TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A High merit factor (1.15 MHz for 45 µA) CMOS op amps Datasheet −preliminary data Features ■ Gain bandwidth product: 1.15 MHz typ. at 5 V ■ Low power consumption: 45 µA typ. at 5 V ■ Rail-to-rail input and output ■ Low input bias current: 1 pA typ. ■ Supply voltage: 2.7 to 5.5 V ■ Low offset voltage: 800 µV max. ■ Unity gain stable on 100 pF capacitor ■ Automotive grade SC70-5 DFN8 2 x 2 MiniSO8 Benefits ■ Increased lifetime in battery powered applications ■ Easy interfacing with high impedance sensors Related products ■ See TSV6x series for lower minimum supply voltage (1.5 V) ■ See LMV82x series for higher gain bandwidth products (5.5 MHz) Battery powered applications ■ Portable devices ■ Automotive signal conditioning ■ Active filtering ■ Medical instrumentation These features make the TSV52x family ideal for sensor interfaces, battery supplied and portable applications. The wide temperature range and high ESD tolerance facilitate their use in harsh automotive applications. Description The TSV52x series of operational amplifiers offers low voltage operation and rail-to-rail input and output. The TSV521 device is the single version, the TSV522 device the dual version, and the TSV524 device the quad version, with pinouts compatible with industry standards. June 2012 TSSOP14 The TSV52x series offers an outstanding speed/power consumption ratio, 1.15 MHz gain bandwidth product while consuming only 45 µA at 5 V. The devices are housed in the smallest industrial packages. Applications ■ QFN16 3 x 3 Table 1. Device summary Standard Vio Enhanced Vio Single TSV521 TSV521A Dual TSV522 TSV522A Quad TSV524 TSV524A Doc ID 022743 Rev 1 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/27 www.st.com 27 Contents TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Common mode voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5 Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 15 4.7 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.8 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.9 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2/27 Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Package pin connections Figure 1. Pin connections for each package (top view) IN+ 1 VCC- 2 IN- 3 5 VCC+ 4 OUT TSV521 SC70-5 OUT1 1 IN1- 2 8 VCC+ OUT1 1 8 VCC+ 7 OUT2 IN1- 2 7 OUT2 NC IN1+ 3 6 IN2- IN1+ 3 6 IN2IN2 VCC- 4 5 IN2+ VCC VCC- 4 5 IN2+ IN2 TSV522 MiniSO8 IN1+ 1 VCC VCC+ 2 IN1- OUT1 OUT4 IN4- TSV522 DFN8 16 15 14 13 12 IN4+ 11 VCC VCC- NC NC IN2+ 4 9 IN3+ 5 6 7 8 IN3- 10 OUT3 3 OUT2 NC IN2- 1 Package pin connections TSV524 QFN16 TSV524 TSSOP14 Doc ID 022743 Rev 1 3/27 Absolute maximum ratings and operating conditions 2 TSV521, TSV522, TSV524, TSV521A, Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin Tstg Parameter (1) Supply voltage (2) Differential input voltage Value Unit 6 V ±VCC V (3) VCC- - 0.2 to VCC++ 0.2 V (4) 10 mA -65 to +150 °C Input voltage Input current Storage temperature (5) (6) Rthja Tj Thermal resistance junction-to-ambient , SC70-5 DFN8 2 x 2 QFN16 3 x 3 MiniSO8 TSSOP14 205 57 45 190 100 Maximum junction temperature 150 °C 4 kV 300 V CDM: charged device model (all packages except SC70-5 and DFN8) 1.5 kV CDM: charged device model (SC70-5 and DFN8)(9) 1.3 kV Latch-up immunity 200 mA HBM: human body MM: machine ESD model(7) model(8) °C/W (9) 1. All voltage values, except differential voltages are with respect to network ground terminal. 2. Differential voltages are the non inverting input terminal with respect to the inverting input terminal. 