ANADIGICS ACA2601RS29P8

ACA2601
Fiber-to-the-Home RF Amplifier
PRELIMINARY DATA SHEET - Rev 1.4
FEATURES
•
50 - 870 MHz Operating Frequency
•
High Linearity: 65 dBc CTB/CSO (79 Chan.)
•
Low Equivalent Input Noise: 4.5 pA/rtHz
•
20 dB Gain Adjust
•
400 Ω Differential Input Impedance: No
Transformer Required for Interface to
Photodiode
•
Single +5 V Supply
•
5 mm x 5 mm x 1 mm Surface Mount Package
•
RoHS Compliant Package
APPLICATIONS
•
FTTH RF Amplifier Used in Conjunction With
Triplexer in Fiber-Coax Line Terminals
S29 Package
28 Pin QFN
5 mm x 5 mm x 1 mm
PRODUCT DESCRIPTION
The ANADIGICS ACA2601 amplifier for Fiber-to-theHome (FTTH) applications is intended to be used
in conjunction with the triplexer in fiber-coax line
terminals. The device is driven by, and amplifies the
output of, the video downstream path photodiode.
The high-impedance input of the ACA2601
eliminates the need for a costly transformer usually
needed to interface to the photodiode, and a low
equivalent input noise level offers excellent
sensitivity. The device provides sufficient linearity to
Supply
Matching
Circuit
LNA
maintain low CTB and CSO levels in full-bandwidth
(132 channel) systems, even across a wide gain
adjustment range.
The ACA2601 is manufactured using ANADIGICS’s
proven MESFET technology that offers state-of-theart reliability, temperature stability and ruggedness.
The device operates from a single +5V supply and
is offered in a 5 mm x 5 mm x 1 mm surface mount
package.
Attenuator
Control
Voltage
Controlled
Attenuator
ACA2601
Figure 1: Application Block Diagram
01/2006
RF Output
Output
Amplifier
1:1
Transmission
Line Balun
VCC_IN1
NC
VAGC
GND
VCC_AGC
NC
GND
28
27
26
25
24
23
22
ACA2601
4
18
GND
NC
5
17
GND
RFIN2
6
16
RFOUT2
NC
7
15
VCC_OUT2
VCC_IN2
14
GND
GND
GND
13
19
GND
3
12
NC
NC
RFOUT1
11
20
10
2
GND
RFIN1
IADJ_IN
VCC_OUT1
9
21
GND
1
8
NC
Figure 2: Pinout (X-ray Top View)
Table 1: Pin Description
2
PIN
NAME
DESCRIPTION
PIN
NAME
DESCRIPTION
1
NC
No Connection
28
VCC_IN2
Input Stage Supply 1
2
RFIN1
RF Input 1
27
NC
No Connection
3
NC
No Connection
26
VAGC
AGC Control Input
4
GND
Ground
25
GND
Ground
5
NC
No Connection
24
VCC_AGC
AGC Supply
6
RFIN2
RF Input 2
23
NC
No Connection
7
NC
No Connection
22
GND
Ground
8
VCC_IN2
Input Stage Supply 2
21
VCC_OUT1
Output Stage Supply 1
9
GND
Ground
20
RFOUT1
RF Output 1
10
IADJ_IN
Input Stage Current Adjust
19
GND
Ground
11
GND
Ground
18
GND
Ground
12
NC
No Connection
17
GND
Ground
13
GND
Ground
16
RFOUT2
RF Output 2
14
GND
Ground
15
VCC_OUT2
Output Stage Supply 2
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
ACA2601
ELECTRICAL CHARACTERISTICS
Table 2: Absolute Minimum and Maximum Ratings
PARAMETER
MIN
MAX
UNIT
Supply Voltage (VCC)
0
+8
V
AGC Voltage (VAGC)
0
+5
V
RF Input Power (PIN)
-
+25
dBmV
Storage Temperature
-65
+150
°C
Stresses in excess of the absolute ratings may cause permanent
damage. Functional operation is not implied under these conditions.
Exposure to absolute ratings for extended periods of time may
adversely affect reliability.
