Technical Data Sheet

STM32F101x8
STM32F101xB
Medium-density access line, ARM®-based 32-bit MCU with 64 or
128 KB Flash, 6 timers, ADC and 7 communication interfaces
Datasheet - production data
Features
 Core: ARM® 32-bit Cortex® -M3 CPU
– 36 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1)
performance at 0 wait state memory
access
– Single-cycle multiplication and hardware
division
 Memories
– 64 to 128 Kbytes of Flash memory
– 10 to 16 Kbytes of SRAM
LQFP48
7 x 7 mm
 Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os
– POR, PDR and programmable voltage
detector (PVD)
– 4-to-16 MHz crystal oscillator
– Internal 8 MHz factory-trimmed RC
– Internal 40 kHz RC
– PLL for CPU clock
– 32 kHz oscillator for RTC with calibration
 Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC and backup registers
 Debug mode
– Serial wire debug (SWD) and JTAG
interfaces
 Up to 80 fast I/O ports
June 2015
This is information on a product in full production.
LQFP64
10 x 10 mm
UFQFPN48
7 × 7 mm
VFQFPN36
6 × 6 mm
– 26/37/51/80 I/Os, all mappable on 16
external interrupt vectors and almost all
5 V-tolerant
 Six timers
– Three 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter
– 2 watchdog timers (Independent and
Window)
– SysTick timer: 24-bit downcounter
 Up to 7 communication interfaces
– Up to 2 x I2C interfaces (SMBus/PMBus)
– Up to 3 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control)
– Up to 2 SPIs (18 Mbit/s)
 CRC calculation unit, 96-bit unique ID
 DMA
– 7-channel DMA controller
– Peripherals supported: timers, ADC, SPIs,
I2Cs and USARTs
 1 × 12-bit, 1 µs A/D converter (up to 16
channels)
– Conversion range: 0 to 3.6 V
– Temperature sensor
LQFP100
14 x 14 mm
 ECOPACK® packages
Table 1. Device summary
Reference
Part number
STM32F101x8
STM32F101C8,
STM32F101R8
STM32F101V8,
STM32F101T8
STM32F101xB
STM32F101RB,
STM32F101VB,
STM32F101CB
STM32F101TB
DocID13586 Rev 17
1/101
www.st.com
Contents
STM32F101x8, STM32F101xB
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
2/101
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1
ARM® Cortex® -M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.11
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.14
RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.18
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19
I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20
Universal synchronous/asynchronous receiver transmitter (USART) . . 19
2.3.21
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.22
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.23
ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.24
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.25
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Contents
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1
6
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 34
5.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 34
5.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.8
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.11
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 53
5.3.12
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.13
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.14
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.15
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.16
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.17
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.18
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3
VFQFPN36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DocID13586 Rev 17
3/101
4
Contents
STM32F101x8, STM32F101xB
6.4
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.7
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7.2
Evaluating the maximum junction temperature for an application . . . . . 91
7
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
List of Tables
List of Tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Device features and peripheral counts (STM32F101xx 
medium-density access line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Medium-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 35
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Maximum current consumption in Sleep mode, code running from Flash
or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 39
Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 43
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
SCL frequency (fPCLK1= 36 MHz, VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DocID13586 Rev 17
5/101
6
List of Tables
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
6/101
STM32F101x8, STM32F101xB
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat 
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat 
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package 
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat 
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package 
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
DocID13586 Rev 17
STM32F101x8, STM32F101xB
List of Figures
List of Figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
STM32F101xx medium-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STM32F101xx medium-density access line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . 21
STM32F101xx medium-density access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F101xx medium-density access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F101xx medium-density access line UFQPFN48 pinout. . . . . . . . . . . . . . . . . . . . . 23
STM32F101xx medium-density access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . 23
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 38
Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 38
Typical current consumption on VBAT with RTC on versus temperature at different
VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Typical current consumption in Stop mode with regulator in Run mode versus
temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
I2C bus AC waveforms and measurement circuit(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 71
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 72
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat 
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat 
DocID13586 Rev 17
7/101
8
List of Figures
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
8/101
STM32F101x8, STM32F101xB
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
VFQFPN36 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . 80
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat 
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 83
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package 
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 86
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package 
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
DocID13586 Rev 17
STM32F101x8, STM32F101xB
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F101x8 and STM32F101xB medium-density access line microcontrollers. For
more details on the whole STMicroelectronics STM32F101xx family, please refer to
Section 2.2: Full compatibility throughout the family.
The medium-density STM32F101xx datasheet should be read in conjunction with the low-,
medium- and high-density STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex® -M3 core please refer to the Cortex® -M3 Technical
Reference Manual, available from the www.arm.com website.
DocID13586 Rev 17
9/101
100
Description
2
STM32F101x8, STM32F101xB
Description
The STM32F101xB and STM32F101x8 medium-density access line family incorporates the