3. VCC - Vin must not exceed 6 V, Vin must not exceed 6 V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground. Table 3. Operating conditions Symbol 4/27 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Doc ID 022743 Rev 1 Value Unit 2.7 to 5.5 V VCC- - 0.1 to VCC+ + 0.1 V -40 to +125 °C TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Electrical characteristics 3 Electrical characteristics Table 4. Electrical characteristics at VCC+ = +2.7 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit TSV52xA, T = 25 °C 800 µV TSV52xA, -40 °C < T < 125 °C 2600 µV TSV52x, T = 25 °C 1.5 mV TSV52x, -40 °C < T < 125 °C 3.3 mV 3 18 µV/°C DC performance Vio ΔVio/ΔT Iio Iib CMR Offset voltage °C(1) Input offset voltage drift -40 °C < T < 125 Input offset current (Vout = VCC/2) T = 25 °C 1 10(3) pA -40° C < T < 125 °C 1 100(3) pA 1 10(3) pA Input bias current (Vout = VCC/2) T = 25 °C Common mode rejection ratio 20 log (ΔVic/ΔVio) Vic = -0.1 V to VCC+0.1V, Vout = VCC/2, RL = 1 MΩ T = 25 °C 50 -40 °C < T < 125 °C 46 T = 25 °C 90 -40 °C < T < 125 °C 60 -40 °C < T < 125 °C 1 100 (3) pA 72 dB 105 Avd Large signal voltage gain Vout = 0.5 V to (VCC - 0.5V), RL = 1 MΩ VOH High level output voltage T = 25 °C -40 °C < T < 125 °C 3 35 50 mV VOL Low level output voltage T = 25 °C -40 °C < T < 125 °C 6 35 50 mV Isink Iout Isource ICC dB Vout = VCC, T = 25 °C 12 Vout = VCC, -40 °C < T < 125 °C 8 Vout = 0 V, T = 25 °C 12 Vout = 0 V, -40 °C < T < 125 °C 8 22 mA 18 mA Supply current (per channel) T = 25 °C Vout = VCC/2, RL > 1 MΩ -40 °C < T < 125 °C 30 51 30 51 µA AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF Fu Unity gain frequency Φm 1 MHz RL = 10 kΩ, CL = 100 pF 900 kHz Phase margin RL = 10 kΩ, CL = 100 pF 55 degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 7 dB SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.74 V/µs Doc ID 022743 Rev 1 0.62 5/27 Electrical characteristics Table 4. Electrical characteristics at VCC+ = +2.7 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol en THD+N Table 5. TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Parameter Conditions Equivalent input noise voltage f = 1 kHz f = 10 kHz Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vpp Min. Typ. Max. Unit 61 43 nV -----------Hz 0.003 % Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit TSV52xA, T = 25 °C 600 µV TSV52xA, -40 °C < T < 125 °C 2400 µV TSV52x, T = 25 °C 1.3 mV TSV52x, -40 °C < T < 125 °C 3.1 mV 18 µV/°C DC performance Vio ΔVio/ΔT ΔVio Iio Offset voltage Input offset voltage drift -40 °C < T < 125 °C(1) Long term input offset voltage drift T = 25 °C(2) Input offset current (Vout = VCC/2) T = 25 °C 3 μV --------------------------- 0.3 1 -40 °C < T < 125 °C month 10(3) (3) 1 100 1 10(3) pA pA Input bias current (Vout = VCC/2) T = 25 °C Common mode rejection ratio 20 log (ΔVic/ΔVio) Vic = -0.1 V to VCC +0.1 V, Vout = VCC/2, RL = 1 MΩ T = 25 °C 51 -40 °C < T < 125 °C 47 T = 25 °C Large signal voltage gain Vout = 0.5 V to (VCC - 0.5 V), -40 °C < T < 125 °C RL = 1 MΩ 91 Avd VOH High level output voltage T = 25 °C -40 °C < T < 125 °C 3 35 50 mV VOL Low level output voltage T = 25 °C -40 °C < T < 125 °C 7 35 50 mV Iib CMR Isink Iout Isource ICC 6/27 -40 °C < T < 125 °C 1 100 (3) pA pA 73 dB dB 63 Vout = VCC, T = 25 °C 20 Vout = VCC, -40 °C < T < 125 °C 17 Vout = 0 V, T = 25 °C 19 Vout = 0 V, -40 °C < T < 125 °C 17 Supply current (per channel) T = 25 °C Vout = VCC/2, RL > 1 MΩ -40 °C < T < 125 °C Doc ID 022743 Rev 1 106 31 mA 27 mA 32 55 32 55 µA TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Table 5. Electrical characteristics Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Conditions Min. Typ. Max. Unit 0.64 1 MHz AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF Fu Unity gain frequency RL = 10 kΩ, CL = 100 pF 900 kHz Φm Phase margin RL = 10 kΩ, CL = 100 pF 55 degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 7 dB SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.75 V/μs en Equivalent input noise voltage f = 1 kHz f = 10 kHz 60 42 nV -----------Hz Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vpp 0.003 % THD+N Table 6. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit TSV52xA, T = 25 °C 600 µV TSV52xA, -40 °C < T < 125 °C 2400 µV 1 mV 2.8 mV 18 µV/°C DC performance Vio Offset voltage TSV52x, T = 25 °C TSV52x, -40 °C < T < 125 °C ΔVio/ΔT ΔVio Input offset voltage drift -40 °C < T < 125 Long term input offset voltage drift T = 25 °C(2) Iio Input offset current (Vout = VCC/2) Iib Input bias current (Vout = VCC/2) CMR1 CMR2 °C(1) 3 μV --------------------------- 0.7 month 1 10(3) pA -40 °C < T < 125 °C 1 100(3) pA T = 25 °C 1 10(3) pA 1 100(3) pA T = 25 °C -40 °C < T < 125 °C Common mode rejection ratio 20 log (ΔVic/ΔVio) Vic = -0.1 V to VCC +0.1 V, Vout = VCC/2, RL = 1 MΩ T = 25 °C 54 -40 °C < T < 125 °C 50 Common mode rejection ratio 20 log (ΔVic/ΔVio) Vic = 1 V to VCC -1 V, Vout = VCC/2, RL = 1 MΩ T = 25 °C 63 -40 °C < T < 125 °C 58 76 dB 84 dB Doc ID 022743 Rev 1 7/27 Electrical characteristics Table 6. TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Min. Typ. T = 25 °C 65 87 -40 °C < T < 125 °C 60 T = 25 °C Large signal voltage gain Vout = 0.5 V to (VCC - 0.5 V), -40 °C < T < 125 °C RL = 1 MΩ 94 Avd VOH High level output voltage T = 25 °C -40 °C < T < 125 °C 5 35 50 mV VOL Low level output voltage T = 25 °C -40 °C < T < 125 °C 9 35 50 mV SVR Parameter Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) VCC = 2.7 V to 5.5 V, Vout = VCC/2 Isink Iout Isource ICC Conditions Max. Unit dB 109 dB 68 Vout = VCC, T = 25 °C 36 Vout = VCC, -40 °C < T < 125 °C 27 Vout = 0 V, T = 25 °C 36 Vout = 0 V, -40 °C < T < 125 °C 27 55 mA 55 mA Supply current (per channel) T = 25 °C Vout = VCC/2, RL > 1 MΩ -40 °C < T < 125 °C 45 60 45 60 µA AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF Fu Unity gain frequency Φm 1.15 MHz RL = 10 kΩ, CL = 100 pF 900 kHz Phase margin RL = 10 kΩ, CL = 100 pF 55 degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 7 dB SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V 0.89 V/μs ∫ en Low-frequency peak-topeak input noise Bandwidth: f = 0.1 to 10 Hz 14 µVpp Equivalent input noise voltage f = 1 kHz f = 10 kHz 57 39 nV -----------Hz Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vpp 0.002 % en THD+N 0.73 1. See Section 4.6: Input offset voltage drift over temperature on page 15. 2. Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 3. Guaranteed by design. 8/27 Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Figure 2. Supply current vs. supply voltage at Vicm = VCC/2 Electrical characteristics Figure 3. Input offset voltage distribution at VCC = 5 V, Vicm = 2.5 V 6IODISTRIBUTIONAT4 #FOR6##66ICM6 0OPULATION !- Figure 4. Input offset voltage temperature coefficient distribution Figure 5. Input offset voltage vs. input common mode voltage at VCC = 5 V 6ICM 6## 6## 6 0OPULATION 4 # 4 # 4 # 6## 6 !- Input offset voltage vs. temperature Figure 7. at VCC = 5 V Output current vs. output voltage at VCC = 2.7 V ,IMITFOR436X! 4 # 4 # /UTPUTCURRENTM! ,IMITFOR4368 4 # 4 # 4 # 6##66ICM6 6ICM6 !- Figure 6. 4 # !- Doc ID 022743 Rev 1 6##6 /UTPUTVOLTAGE6 !- 9/27 Electrical characteristics Output current vs. output voltage at Figure 9. VCC = 5.5 V 4 # 4 # 4 # /UTPUTCURRENTM! 'AIND" 4 # 4 # 'AIN 6##66ICM6' ª #,P&6RL6## 0HASE 6##6 4 # 4 # 4 # 4 # /UTPUTVOLTAGE6 &REQUENCYK(Z !- Figure 10. Bode diagram at VCC = 2.7 V, RL = 2 k Ω !- Figure 11. Bode diagram at VCC = 5.5 V, RL = 10 kΩ 4 # 6##66ICM6' ª #,P&6RL6## &REQUENCYK(Z Figure 12. Bode diagram at VCC = 5.5 V, R L = 2 kΩ 'AIN 0HASE 0HASE 'AIND" 4 # 6##66ICM6' #,P&6RL6## &REQUENCYK(Z &REQUENCY(Z !- 10/27 6##66ICM6 4AMB # 4 # !- 4 # Figure 13. Noise vs. frequency &REQUENCYK(Z !