TDA7851L 4 x 48 W MOSFET quad bridge power amplifier Datasheet production data Features ■ Multipower BCD technology ■ High output power capability: – 4 x 48 W/4 Max. – 4 x 28 W/4 @ 14.4 V, 1 kHz, 10 % – 4 x 72 W/2 Max. ■ MOSFET output power stage ■ Excellent 2 driving capability ■ Hi-Fi class distortion ■ Low output noise ■ Standby function ■ Mute function ■ Automute at min. supply voltage detection ■ Low external component count: – Internally fixed gain (26 dB) – No external compensation – No bootstrap capacitors ■ '!0'03 Flexiwatt 25 – Reversed battery – ESD Description Protections: – Output short circuit to GND, to VS, across the load – Very inductive loads – Overrating chip temperature with soft thermal limiter – Load dump voltage – Fortuitous open GND Table 1. The TDA7851L is a breakthrough MOSFET technology class AB audio power amplifier in Flexiwatt25 package designed for high power car radio. The fully complementary P-Channel/N-Channel output structure allows a rail-to-rail output voltage swing which, combined with high output current and minimized saturation losses sets new power references in the car-radio field, with unparalleled distortion performances. Device summary Order code Package Packing TDA7851L Flexiwatt 25 Tube September 2013 This is information on a product in full production. Doc ID 022520 Rev 3 1/15 www.st.com 1 Contents TDA7851L Contents 1 2 3 4 Block diagram and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Standby and muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.4 Heatsink definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2/15 Doc ID 022520 Rev 3 TDA7851L List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Doc ID 022520 Rev 3 3/15 List of figures TDA7851L List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. 4/15 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output power vs. supply voltage (RL = 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output power vs. supply voltage (RL = 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Distortion vs. output power (RL = 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Distortion vs. output power (RL = 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Distortion vs. frequency (RL = 4 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Distortion vs. frequency (RL = 2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output attenuation vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power dissipation and efficiency vs. output power (RL = 4 , SINE) . . . . . . . . . . . . . . . . . 10 Power dissipation and efficiency vs. output power (RL = 2 , SINE) . . . . . . . . . . . . . . . . . 10 Power dissipation vs. output power (RL = 4 , audio program simulation) . . . . . . . . . . . . 11 Power dissipation vs. output power (RL = 2 , audio program simulation) . . . . . . . . . . . . 11 ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 11 Flexiwatt25 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Doc ID 022520 Rev 3 TDA7851L Block diagram and application circuit 1 Block diagram and application circuit 1.1 Block diagram Figure 1. Block diagram 6CC 6CC 34"9 #$ -54% /54 ). /54 07'.$ /54 ). /54 07'.$ /54 ). /54 07'.$ /54 ). /54 07'.$ !#'.$ 362 4!" 3'.$ '!0'03 1.2 Application circuit Figure 2. Application circuit # M& # M& 6CC 6CC 2 34"9 + 2 # M& -54% + # M& # ). #M& ). /54 #M& ). #M& /54 M& ). /54 3'.$ # M& /54 # M& 362 #$ 4!" 