high-performance ARM® Cortex® -M3 32-bit RISC core operating at a 36 MHz frequency,
high-speed embedded memories (Flash memory up to 128 Kbytes and SRAM up to 16
Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB
buses. All devices offer standard communication interfaces (two I2Cs, two SPIs, and up to
three USARTs), one 12-bit ADC and three general-purpose 16-bit timers.
The STM32F101xx medium-density access line family operates in the –40 to +85 °C
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F101xx medium-density access line family includes devices in four different
packages ranging from 36 pins to 100 pins. Depending on the device chosen, different sets
of peripherals are included, the description below gives an overview of the complete range
of peripherals proposed in this family.
These features make the STM32F101xx medium-density access line microcontroller family
suitable for a wide range of applications such as application control and user interface,
medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial
applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and
HVACs.
10/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Device overview
Figure 1 shows the general block diagram of the device family.
Table 2. Device features and peripheral counts (STM32F101xx
medium-density access line)
Peripheral
STM32F101Tx STM32F101Cx
STM32F101Rx
STM32F101Vx
64
128
64
128
64
128
64
128
SRAM - Kbytes
10
16
10
16
10
16
10
16
Timers
Flash - Kbytes
Communication
2.1
Description
General -purpose
3
3
3
3
SPI
1
2
2
2
I2C
1
2
2
2
USART
2
3
3
3
110 channels
110 channels
116 channels
116 channels
26
37
51
80
12-bit synchronized ADC
number of channels
GPIOs
CPU frequency
36 MHz
Operating voltage
Operating temperatures
Packages
2.0 to 3.6 V
Ambient temperature: –40 to +85 °C (see Table 8)
Junction temperature: –40 to +105 °C (see Table 8)
VFQFPN36
LQFP48,
UFQFPN48
DocID13586 Rev 17
LQFP64
LQFP100
11/101
100
Description
STM32F101x8, STM32F101xB
Figure 1. STM32F101xx medium-density access line block diagram
TPIU
SW/JTAG
Trace/trig
SWD
Trace
Cont rol ler
pbus
Ibus
Cortex M3 CPU
Fmax : 36 MHz
NVIC
Dbus
NVIC
Syst em
AHB: Fmax =36 MHz
7 channels
SUPPLY
SUPERVISION
NRST
VDDA
VSSA
POR / PDR
Rst
PVD
Int
PCLK1
PCLK 2
HCLK
FCLK
@VDD
PLL &
CLOCK
MANAGT
XTAL OSC
4-16 MHz
IWDG
Stand by
in terface
@VDDA
GPIOB
PC[15:0]
GPIOC
PD[15:0]
GPIOD
PE[15:0]
GPIOE
MOSI,MISO,
SCK,NSS as AF
VBAT
@VBAT
RTC
AWU
AHB2
APB 1
Back up
reg
OSC32_IN
OSC32_OUT
TAMPER-RTC
Backu p i nterf ace
SPI1
APB 1 : Fmax =24 / 36 MHz
PB[ 15:0]
OSC_IN
OSC_OUT
RC 8 MHz
RC 42 kHz
APB2 : Fmax = 36 MHz
GPIOA
VDD = 2 to 3.6V
VSS
@VDD
64 bit
EXTI
WAKEUP
PA[ 15:0]
RX,TX, CTS, RTS,
Smart Card as AF
Flash 128 KB
XTAL 32 kHz
AHB2
APB2
80AF
VOLT. REG.
3.3V TO 1.8V
SRAM
16 KB
GP DMA
@VDDA
POWER
Flash obl
Interfac e
JNTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO
as AF
BusM atrix
TRACECLK
TRACED[0:3]
as AS
TIM2
4 Chann els
TIM3
4 Chann els
TIM4
4 Channels
USART2
USART3
2x(8x16bit)SPI2
RX,TX, CTS, RTS,
CK, SmartCard as AF
RX,TX, CTS, RTS,
CK, SmartCard as AF
MOSI,MISO,SCK,NSS
as AF
I2C1
SCL,SDA,SMBA L
as AF
I2C2
SCL,SDA
as AF
USART1
@VDDA
16AF
VREF+
12bit ADC1 IF
WWDG
VREFTemp sen so r
ai14385B
1. AF = alternate function on I/O port pin.
2. TA = –40 °C to +85 °C (junction temperature up to 105 °C).
12/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Description
Figure 2. Clock tree
FLITFCLK
to Flash programming interface
8 MHz
HSI RC
HSI
/2
36 MHz max
PLLSRC
/8
SW
PLLMUL
HSI
..., x16
x2, x3, x4
PLL
SYSCLK
PLLCLK
36 MHz
max
AHB
Prescaler
/1, 2..512
Clock
Enable (3 bits)
APB1
Prescaler
/1, 2, 4, 8, 16
HCLK
to AHB bus, core,
memory and DMA
to Cortex System timer
FCLK Cortex
free running clock
36 MHz max
PCLK1
to APB1
peripherals
Peripheral Clock
HSE
Enable (13 bits)
to TIM2, 3
TIM2,3, 4
and 4
If (APB1 prescaler =1) x1
TIMXCLK
else
x2 Peripheral Clock
CSS
Enable (3 bits)
APB2
Prescaler
/1, 2, 4, 8, 16
PLLXTPRE
OSC_OUT
OSC_IN
4-16 MHz
36 MHz max
HSE OSC
OSC32_OUT
PCLK2
to APB2
peripherals
/2
ADC
Prescaler
/2, 4, 6, 8
/128
OSC32_IN
Peripheral Clock
Enable (11 bits)
LSE OSC
32.768 kHz
to ADC
ADCCLK
to RTC
LSE
RTCCLK
RTCSEL[1:0]
LSI RC
40 kHz
to Independent Watchdog (IWDG)
LSI
IWDGCLK
Main
Clock Output
/2
MCO
PLLCLK
HSI
Legend:
HSE = high-speed external clock signal
HSI = high-speed internal clock signal
LSI = low-speed internal clock signal
LSE = low-speed external clock signal
HSE
SYSCLK
MCO
ai15104
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is
36 MHz.
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.
DocID13586 Rev 17
13/101
100
Description
2.2
STM32F101x8, STM32F101xB
Full compatibility throughout the family
The STM32F101xx is a complete family whose members are fully pin-to-pin, software and
feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are
referred to as low-density devices, the STM32F101x8 and STM32F101xB are referred to as
medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are
referred to as high-density devices.
Low- and high-density devices are an extension of the STM32F101x8/B devices, they are
specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Lowdensity devices feature lower Flash memory and RAM capacities and a timer less. Highdensity devices have higher Flash memory and RAM capacities, and additional peripherals
like FSMC and DAC, while remaining fully compatible with the other members of the
STM32F101xx family.
The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE
are a drop-in replacement for the STM32F101x8/B medium-density devices, allowing the
user to try different memory densities and providing a greater degree of freedom during the
development cycle.
Moreover, the STM32F101xx performance line family is fully compatible with all existing
STM32F101xx access line and STM32F102xx USB access line devices.
Table 3. STM32F101xx family
Memory size
Low-density devices
Pinout
16 KB
Flash
32 KB
Flash(1)
Medium-density devices
64 KB
Flash
128 KB
Flash
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM
144
-
-
100
-
-
64
48
36
2 × USARTs
2 × 16-bit timers
1 × SPI, 1 × I2C
1 × ADC
3 × USARTs
3 × 16-bit timers
2 × SPIs, 2 × I2Cs,
1 × ADC
-
High-density devices
256 KB
Flash
384 KB
Flash
512 KB
Flash
32 KB
RAM
48 KB
RAM
48 KB
RAM
5 × USARTs
4 × 16-bit timers, 2 × basic timers
3 × SPIs, 2 × I2Cs, 1 × ADC,
2 × DACs, FSMC (100 and 144 pins)
-
-
-
-
-
-
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the
reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.
14/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Description
2.3
Overview
2.3.1
ARM® Cortex® -M3 core with embedded Flash and SRAM
The ARM® Cortex® -M3 processor is the latest generation of ARM processors for
embedded systems. It has been developed to provide a low-cost platform that meets the
needs of MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced system response to
interrupts.
The ARM® Cortex® -M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F101xx medium-density access line family having an embedded ARM core, is
therefore compatible with all ARM tools and software.
2.3.2
Embedded Flash memory
64 or 128 Kbytes of embedded Flash is available for storing programs and data.
2.3.3
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
2.3.4
Embedded SRAM
Up to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states.
2.3.5
Nested vectored interrupt controller (NVIC)
The STM32F101xx medium-density access line embeds a nested vectored interrupt
controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt
lines of Cortex® -M3) and 16 priority levels.