- 0HASE 'AIN 6##66ICM6' ª #,P&6RL6## 4 # 'AIND" 0HASE 0HASE 4 # 'AIN 4 # 4 # 4 # 'AIND" 0HASE Bode diagram at VCC = 2.7 V, RL = 10 kΩ 0HASE Figure 8. TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Doc ID 022743 Rev 1 !- TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Figure 14. Positive slew rate vs. supply voltage Electrical characteristics Figure 15. Negative slew rate vs. supply voltage #,P& 6INFROM6TO6##6 32CALCULATEDFROMTO 4 # 4 # 4 # 3UPPLYVOLTAGE6 !- Figure 16. THD+N vs. frequency at VCC = 2.7 V Figure 17. THD+N vs. frequency at VCC = 5.5 V 6IN6PP 'AIN 6ICM6## 4($. 4($. 6IN6PP 'AIN 6ICM6## % % &REQUENCY(Z !- !- Figure 19. THD+N vs. output voltage at VCC = 5.5 V 4($. 4($. Figure 18. THD+N vs. output voltage at VCC = 2.7 V % FK(Z 'AIN "7K(Z 6ICM6## &REQUENCY(Z FK(Z 'AIN "7K(Z 6ICM6## % /UTPUTVOLTAGE6PP /UTPUTVOLTAGE6PP !- Doc ID 022743 Rev 1 !- 11/27 Electrical characteristics TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Figure 20. Output impedance versus frequency in closed-loop configuration 6##6TO6 /SCLEVEL62-3 ' 4 # /UTPUTIMPEDANCE &REQUENCYK(Z !- Figure 21. Response to a 100 mV input step for gain = 1 at VCC = 5.5 V rising edge Figure 22. Response to a 100 mV input step for gain = 1 at VCC = 5.5 V falling edge VCC = 5.5 V, Vicm = 2.75 V RL = 10 kΩ, CL = 100 pF 0.5 µs/div., 20 mV/div. VCC = 5.5 V, Vicm = 2.75 V RL = 10 kΩ, CL = 100 pF 0.5 µs/div., 20 mV/div. Figure 23. PSRR vs. frequency at VCC = 2.7 V Figure 24. PSRR vs. frequency at VCC = 5.5 V 0322D" 0322D" 6##66ICM6' #,P&6RIPPLEM6PP 6##66ICM6' #,P&6RIPPLEM6PP &REQUENCY(Z &REQUENCY(Z !- 12/27 Doc ID 022743 Rev 1 !- TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A 4 Application information 4.1 Operating voltages Application information The amplifiers of the TSV52x series can operate from 2.7 to 5.5 V. Their parameters are fully specified for 2.7, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV52x device characteristics at 2.7 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to +125 °C. 4.2 Common mode voltage range The TSV52x devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input and the input common mode range is extended from VCC- - 0.1 V to VCC+ + 0.1 V. The N channel pair is active for input voltage close to the positive rail typically (VCC+ - 0.7 V) to 100 mv above the positive rail. The P channel pair is active for input voltage close to the negative rail typically 100 mV below the negative rail to VCC- + 0.7 V. And between VCC- + 0.7 V and VCC+ - 0.7 V the both N and P pairs are active. When the both pairs work together it allows to increase the speed of the TSV52x device. This architecture improves a lot the merit factor of the whole device. In the transition region, the performance of CMR, SVR, Vio (Figure 25 and Figure 26) and THD is slightly degraded. Figure 25. Input offset voltage vs. input common mode at VCC = 2.7 V Figure 26. Input offset voltage vs. input common mode at VCC = 5.5 V 6IOM6 6IOM6 6ICM6 6ICM6 !- Doc ID 022743 Rev 1 !- 13/27 Application information 4.3 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Rail-to-rail input The TSV52x series are guaranteed without phase reversal as shown in Figure 28. It is extremely important that the current flowing in the input pin does not exceed 10 mA. In order to limit this current a serial resistor can be added on the Vin path. Figure 27. Phase reversal test schematic Figure 28. No phase reversal 6 ? 6## 6OUT 6## 6OUT6 6INP 6 6##6 6INN6 6INP6 !- 4.4 !- Rail-to-rail output The operational amplifiers output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2. 