Table 3: Operating Ranges
PARAMETER
MIN
TYP
MAX
UNIT
50
-
870
MHz
Supply Voltage (VCC)
-
+5
-
V
RF Output Power (POUT)
-
+18
-
dBmV
Case Temperature (TC)
-40
-
+110
°C
Operating Frequency (f)
COMMENTS
The device may be operated safely over these conditions; however, parametric performance is guaranteed
only over the conditions defined in the electrical specifications.
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
3
ACA2601
Table 4: Electrical Specifications
(TA = +25 °C, POUT = +18 dBmV, VCC = +5 V, 75 Ω system, see Figure 3)
MIN
TYP
MAX
UNIT
20
20.7
-
dB
0.5
2.5
1.5
3.5
2.0
4.5
dB
0
2.25
1.5
-
3.0
4.75
dB
-
0.7
0.5
1.5
1.0
dB
20
22
-
dB
+0.5
-
+3.0
V
-
-65
-60
dB c
79 Channels
-
-65
-
dB c
79 Channels
+47
-
-
dB m
-
4.5
5.5
pA/rtHz
-
5
6
pA/rtHz
-
400
-
Ω
Output Return Loss (1), (6)
-30 oC to +85 oC
+85 oC to +100 oC
16
15
18
-
-
dB
Current Consumption (1)
-
230
295
mA
Thermal Resistance
-
18
25
PARAMETER
RF Gain over Temperature
(1)
COMMENTS
at 550 MHz
(2)
Gain Tilt
VAGC = +3.0 V
VAGC = +0.5 V
Gain Tilt over Temperature
VAGC = +3.0 V
VAGC = +0.5 V
(1), (2)
Gain Flatness over Temperature
VAGC = +3.0 V
VAGC = +0.5 V
Gain Adjustment Range
Gain Adjust Control Voltage
CTB
(5)
CSO (5)
OIP2
(7)
Equivalent Input Noise (EIN) (4)
EIN over Temperature
(1), (4)
Input Impedance
(1), (3)
o
Max. gain at +3.0 V
differential
differential, 75 Ω system
C/W
Notes:
(1) Package slug temperature range of -30 to +100 oC.
(2) Recorded tilt of the calculated best fit straight line from 50 to 870 MHz.
(3) Flatness is the peak-to-peak deviation from the calculated best fit straight line.
(4) Measured using application circuit with photodiode, as shown in Figure 16.
(5) Measured at +18 dBmV output power, with 14 dB gain reduction.
(6) Over the 50 to 870 MHz Frequency band.
(7) Measured using two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction.
4
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
ACA2601
+5V
+5V
0.01 uF
0.01 uF
680 nH
270 nH
180 pF
470 pF
RF Input
4:1
Balun
18 nH
18 nH
1:1
Balun
Atten
470 pF
RF Output
180 pF
680 nH
270 nH
0.01 uF
0.01 uF
+5V
+5V
VAGC
Figure 3: Test Circuit
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
5
ACA2601
PERFORMANCE DATA
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 4: Gain vs. Frequency
(TA = +25 oC, VCC = + 5 V)
40
35
Vagc=3.0V
Vagc=2.5V
Vagc=2.0V
Vagc=1.9V
Vagc=1.8V
Vagc=1.7V
Vagc=1.6V
Vagc=1.5V
Vagc=1.3V
Vagc=1.0V
Vagc=0.5V
Vagc=0.0V
Gain (Amps/Watt)
30
25
20
15
10
5
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Figure 5: Output Return Loss vs. Frequency
(TA = +25 oC, VCC = + 5 V)
-5
Output Return Loss (dB)
-10
-15
Vagc=3.0V
Vagc=2.5V
Vagc=2.0V
Vagc=1.9V
Vagc=1.8V
Vagc=1.5V
Vagc=1.0V
Vagc=0.0V
-20
-25
-30
-35
-40
0
100
200
300
400
500
600
700
800
Frequency (MHz)
6
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
900
1000
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 6: Gain Flatness To Best Fit Line over Temperature
(VCC = + 5 V, VAGC = +3.0 V)
2
1.5
Gain Flatness (dB)
1
Temperature
0.5
+115C
+100C
+60C
+40C
+15C
-5C
-25C
-35C
0
-0.5
-1
-1.5
-2
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Table 5: Gain Flatness to Best Fit Line
(VAGC = +3.0 V)
Temp (oC)
Tilt (dB)
Flatness (dB)
115
3.5
2
100
3.8
1.8
60
4.4
1.5
40
4.7
1.4
15
5
1.3
-5
5.2