Closely coupled NVIC gives low latency interrupt processing

Interrupt entry vector table address passed directly to the core

Closely coupled NVIC core interface

Allows early processing of interrupts

Processing of late arriving higher priority interrupts

Support for tail-chaining

Processor state automatically saved

Interrupt entry restored on interrupt exit with no instruction overhead
DocID13586 Rev 17
15/101
100
Description
STM32F101x8, STM32F101xB
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
2.3.6
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 19 edge detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected
to the 16 external interrupt lines.
2.3.7
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the configuration of the AHB frequency, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and
the APB domains is 36 MHz. See Figure 2 for details on the clock tree.
2.3.8
Boot modes
At startup, boot pins are used to select one of three boot options:

Boot from User Flash

Boot from System Memory

Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1. For further details please refer to AN2606.
2.3.9
Power supply schemes

VDD = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. 
Provided externally through VDD pins.

VSSA, VDDA = 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used).
VDDA and VSSA must be connected to VDD and VSS, respectively.

VBAT = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 11: Power supply scheme.
2.3.10
Power supply supervisor
The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is
always active, and ensures proper operation starting from/down to 2 V. The device remains
in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an
external reset circuit.
16/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Description
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
Refer to Table 10: Embedded reset and power control block characteristics for the values of
VPOR/PDR and VPVD.
2.3.11
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.

MR is used in the nominal regulation mode (Run)

LPR is used in the Stop mode

Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high
impedance output.
2.3.12
Low-power modes
The STM32F101xx medium-density access line supports three low-power modes to achieve
the best compromise between low power consumption, short startup time and available
wakeup sources:

Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.

Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low power mode. 
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output or the RTC alarm.

Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
DocID13586 Rev 17
17/101
100
Description
2.3.13
STM32F101x8, STM32F101xB
DMA
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general purpose timers
TIMx and ADC.
2.3.14
RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on
VDD supply when present or through the VBAT pin. The backup registers are ten 16-bit
registers used to store 20 bytes of user application data when VDD power is not present.
The real-time clock provides a set of continuously running counters which can be used with
suitable software to provide a clock calendar function, and provides an alarm interrupt and a
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the
internal low power RC oscillator or the high-speed external clock divided by 128. The
internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using
an external 512 Hz output to compensate for any natural crystal deviation. The RTC
features a 32-bit programmable counter for long term measurement using the Compare
register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by
default configured to generate a time base of 1 second from a clock at 32.768 kHz.
2.3.15
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to
reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
2.3.16
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
18/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
2.3.17
Description
SysTick timer
This timer is dedicated for OS, but could also be used as a standard down counter. It
features:
2.3.18

A 24-bit down counter

Autoreload capability

Maskable system interrupt generation when the counter reaches 0.

Programmable clock source
General-purpose timers (TIMx)
There are three synchronizable general-purpose timers embedded in the STM32F101xx
medium-density access line devices. These timers are based on a 16-bit auto-reload
up/down counter, a 16-bit prescaler and feature 4 independent channels each for input
capture, output compare, PWM or one pulse mode output. This gives up to 12 input
captures / output compares / PWMs on the largest packages.
The general-purpose timers can work together via the Timer Link feature for synchronization
or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose
timers can be used to generate PWM outputs. They all have independent DMA request
generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
2.3.19
I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master
mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.
2.3.20
Universal synchronous/asynchronous receiver transmitter (USART)
The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware
management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816
compliant and have LIN Master/Slave capability.
The USART interfaces can be served by the DMA controller.
2.3.21
Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
Both SPIs can be served by the DMA controller.
2.3.22
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
DocID13586 Rev 17
19/101
100
Description
STM32F101x8, STM32F101xB
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
2.3.23
ADC (analog to digital converter)
The 12-bit analog to digital converter has up to 16 external channels and performs
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed
on a selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
2.3.24
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally
connected to the ADC_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
2.3.25
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
20/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Pinouts and pin description
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 3. STM32F101xx medium-density access line LQFP100 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD_2
VSS_2
NC
PA 13
PA 12
PA 11
PA 10
PA 9
PA 8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREFVREF+
VDDA
PA0-WKUP
PA1
PA2
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
3
Pinouts and pin description
ai14386b
DocID13586 Rev 17
21/101
100
Pinouts and pin description
STM32F101x8, STM32F101xB
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
Figure 4. STM32F101xx medium-density access line LQFP64 pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD_2
VSS_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0-WKUP
PA1
PA2
ai14387b
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
Figure 5. STM32F101xx medium-density access line LQFP48 pinout
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
35
3
34
33
4
32
5
31
6
LQFP48
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST
VSSA
VDDA
PA0-WKUP
PA1
PA2
22/101
