure 15: Equivalent Input Noise over Temperature (VCC = + 5 V, VAGC = +3.0) 7 Equivalent Input Noise (pA/rtHz) 6 5 +115 degC +100 degC +60 degC 4 +40 degC +15 degC 3 -5 degC -25 degC 2 1 0 0 100 200 300 400 500 600 700 Frequency (MHz) 14 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 800 900 D1 L2 L1 C1 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 C4 C5 L4 L3 +12 V R2 C3 7 6 5 4 3 C6 NC +5 V RFIN2 NC GND NC RFIN1 NC ACA2601 L5 C13 VCC_OUT2 RFOUT2 GND GND GND RFOUT1 VCC_OUT1 VCC_IN2 8 2 GND 9 1 IADJ_IN 10 C2 GND 11 R1 L9 C14 NC 12 28 13 27 GND VCC_IN1 L8 25 GND GND 14 NC C15 24 VCC_AGC C16 23 NC VAGC 26 VAGC 22 GND +5 V 15 16 17 18 19 20 21 +5 V +5 V C8 C7 L6 L7 C11 C12 C9 C10 MABAES0029 T1 RF Output (75 Ohms) ACA2601 APPLICATION INFORMATION Figure 16: Application Circuit with Input Photodiode 15 ACA2601 Table 8: Evaluation Board Parts List R EF DESCRIPTION C11 0.5 pF; 0603 Cap 1 Murata Electronics GRM1885C1HR50CZ01D C1 1 pF ; 0603 C ap 1 Murata Electronics GRM1885C1H1R0CZ01D C 9, C 10 180 pF ; 0603 C ap 2 TDK Corporation C1608C0G1H181J C 2, C 3 470 pF ; 0603 C ap 2 Murata Electronics GRM155R71H471KA01D C5 1000 pF ; 0603 C ap 1 Murata Electronics GRM1885C1H102JA01D C 6, C 7, C 12, C 13, C 15, C 16 0.01 µ F; 0603 Cap 6 Murata Electronics GRM1885C1HR50CZ01D C4 0.1 µ F; 0603 Cap 1 Murata Electronics GRM188F51C104ZA01D C 14 1 µ F ; 0603 C ap 1 Murata Electronics GRM188R61C105KA93D C8 47 µ F; Elect. Cap 25 V 1 Panasonic-ECG ECA-1EM470B L1, L2, L3, L4 27 nH; 0603 Ind 4 Coilcraft 0603CS-27NXJB L5, L8 180 nH; 0603 Ind 2 Coilcraft 0603CS-R18XJB L6, L7 270 nH; 0603 Ind 2 Coilcraft 0603CS-R27XJB L9 820 nH; 1008 Ind 1 Panasonic ELJ-NCR82JF R1, R2 1 kΩ; 0603 Res 2 Panasonic-ECG ERJ-3EKF1001V T1 1:1 Balun Transformer; 0603 C ap 1 M/A-COM MABAES0029 D1 Analog Photodiode 1 ANADIGICS PD070-HL1-300 or PD070-HL2-300 Connector 75 Ω N Male Panel Mount 1 Pasternack Enterprises P E 4504 16 QTY VENDOR PRELIMINARY DATA SHEET - Rev 1.4 01/2006 VENDOR PART NO. ACA2601 PACKAGE OUTLINE Figure 17: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN PRELIMINARY DATA SHEET - Rev 1.4 01/2006 17 ACA2601 NOTES 18 PRELIMINARY DATA SHEET - Rev 1.4 01/2006 ACA2601 NOTES PRELIMINARY DATA SHEET - Rev 1.4 01/2006 19 ACA2601 ORDERING INFORMATION ORDER NUMBER ACA2601RS29P8 TEMPERATURE RANGE PACKAGE DESCRIPTION COMPONENT PACKAGING -40 °C to +110 °C RoHS-Compliant 28 Pin QFN 5 mm x 5 mm x 1 mm Tape and Reel, 2500 pieces per Reel ANADIGICS, Inc. 141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132 URL: http://www.anadigics.com E-mail: [email protected] IMPORTANT NOTICE ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders. WARNING ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited. 20 PRELIMINARY DATA SHEET - Rev 1.4 01/2006