2 6 + #$/54 Doc ID 022520 Rev 3 '!0'03 5/15 Pin description TDA7851L 2 Pin description 2.1 Pin connection Pin connection (top view) 0'.$ -54% /54 6## /54 /54 /54 0'.$ ). !#'.$ ). 3'.$ ). ). 362 /54 0'.$ 6## /54 34"9 /54 /54 4!" 0'.$ #$ Figure 3. '!0'03 2.2 Thermal data Table 2. Symbol Rth j-case 6/15 Thermal data Parameter Thermal resistance junction-to-case Doc ID 022520 Rev 3 Max Value Unit 1 °C/W TDA7851L Electrical specifications 3 Electrical specifications 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Value Unit Operating supply voltage 18 V VS (DC) DC supply voltage 28 V VS (pk) Peak supply voltage (for t = 50 ms) 50 V Output peak current Non repetitive (t = 100 µs) Repetitive (duty cycle 10 % at f = 10 Hz) 10 9 A A Power dissipation Tcase = 70 °C 85 W Junction temperature 150 °C VS IO Ptot Tj 3.2 Tamb Operating temperature range -40 to 105 °C Tstg Storage temperature -55 to 150 °C Electrical characteristics Refer to the test and application diagram, VS = 14.4 V; RL = 4 ; Rg = 600 ; f = 1 kHz; Tamb = 25 °C; unless otherwise specified. Table 4. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit 8 - 18 V VS Supply voltage range - Iq1 Quiescent current RL = 100 150 300 mA Output offset voltage Play mode / Mute mode -60 - +60 mV -10 - +10 mV -10 - +10 mV 25 26 27 dB ±1 dB VOS During mute on/off output offset voltage dVOS ITU R-ARM weighted During standby on/off output offset see Figure 18 voltage Gv Voltage gain - dGv Channel gain unbalance - Po Po max. Output power Max. output power(1) VS = 14.4 V; THD = 10 % VS = 14.4 V; THD = 1 % VS = 14.4 V; THD = 10 %, 2 VS = 14.4 V; THD = 1 %, 2 VS = 14.4 V; RL = 4 VS = 14.4 V; RL = 2 VS = 15.2 V; RL = 4 Doc ID 022520 Rev 3 25 - 28 22 - W W - 48 38 - W W - 45 75 48 - W W W 7/15 Electrical specifications Table 4. TDA7851L Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit THD Distortion Po = 4 W - 0.01 0.05 % eNo Output noise "A" Weighted Bw = 20 Hz to 20 kHz - 35 50 100 µV µV SVR Supply voltage rejection f = 100 Hz; Vr = 1 Vrms 50 70 - dB fch High cut-off frequency PO = 0.5 W 100 300 - kHz Ri Input impedance - 70 100 130 k CT Cross talk f = 1 kHz PO = 4 W f = 10 kHz PO = 4 W 60 - 70 60 - dB dB - 20 µA Standby current consumption VSt-by = 1.2 V - ISB VSt-by = 0 - - 10 µA Ipin5 Standby pin current VSt-by = 1.2 V to 2.6 V - - ±1 µA VSB out Standby out threshold voltage (Amp: ON) 2.6 - - V VSB in Standby in threshold voltage (Amp: OFF) - - 1.2 V Mute attenuation POref = 4 W 80 90 - dB VM out Mute out threshold voltage (Amp: Play) 2.6 - - V VM in Mute in threshold voltage (Amp: Mute) - - 1.2 V (Amp: Mute) Att 80 dB; POref = 4 W 6.7 7 - V (Amp: Play) Att < 0.1 dB; PO = 0.5 W - 7.5 8 V VMUTE = 1.2 V (Sourced current) 7 12 18 µA VMUTE = 2.6 V -5 - 18 µA AM VAM in Ipin23 VS automute threshold Muting pin current Clipping detector CDLK Clip detector high leakage current Cd off - 0 1 µA CDSAT Clip detector saturation voltage DC On; ICD = 1 mA - 0.2 0.4 V CDTHD Clip detector THD level - - 2 - % 1. Saturated square wave output. 8/15 Doc ID 022520 Rev 3 TDA7851L Electrical specifications 3.3 Electrical characteristic curves Figure 4. Quiescent current vs. supply voltage Figure 5. )DM! 0O7 6I 2,c Output power vs. supply voltage (RL = 4 ) 0OMAX 2,7 F+(Z 4($ 4($ 6S6 6S6 Output power vs. supply voltage (RL = 2 ) Figure 7. 0O7 '!0'03 '!0'03 Figure 6. Distortion vs. output power (RL = 4 ) 4($ 0OMAX 2,7 F+(Z 6S6 2,7 F+(Z 4($ F+(Z 4($ 0O7 6S6 Figure 8. '!0'03 Distortion vs. output power (RL = 2 ) '!0'03 Figure 9. 