1.2
-25
5.4
1.2
-35
5.6
1.3
The best fit line is calculated
using the least mean squares
method:
y = m⋅ x +b
m=
∑ (x ⋅ y )−
∑x
b=
2
−
∑ x⋅∑ y
n
(∑ x )2
n
∑ y − m⋅ ∑ x
n
n
n = number of points
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
7
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 7: Output Return Loss over Temperature
(VCC = + 5 V, VAGC = +3.0V)
0
Output Return Loss (dB)
-5
-10
-15
+115C
+100C
+60C
+40C
+15C
-5C
-25C
-35C
-20
-25
-30
-35
-40
0
100
200
300
400
500
600
700
Frequency (MHz)
8
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
800
900
1000
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 8: Gain Flatness To Best Fit Line over Temperature
(VCC = + 5 V, VAGC = +1.6 V)
2
1.5
Gain Flatness (dB)
1
+115C
+100C
+60C
0.5
+40C
0
+15C
-5C
-25C
-0.5
-35C
-1
-1.5
-2
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Table 6: Gain Flatness to Best Fit Line
(VAGC = +1.6 V)
Temp (oC)
Tilt (dB)
Flatness (dB)
115
3.8
2.3
100
4.1
1.9
60
4.7
0.9
40
5.1
1.2
15
5.5
1.6
-5
5.8
1.9
-25
6
1.9
-35
6
1.6
The best fit line is calculated
using the least mean squares
method:
y = m⋅ x +b
m=
∑ (x ⋅ y )−
∑x
b=
2
−
∑ x⋅∑ y
n
(∑ x )2
n
∑ y − m⋅ ∑ x
n
n
n = number of points
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
9
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 9: Output Return Loss over Temperature
(VCC = + 5 V, VAGC = +1.6 V)
0
Output Return Loss (dB)
-5
-10
-15
+115C
+100C
+60C
+40C
+15C
-5C
-25C
-35C
-20
-25
-30
-35
-40
0
100
200
300
400
500
600
700
Frequency (MHz)
10
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
800
900
1000
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 10: Gain Flatness To Best Fit Line vs. Frequency over Temperature
(VCC = + 5 V, VAGC = 0 V)
2
1.5
Gain Flatness (dB)
1
+115C
+100C
+60C
+40C
+15C
-5C
-25C
-35C
0.5
0
-0.5
-1
-1.5
-2
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Table 7: Gain Flatness to Best Fit Line
(VAGC = 0 V)
Temp (oC)
Tilt (dB)
Flatness (dB)
115
5.4
1.2
100
5.7
1.2
60
6.1
1.1
40
6.3
1.1
15
6.6
1.1
-5
6.8
1.2
-25
6.9
1.3
-35
7
1.5
The best fit line is calculated
using the least mean squares
method:
y = m⋅ x +b
m=
∑ (x ⋅ y )−
∑x
b=
2
−
∑ x⋅∑ y
n
(∑ x )2
n
∑ y − m⋅ ∑ x
n
n
n = number of points
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
11
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 11: Output Return Loss over Temperature
(VCC = + 5 V, VAGC = 0 V)
0
Output Return Loss (dB)
-5
-10
-15
+115C
+100C
+60C
+40C
+15C
-5C
-25C
-35C
-20
-25
-30
-35
-40
0
100
200
300
400
500
600
700
Frequency (MHz)
12
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
800
900
1000
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 12: CTB vs. Frequency
(TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading,
Optical Input Power = 0 dBm, RF Output Power = +18 dBmV)
-50
-55
CTB (dBc)
-60
-65
-70
-75
-80
0
100
200
300
400
500
600
700
800
900
1000
900
1000
Frequency (MHz)
Figure 13: CSO vs. Frequency
(TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading,
Optical Input Power = 0 dBm, RF Output Power = +18 dBmV)
-50
-55
CSO (dBc)
-60
-65
-70
-75
-80
0
100
200
300
400
500
600
700
800
Frequency (MHz)
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
13
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 14: Equivalent Input Noise vs. Frequency