DocID13586 Rev 17
VDD_2
VSS_2
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
ai14378d
STM32F101x8, STM32F101xB
Pinouts and pin description
9''B
966B
3%
3%
%227
3%
3%
3%
3%
3%
3$
3$
Figure 6. STM32F101xx medium-density access line UFQPFN48 pinout
9%$7
3&7$03(557&
3&26&B,1
3&26&B287
3'26&B,1
3'26&B287
1567
966$
9''$
3$:.83
3$
3$
4)31
9''B
966B
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
966B
9''B
069
PB4
PB3
PA15
PA14
30
29
28
27
VDD_2
OSC_IN/PD0
2
26
VSS_2
OSC_OUT/PD1
3
25
PA13
NRST
4
24
PA12
VSSA
5
23
PA11
VDDA
6
22
PA10
PA0-WKUP
7
21
PA9
PA1
8
20
PA8
PA2
9
10
11
12
13
14
15
PB0
PB5
31
PA7
PB6
32
PA6
PB7
33
PA5
34
1
PA4
35
VDD_3
PA3
36
BOOT0
VSS_3
Figure 7. STM32F101xx medium-density access line VFQPFN36 pinout
17
PB2
PB1
16
19
18
VDD_1
VSS_1
QFN36
ai14654
DocID13586 Rev 17
23/101
100
Pinouts and pin description
STM32F101x8, STM32F101xB
Table 4. Medium-density STM32F101xx pin definitions
Alternate functions(3)(4)
LQFP48/
UFQFPN48
LQFP64
LQFP100
VFQFPN36
Type(1)
I / O level(2)
Pins
Main
function(3)
(after reset)
-
-
1
-
PE2
I/O
FT
PE2
TRACECLK
-
-
-
2
-
PE3
I/O
FT
PE3
TRACED0
-
-
-
3
-
PE4
I/O
FT
PE4
TRACED1
-
-
-
4
-
PE5
I/O
FT
PE5
TRACED2
-
-
-
5
-
PE6
I/O
FT
PE6
TRACED3
-
1
1
6
-
VBAT
S
-
VBAT
-
-
2
2
7
-
PC13-TAMPERRTC(5)
I/O
-
PC13(6)
TAMPER-RTC
-
3
3
8
-
PC14OSC32_IN(5)
I/O
-
PC14(6)
OSC32_IN
-
4
4
9
-
PC15OSC32_OUT(5)
I/O
-
PC15(6)
OSC32_OUT
-
-
-
10
-
VSS_5
S
-
VSS_5
-
-
-
-
11
-
VDD_5
S
-
VDD_5
-
-
5
5
12
2
OSC_IN
I
-
OSC_IN
-
PD0(7)
6
6
13
3
OSC_OUT
O
-
OSC_OUT
-
PD1(7)
7
7
14
4
NRST
I/O
-
NRST
-
-
-
8
15
-
PC0
I/O
-
PC0
ADC_IN10
-
-
9
16
-
PC1
I/O
-
PC1
ADC_IN11
-
-
10
17
-
PC2
I/O
-
PC2
ADC_IN12
-
-
11
18
-
PC3
I/O
-
PC3
ADC_IN13
-
8
12
19
5
VSSA
S
-
VSSA
-
-
-
-
20
-
VREF-
S
-
VREF-
-
-
-
-
21
-
VREF+
S
-
VREF+
-
-
9
13
22
6
VDDA
S
-
VDDA
-
-
Pin name
Default
Remap
WKUP/USART2_CTS(8)/
10
14
23
7
PA0-WKUP
I/O
-
PA0
11
15
24
8
PA1
I/O
-
PA1
24/101
DocID13586 Rev 17
ADC_IN0/
TIM2_CH1_ETR(8)
USART2_RTS(8)/
ADC_IN1/TIM2_CH2(8)
-
-
STM32F101x8, STM32F101xB
Pinouts and pin description
Table 4. Medium-density STM32F101xx pin definitions (continued)
Alternate functions(3)(4)
LQFP48/
UFQFPN48
LQFP64
LQFP100
VFQFPN36
Type(1)
I / O level(2)
Pins
Main
function(3)
(after reset)
12
16
25
9
PA2
I/O
-
PA2
USART2_TX(8)/
ADC_IN2/TIM2_CH3(8)
-
13
17
26
10
PA3
I/O
-
PA3
USART2_RX(8)/
ADC_IN3/TIM2_CH4(8)
-
-
18
27
-
VSS_4
S
-
VSS_4
-
-
-
19
28
-
VDD_4
S
-
VDD_4
-
-
Pin name
Default
Remap
(8)/ADC_IN4
14
20
29
11
PA4
I/O
-
PA4
SPI1_NSS
USART2_CK(8)/
-
15
21
30
12
PA5
I/O
-
PA5
SPI1_SCK(8)/ADC_IN5
-
16
22
31
13
PA6
I/O
-
PA6
SPI1_MISO(8)/ADC_IN6
TIM3_CH1(8)
-
17
23
32
14
PA7
I/O
-
PA7
SPI1_MOSI(8)/ADC_IN7
TIM3_CH2(8)
-
-
24
33
-
PC4
I/O
-
PC4
ADC_IN14
-
-
25
34
-
PC5
I/O
-
PC5
ADC_IN15
18
26
35
15
PB0
I/O
-
PB0
-
ADC_IN8/TIM3_CH3
(8)
-
ADC_IN9/TIM3_CH4
(8)
-
19
27
36
16
PB1
I/O
-
PB1
20
28
37
17
PB2
I/O
FT
PB2/BOOT1
-
-
-
-
38
-
PE7
I/O
FT
PE7
-
-
-
-
39
-
PE8
I/O
FT
PE8
-
-
-
-
40
-
PE9
I/O
FT
PE9
-
-
-
-
41
-
PE10
I/O
FT
PE10
-
-
-
-
42
-
PE11
I/O
FT
PE11
-
-
-
-
43
-
PE12
I/O
FT
PE12
-
-
-
-
44
-
PE13
I/O
FT
PE13
-
-
-
-
45
-
PE14
I/O
FT
PE14
-
-
-
-
46
-
PE15
I/O
FT
PE15
-
-
21
29
47
-
PB10
I/O
FT
PB10
I2C2_SCL/
USART3_TX (8)
TIM2_CH3
22
30
48
-
PB11
I/O
FT
PB11
I2C2_SDA/
USART3_RX (8)
TIM2_CH4
DocID13586 Rev 17
25/101
100
Pinouts and pin description
STM32F101x8, STM32F101xB
Table 4. Medium-density STM32F101xx pin definitions (continued)
Alternate functions(3)(4)
LQFP48/
UFQFPN48
LQFP64
LQFP100
VFQFPN36
Type(1)
I / O level(2)
Pins
Main
function(3)
(after reset)
23
31
49
18
VSS_1
S
-
VSS_1
-
-
24
32
50
19
VDD_1
S
-
VDD_1
-
-
25
33
51
-
PB12
I/O
FT
PB12
SPI2_NSS / I2C2_SMBA
/ USART3_CK (8)
-
26
34
52
-
PB13
I/O
FT
PB13
SPI2_SCK/
USART3_CTS(8)
-
27
35
53
-
PB14
I/O
FT
PB14
SPI2_MISO/
USART3_RTS(8)
-
28
36
54
-
PB15
I/O
FT
PB15
SPI2_MOSI
-
-
-
55
-
PD8
I/O
FT
PD8
-
USART3_TX
-
-
56
-
PD9
I/O
FT
PD9
-
USART3_RX
-
-
57
-
PD10
I/O
FT
PD10
-
USART3_CK
-
-
58
-
PD11
I/O
FT
PD11
-
USART3_CTS
-
-
59
-
PD12
I/O
FT
PD12
-
TIM4_CH1 /
USART3_RTS
-
-
60
-
PD13
I/O
FT
PD13
-
TIM4_CH2
-
-
61
-
PD14
I/O
FT
PD14
-
TIM4_CH3
-
-
62
-
PD15
I/O
FT
PD15
-
TIM4_CH4
-
37
63
-
PC6
I/O
FT
PC6
-
TIM3_CH1
-
38
64
-
PC7
I/O
FT
PC7
-
TIM3_CH2
-
39
65
-
PC8
I/O
FT
PC8
-
TIM3_CH3
-
40
66
-
PC9
I/O
FT
PC9
-
TIM3_CH4
29
41
67
20
PA8
I/O
FT
PA8
USART1_CK/MCO
-
30
42
68
21
PA9
I/O
FT
PA9
USART1_TX(8)
-
(8)
-
Pin name
Default
Remap
31
43
69
22
PA10
I/O
FT
PA10
USART1_RX
32
44
70
23
PA11
I/O
FT
PA11
USART1_CTS
-
33
45
71
24
PA12
I/O
FT
PA12
USART1_RTS
-
34
46
72
25
PA13
I/O
FT
JTMSSWDIO
-
PA13
-
-
73
-
26/101
Not connected
DocID13586 Rev 17
-
STM32F101x8, STM32F101xB
Pinouts and pin description