4.5 Driving resistive and capacitive loads To drive high capacitive load, adding in series resistor at the output can improve the stability of the device (see Figure 29 for recommended in series value). Once the in series resistor has been selected, the stability of the circuit should be tested on bench and simulated with simulation models. The Rload is placed in parallel with capacitive load. The Rload and the in series resistor create a voltage divider introducing an error proportional to the ratio Rs/Rload. By choosing R s as low as possible, this error is generally negligible. 14/27 Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Application information Figure 29. In series resistor versus capacitive load 3TABLE 5NSTABLE 6##66ICM64 #2 LOAD -INIMUMSERIALRESISTORTOBEADDEDTOAGIVEN CAPACITIVELOADINORDERTOENSURESTABILITY #APACITIVELOADN& !- 4.6 Input offset voltage drift over temperature The maximum input voltage drift over temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations. The maximum input voltage drift over temperature is computed in Equation 1: Equation 1 ΔV io V io ( T ) – V io ( 25° C ) ------------ = max -------------------------------------------------ΔT T – 25° C with T = -40 °C and 125 °C. The datasheet maximum value is guaranteed by measurement on a representative sample size ensuring a Cpk greater than 2. Doc ID 022743 Rev 1 15/27 Application information 4.7 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Long term input offset voltage drift In a product reliability evaluation, two types of stress acceleration are usable: ● Voltage acceleration, by changing the applied voltage ● Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature The voltage acceleration has been defined based on JEDEC results, and is defined by: Equation 2 A FV = e β ⋅ ( V S – VU ) where: AFV is the voltage acceleration factor ß is the voltage acceleration constant in 1/V, constant technology parameter VS is the stress voltage used for the accelerated test VU is the use voltage for the application The temperature acceleration is driven by the Arrhenius model, and is defined by: Equation 3 A FT = e E 1 – ----1-⎞ -----a- ⋅ ⎛ -----⎝ T U T S⎠ k where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on failure rate k is the Boltzmann’s constant TU is the temperature of the die when VU is used TS is the temperature of the die under temperature stress The final acceleration factor, AF, is the multiplication of these two acceleration factors, which is: Equation 4 AF = AFT x AFV Based on this AF, calculated following the defined usage temperature and usage voltage of the product, the 1000 h duration of the stress corresponds to a number of equivalent months of usage. Equation 5 Months = AF x 1000 h x 12 months / (24h x 365.25 days) 16/27 Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Application information For the operational amplifier, a follower stress condition is used for the reliability evaluation, with VCC defined in function of the Maximum operating voltage and the absolute maximum rating (as recommended by the JEDEC standards). The Vio drift, in µV, of the product after 1000 h duration of stress is tracked with parameters at different measurement conditions, as for example: Equation 6 VCC = max. Vop with Vicm=VCC/2 Finally, knowing the calculated number of months and with the measured drift value of the Vio (corresponding to the electrical characteristics of the respective table) after 1000 h duration of stress, the ratio of the Vio drift over the square of months, ΔVio in µV/√month, is defined as the long term drift parameter, the parameter estimating the reliability performance of the product. Equation 7 ΔVio = Vio drift / √(months) 4.8 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 4.9 Macromodel Accurate macromodels of the TSV52x device are available on STMicroelectronics™ website at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV52x