4($ 6S6 2,7 4($ Distortion vs. frequency (RL = 4 ) 6S6 2,7 0O7 F+(Z F+(Z F(Z 0O7 '!0'03 Doc ID 022520 Rev 3 '!0'03 9/15 Electrical specifications TDA7851L Figure 10. Distortion vs. frequency (RL = 2 ) Figure 11. Crosstalk vs. frequency 4($ 6S6 2,7 0O7 #2/334!,+D" 2,7 0O7 2G7 F(Z F(Z '!0'03 '!0'03 Figure 12. Supply voltage rejection vs. frequency Figure 13. Output attenuation vs. supply voltage /54054!44.D" 362D" 2G7 6RIPPLE6RMS 2,7 0O7REF 6S6 F(Z '!0'03 '!0'03 Figure 14. Power dissipation and efficiency vs. output power (RL = 4 , SINE) 0TOT7 H H Figure 15. Power dissipation and efficiency vs. output power (RL = 2 , SINE) 6S6 2,X7 F+(Z3).% 0TOT7 6S6 2,X7 F+(Z3).% H 0TOT 0O7 10/15 0TOT '!0'03 Doc ID 022520 Rev 3 0O7 '!0'03 TDA7851L Figure 16. Electrical specifications Power dissipation vs. output power Figure 17. (RL = 4 , audio program simulation) 0TOT7 0TOT7 6S6 2,X7 '!533)!../)3% 6S6 2,X7 '!533)!../)3% #,)034!24 Power dissipation vs. output power (RL = 2 , audio program simulation) #,)034!24 0O7 0O7 '!0'03 '!0'03 Figure 18. ITU R-ARM frequency response, weighting filter for transient pop /UTPUTATTENUATIOND" (Z '!0'03 Doc ID 022520 Rev 3 11/15 Application hints 4 Application hints 4.1 SVR TDA7851L Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, its minimum recommended value is 10 µF. 4.2 Input stage The TDA7851L's inputs are ground-compatible and support very high input signals (± 8 Vpk) without any performances degradation. If the standard value for the input capacitors (0.1µF) is adopted, the low frequency cut-off will amount to 16 Hz. The input capacitors should be 1/4 of the capacitor connected to AC-GND pin for optimum pop performances. 4.3 Standby and muting Standby and muting facilities are both CMOS-compatible. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470 k equivalent resistance should be present between the power supply and the muting and stand-by pins. R-C cells have always to be used in order to smooth down the transitions from preventing any audible transient noises. About the standby, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms. 4.4 Heatsink definition Under normal usage (4 speakers) the heatsink's thermal requirements have to be deduced from Figure 16, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurrence (worst-case) will cause Pdiss = 26 W. Assuming Tamb = 70° C and TCHIP = 150 °C as boundary conditions, the heatsink's thermal resistance should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation. 12/15 Doc ID 022520 Rev 3 TDA7851L Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 19. Flexiwatt25 mechanical data and package dimensions $)- ! " # $ % & ' ' ( ( ( ( , , , , , , - . / 2 2 2 2 2 6 6 6 6 -). MM 490 -!8 -). INCH 490 -!8 /54,).%!.$ -%#(!.)#!,$!4! &LEXIWATTVERTICAL 7\S 7\S 7\S 7\S DAMBARPROTUSIONNOTINCLUDED MOLDINGPROTUSIONINCLUDED 6 # " 6 ( ( 6 ! ( / ( 2 , 2 6 2 , . 2 , 5 Package information , , 6 6 2 $ 2 , 0IN 2 2 % ' ' & &,%8-% - - '!0'03 Doc ID 022520 Rev 3 13/15 Revision history 6 TDA7851L Revision history Table 5. 14/15 Document revision history Date Revision Changes 23-Nov-2011 1 Initial release. 13-Jun-2012 2 Updated Features on page 1; Updated Section 3.2: Electrical characteristics on page 7. 18-Sep-2013 3 Updated Disclaimer. Doc ID 022520 Rev 3 TDA7851L Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 022520 Rev 3 15/15