Table 4. Medium-density STM32F101xx pin definitions (continued)
Alternate functions(3)(4)
LQFP48/
UFQFPN48
LQFP64
LQFP100
VFQFPN36
Type(1)
I / O level(2)
Pins
Main
function(3)
(after reset)
35
47
74
26
VSS_2
S
-
VSS_2
-
-
36
48
75
27
VDD_2
S
-
VDD_2
-
-
37
49
76
28
PA14
I/O
FT
JTCK/SWCL
K
-
PA14
38
50
77
29
PA15
I/O
FT
JTDI
-
TIM2_CH1_ETR
/ PA15/
SPI1_NSS
-
51
78
-
PC10
I/O
FT
PC10
-
USART3_TX
-
52
79
-
PC11
I/O
FT
PC11
-
USART3_RX
-
53
80
-
PC12
I/O
FT
PC12
-
USART3_CK
-
-
81
2
PD0
I/O
FT
PD0
-
-
-
-
82
3
PD1
I/O
FT
PD1
-
-
-
54
83
-
PD2
I/O
FT
PD2
TIM3_ETR
-
-
-
84
-
PD3
I/O
FT
PD3
-
USART2_CTS
-
-
85
-
PD4
I/O
FT
PD4
-
USART2_RTS
-
-
86
-
PD5
I/O
FT
PD5
-
USART2_TX
-
-
87
-
PD6
I/O
FT
PD6
-
USART2_RX
-
-
88
-
PD7
I/O
FT
PD7
-
USART2_CK
39
55
89
30
PB3
I/O
FT
JTDO
40
56
90
31
PB4
I/O
FT
JNTRST
-
PB4 / TIM3_CH1
SPI1_MISO
41
57
91
32
PB5
I/O
-
PB5
I2C1_SMBAl
TIM3_CH2 /
SPI1_MOSI
42
58
92
33
PB6
I/O
FT
PB6
I2C1_SCL(8)/
TIM4_CH1 (8)
USART1_TX
43
59
93
34
PB7
I/O
FT
PB7
I2C1_SDA(8)/
TIM4_CH2 (8)
USART1_RX
44
60
94
35
BOOT0
I
-
BOOT0
-
-
45
61
95
-
Pin name
PB8
I/O
FT
PB8
DocID13586 Rev 17
Default
Remap
TIM2_CH2 / PB3
TRACESWO
SPI1_SCK
TIM4_CH3
(8)
I2C1_SCL
27/101
100
Pinouts and pin description
STM32F101x8, STM32F101xB
Table 4. Medium-density STM32F101xx pin definitions (continued)
Alternate functions(3)(4)
LQFP48/
UFQFPN48
LQFP64
LQFP100
VFQFPN36
Type(1)
I / O level(2)
Pins
Main
function(3)
(after reset)
46
62
96
-
PB9
I/O
FT
PB9
TIM4_CH4 (8)
I2C1_SDA
-
-
97
-
PE0
I/O
FT
PE0
TIM4_ETR
-
-
-
98
-
PE1
I/O
FT
PE1
-
-
47
63
99
36
VSS_3
S
-
VSS_3
-
-
48
64
100
1
VDD_3
S
-
VDD_3
-
-
Pin name
Default
Remap
1. I = input, O = output, S = supply, HiZ= high impedance.
2. FT= 5 V tolerant.
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower
number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be
called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load
of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48, UFQFPN48 and LQFP64 packages are
configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on
these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode.
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
from the STMicroelectronics website: www.st.com.
28/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
4
Memory mapping
Memory mapping
The memory map is shown in Figure 8.
Figure 8. Memory map
$3% PHPRU\ VSDFH
[))))))))
[(
[
[
[
[))))))))
[(
[(
&RUWH[0LQWHUQDO
SHULSKHUDOV
UHVHUYHG
UHVHUYHG
.
&5&
.
UHVHUYHG
.
[
)ODVKLQWHUIDFH
.
[
UHVHUYHG
.
[
5&&
.
[
UHVHUYHG
.
[
'0$
.
UHVHUYHG
.
86$57
.
UHVHUYHG
.
[
UHVHUYHG
[&
[
[&
[
63,
.
UHVHUYHG
.
UHVHUYHG
.
$'&
.
UHVHUYHG
.
[
3RUW(
.
[
3RUW'
.
[
3RUW&
.
[&
3RUW%
.
[
3RUW$
.
[
(;7,
.
[
$),2
.
UHVHUYHG
.
[
[&
[
[
[$
[&
[)))))))
[)))))
[
UHVHUYHG
2SWLRQ%\WHV
[))))
6\VWHPPHPRU\
[))))
[
[
[
[
[&
UHVHUYHG
3HULSKHUDOV
[
[
[
[
65$0
.
%.3
.
UHVHUYHG
.
UHVHUYHG
.
UHVHUYHG
.
UHVHUYHG
.
[
,&
.
[
,&
.
UHVHUYHG
.
[
86$57
.
[
86$57
.
UHVHUYHG
.
[&
3:5
[))))
[&
)ODVKPHPRU\
[
[
UHVHUYHG
[
$OLDVHGWR)ODVKRU
V\VWHPPHPRU\
GHSHQGLQJRQ
%227SLQV
[&
63,
.
[
UHVHUYHG
.
[
,:'*
.
[&
::'*
.
[
57&
.
UHVHUYHG
.
[
7,0
.
[
7,0
.
7,0
.
[
[&
[
DLH
DocID13586 Rev 17
29/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2 V  VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
30/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Figure 9. Pin loading conditions
Figure 10. Pin input voltage
STM32F10xxx pin
STM32F10xxx pin
C = 50 pF
VIN
ai14124b
ai14123b
5.1.6
Power supply scheme
Figure 11. Power supply scheme
VBAT
Backup circuitry
(OSC32K,RTC,
Wake-up logic
Backup registers)
OUT
GP I/Os
IN
Level shifter
Po wer swi tch
1.8-3.6V
IO
Logic
Kernel logic
(CPU,
Digital
& Memories)
VDD
VDD
1/2/3/4/5
5 × 100 nF
+ 1 × 4.7 µF
VDD
1/2/3/4/5
VDDA
VREF
10 nF
+ 1 µF
Regulator
VSS
10 nF
+ 1 µF
VREF+
VREF-
ADC
Analog:
RCs, PLL,
...
VSSA
ai14125d
Caution:
In Figure 11, the 4.7 µF capacitor must be connected to VDD3.
DocID13586 Rev 17
31/101
100
Electrical characteristics
5.1.7
STM32F101x8, STM32F101xB
Current consumption measurement
Figure 12. Current consumption measurement scheme
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics,
Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device
at these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Table 5. Voltage characteristics
Symbol
VDD VSS
VIN
(2)
|VDDx|
|VSSX VSS|
VESD(HBM)
Ratings
Min
Max
–0.3
4.0
Input voltage on five volt tolerant pin
VSS  0.3
VDD  4.0
Input voltage on any other pin
VSS 0.3
4.0
Variations between different VDD power pins
-
50
Variations between all the different ground
pins
-
50
External main supply voltage (including
VDDA and VDD)(1)