operational amplifiers. It emulates the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the appropriate operational amplifier, but it does not replace onboard measurements. Doc ID 022743 Rev 1 17/27 Package information 5 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 18/27 Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Package information Figure 30. SC70-5 package outline SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 7. SC70-5 package mechanical data Dimensions Ref Millimeters Min. Typ. Inches Max. Min. 0.032 A 0.80 1.10 A1 0 0.10 A2 0.80 b 0.90 Typ. Max. 0.043 0.004 1.00 0.032 0.035 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 D 1.80 2.00 2.20 0.071 0.079 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 0.014 0.039 0.018 8° Doc ID 022743 Rev 1 19/27 Package information TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Figure 31. DFN8 2 x 2 x 0.6, 8 pitch, 0.5 mm package outline Table 8. DFN8 2 x 2 x 0.6, 8 pitch, 0.5 mm package mechanical data Dimensions Ref. A Millimeters Min. Typ. Max. Min. Typ. Max. 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 A3 0.002 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e 20/27 Inches 0.50 0.020 L 0.50 0.020 ddd 0.08 0.003 Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Package information Figure 32. DFN8 2 x 2 0.6, 8 pitch, 0.5 mm footprint recommendation Doc ID 022743 Rev 1 21/27 Package information TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Figure 33. MiniSO8 package outline -INI3/, Table 9. MiniSO8 package mechanical data Dimensions Symbol Millimeters Min. Typ. A Max. Min. Typ. 1.10 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k 22/27 Inches 8° 0.10 Doc ID 022743 Rev 1 0° 0.031 8° 0.004 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Package information Figure 34. QFN16 - 3 x 3 x 0.9 mm, pad 1.7 - package outline 6&10., Doc ID 022743 Rev 1 23/27 Package information Table 10. TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A QFN16 - 3 x 3 x 0.9 mm, pad 1.7 - package mechanical data Dimensions Symbol A Millimeters Nom. Min. Max. Nom. Min. Max. 0.90 0.80 1.00 0.035 0.032 0.039 0.00 0.05 0.000 0.002 0.007 0.012 0.114 0.122 0.061 0.071 0.114 0.122 0.061 0.071 0.012 0.020 A1 A3 0.20 b D 3.00 D2 E 3.00 E2 e L Inches 0.008 0.18 0.30 2.90 3.10 1.50 1.80 2.90 3.10 1.50 1.80 0.50 0.118 0.118 0.020 0.30 0.50 Figure 35. QFN16 - 3 x 3 x 0.9 mm, pad 1.7 - footprint recommendation 1&.&0 24/27 Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Package information Figure 36. TSSOP14 body 4.40 mm, lead pitch 0.65 mm - package outline 433/0 Table 11. TSSOP14 body 4.40 mm, lead pitch 0.65 mm - package mechanical data Dimensions Symbol Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 BSC 0.75 1.00 0° 8° 0° 0.10 0.018 Doc ID 022743 Rev 1 8° 0.024 0.030 25/27 Ordering information TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A 6 Ordering information Table 12. Order codes Order code Temperature range Package TSV521ICT TSV522IQ2T TSV522IST -40 to 125 °C TSV524IPT TSV522IYST TSV524IYPT TSV522AIQ2T -40 to 125 °C TSV524AIPT TSV524AIYPT K1G Tape and reel K1G QFN16 3 x 3 K1G TSSOP14 TSV524 K1H TSSOP14 TSV524Y SC70-5 K1K DFN8 2 x 2 K1K MiniSO8 TSV524AIQ4T TSV522AIYST DFN8 2 x 2 Tape and reel TSV521AICT TSV522AIST K1G MiniSO8 -40 to 125 °C Automotive grade(1) Marking SC70-5 MiniSO8 TSV524IQ4T Packing Tape and reel QFN16 3 x 3 K1K TSSOP14 TSV524A MiniSO8 -40 to 125 °C Automotive grade(1) K1K K1L Tape and reel TSSOP14 TSV524AY 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent are ongoing. 7 Revision history Table 13. Document revision history Date Revision 19-Jun-2012 1 26/27 Changes Initial release. Doc ID 022743 Rev 1 TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 022743 Rev 1 27/27