(TA = +25 oC, VCC = + 5 V, VAGC = +3.0)
6
Equivalent Input Noise (pA/rtHz)
5
4
3
2
1
0
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Figure 15: Equivalent Input Noise over Temperature
(VCC = + 5 V, VAGC = +3.0)
7
Equivalent Input Noise (pA/rtHz)
6
5
+115 degC
+100 degC
+60 degC
4
+40 degC
+15 degC
3
-5 degC
-25 degC
2
1
0
0
100
200
300
400
500
600
700
Frequency (MHz)
14
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
800
900
D1
L2
L1
C1
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
C4
C5
L4
L3
+12 V
R2
C3
7
6
5
4
3
C6
NC
+5 V
RFIN2
NC
GND
NC
RFIN1
NC
ACA2601
L5
C13
VCC_OUT2
RFOUT2
GND
GND
GND
RFOUT1
VCC_OUT1
VCC_IN2
8
2
GND
9
1
IADJ_IN
10
C2
GND
11
R1
L9
C14
NC
12
28
13
27
GND
VCC_IN1
L8
25
GND
GND
14
NC
C15
24
VCC_AGC
C16
23
NC
VAGC
26
VAGC
22
GND
+5 V
15
16
17
18
19
20
21
+5 V
+5 V
C8
C7
L6
L7
C11
C12
C9
C10
MABAES0029
T1
RF Output
(75 Ohms)
ACA2601
APPLICATION INFORMATION
Figure 16: Application Circuit with Input Photodiode
15
ACA2601
Table 8: Evaluation Board Parts List
R EF
DESCRIPTION
C11
0.5 pF; 0603 Cap
1
Murata Electronics
GRM1885C1HR50CZ01D
C1
1 pF ; 0603 C ap
1
Murata Electronics
GRM1885C1H1R0CZ01D
C 9, C 10
180 pF ; 0603 C ap
2
TDK Corporation
C1608C0G1H181J
C 2, C 3
470 pF ; 0603 C ap
2
Murata Electronics
GRM155R71H471KA01D
C5
1000 pF ; 0603 C ap
1
Murata Electronics
GRM1885C1H102JA01D
C 6, C 7, C 12, C 13,
C 15, C 16
0.01 µ F; 0603 Cap
6
Murata Electronics
GRM1885C1HR50CZ01D
C4
0.1 µ F; 0603 Cap
1
Murata Electronics
GRM188F51C104ZA01D
C 14
1 µ F ; 0603 C ap
1
Murata Electronics
GRM188R61C105KA93D
C8
47 µ F; Elect. Cap 25 V
1
Panasonic-ECG
ECA-1EM470B
L1, L2, L3, L4
27 nH; 0603 Ind
4
Coilcraft
0603CS-27NXJB
L5, L8
180 nH; 0603 Ind
2
Coilcraft
0603CS-R18XJB
L6, L7
270 nH; 0603 Ind
2
Coilcraft
0603CS-R27XJB
L9
820 nH; 1008 Ind
1
Panasonic
ELJ-NCR82JF
R1, R2
1 kΩ; 0603 Res
2
Panasonic-ECG
ERJ-3EKF1001V
T1
1:1 Balun Transformer;
0603 C ap
1
M/A-COM
MABAES0029
D1
Analog Photodiode
1
ANADIGICS
PD070-HL1-300 or
PD070-HL2-300
Connector
75 Ω N Male Panel
Mount
1
Pasternack
Enterprises
P E 4504
16
QTY VENDOR
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
VENDOR PART NO.
ACA2601
PACKAGE OUTLINE
Figure 17: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
17
ACA2601
NOTES
18
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
ACA2601
NOTES
PRELIMINARY DATA SHEET - Rev 1.4
01/2006
19
ACA2601
ORDERING INFORMATION
ORDER NUMBER
ACA2601RS29P8
TEMPERATURE
RANGE
PACKAGE
DESCRIPTION
COMPONENT PACKAGING
-40 °C to +110 °C
RoHS-Compliant
28 Pin QFN
5 mm x 5 mm x 1 mm
Tape and Reel, 2500 pieces per Reel
ANADIGICS, Inc.
141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A.
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
E-mail: [email protected]
IMPORTANT NOTICE
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without
notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are
subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are
assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges
customers to verify that the information they are using is current before placing orders.
WARNING
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS
product in any such application without written consent is prohibited.
20
PRELIMINARY DATA SHEET - Rev 1.4
01/2006