Electrostatic discharge voltage (human body
model)
see Section 5.3.11: Absolute
maximum ratings (electrical
sensitivity)
Unit
V
mV
-
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 6: Current characteristics for the maximum
allowed injected current values.
32/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Table 6. Current characteristics
Symbol
Ratings
Max.
Total current into VDD/VDDA power lines (source)(1)
IVDD
150
(1)
IVSS
IIO
Total current out of VSS ground lines (sink)
150
Output current sunk by any I/O and control pin
25
 25
Output current source by any I/Os and control pin
(3)
IINJ(PIN)(2)
IINJ(PIN)
Unit
Injected current on five volt tolerant pins
mA
-5/+0
(4)
±5
Injected current on any other pin
Total injected current (sum of all I/O and control pins)
(5)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC
characteristics.
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage
values.
4.
A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage
values.
5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 7. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
5.3
Operating conditions
5.3.1
General operating conditions
Value
Unit
–65 to +150
°C
150
°C
Table 8. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
36
fPCLK1
Internal APB1 clock frequency
-
0
36
fPCLK2
Internal APB2 clock frequency
-
0
36
Standard operating voltage
-
2
3.6
2
3.6
2.4
3.6
1.8
3.6
VDD
VDDA
(1)
VBAT
Analog operating voltage
(ADC not used)
Analog operating voltage
(ADC used)
Must be the same potential
as VDD(2)
Backup operating voltage
DocID13586 Rev 17
-
Unit
MHz
V
33/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Table 8. General operating conditions (continued)
Symbol
Parameter
Conditions
Min
Max
–0.3
VDD + 0.3
2 V < VDD  3.6 V
–0.3
5.5
VDD = 2 V
–0.3
5.2
BOOT0
0
5.5
LQFP100
-
434
LQFP64
-
444
LQFP48
-
363
UFQFPN48
-
624
VFQFPN36
-
1000
–40
85
–40
105
–40
105
Standard IO
VIN
PD
FT IO(3)
I/O input voltage
Power dissipation at TA = 85 °C
(4)
Maximum power dissipation
TA
Ambient temperature
TJ
Junction temperature range
Low power
dissipation(5)
-
Unit
V
mW
°C
1. When the ADC is used, refer to Table 41: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and operation.
3. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.7: Thermal
characteristics on page 90).
5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Table 6.7: Thermal characteristics on page 90).
5.3.2
Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
Table 9. Operating conditions at power-up / power-down
Symbol
tVDD
5.3.3
Parameter
VDD rise time
rate
VDD fall time
rate
Conditions
Min
Max
0
∞
20
∞
-
Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 10 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
34/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
.
Electrical characteristics
Table 10. Embedded reset and power control block characteristics
Symbol
VPVD
VPVDhyst(2)
Parameter
Conditions
Programmable voltage
detector level selection
Min
Typ
Max
PLS[2:0]=000 (rising edge)
2.1
2.18
2.26
PLS[2:0]=000 (falling edge)
2
2.08
2.16
PLS[2:0]=001 (rising edge)
2.19
2.28
2.37
PLS[2:0]=001 (falling edge)
2.09
2.18
2.27
PLS[2:0]=010 (rising edge)
2.28
2.38
2.48
PLS[2:0]=010 (falling edge)
2.18
2.28
2.38
PLS[2:0]=011 (rising edge)
2.38
2.48
2.58
PLS[2:0]=011 (falling edge)
2.28
2.38
2.48
PLS[2:0]=100 (rising edge)
2.47
2.58
2.69
PLS[2:0]=100 (falling edge)
2.37
2.48
2.59
PLS[2:0]=101 (rising edge)
2.57
2.68
2.79
PLS[2:0]=101 (falling edge)
2.47
2.58
2.69
PLS[2:0]=110 (rising edge)
2.66
2.78
2.9
PLS[2:0]=110 (falling edge)
2.56
2.68
2.8
PLS[2:0]=111 (rising edge)
2.76
2.88
3
PLS[2:0]=111 (falling edge)
2.66
2.78
2.9
-
PVD hysteresis
-
100
-
Falling edge
1.8
(1)
1.88
1.96
Rising edge
1.84
1.92
2.0
Unit
V
mV
VPOR/PDR
Power on/power down
reset threshold
VPDRhyst(2)
PDR hysteresis
-
-
40
-
mV
Reset temporization
-
1.5
2.5
4.5
ms
tRSTTEMPO(2)
V
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design, not tested in production.
DocID13586 Rev 17
35/101
100
Electrical characteristics
5.3.4
STM32F101x8, STM32F101xB
Embedded reference voltage
The parameters given in Table 11 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
Table 11. Embedded internal reference voltage
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +85 °C
1.16
1.20
1.24
V
17.1(2)
µs
TS_vrefint(1)
ADC sampling time when reading
the internal reference voltage
-
-
5.1
VRERINT(2)
Internal reference voltage spread
over the temperature range
VDD = 3 V ±10 mV
-
-
10
mV
-
-
-
100
ppm/
°C
TCoeff(2)
Temperature coefficient
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
5.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:

All I/O pins are in input mode with a static value at VDD or VSS (no load)

All peripherals are disabled except if it is explicitly mentioned

The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 36 MHz)

Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)

When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK
The parameters given in Table 12 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
36/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Table 12. Maximum current consumption in Run mode, code with data processing
running from Flash
Max(1)
Symbol
Parameter
Conditions
External clock (2), all
peripherals enabled
IDD
Supply current
in Run mode
External clock (2), all
peripherals Disabled
fHCLK
Unit
TA = 85 °C
36 MHz
28.6
24 MHz
19.9
16 MHz
14.7
8 MHz
8.6
36 MHz
19.8
24 MHz
13.9
16 MHz
10.7
8 MHz
6.8
mA
1. Based on characterization, not tested in production.
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 13. Maximum current consumption in Run mode, code with data processing
running from RAM
Max(1)
Symbol
Parameter
Conditions
External clock (2), all
peripherals enabled
IDD
Supply current in
Run mode
External clock(2) all
peripherals disabled
fHCLK
Unit
TA = 85 °C
36 MHz
24
24 MHz
17.5
16 MHz
12.5
8 MHz
7.5
36 MHz
16
24 MHz
11.5
16 MHz
8.5
8 MHz
5.5
mA
1. Based on characterization, tested in production at VDD max, fHCLK max.
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
DocID13586 Rev 17
37/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled
&RQVXPSWLRQP$
0+]
0+]
0+]
7HPSHUDWXUHƒ&
069
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled
&RQVXPSWLRQP$
0+]
0+]
0+]
7HPSHUDWXUHƒ&
069
38/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Table 14. Maximum current consumption in Sleep mode, code running from Flash
or RAM
Max(1)
Symbol
Parameter
Conditions
External clock(2) all
peripherals enabled
IDD
Supply current in
Sleep mode
External clock(2), all
peripherals disabled
fHCLK
Unit
TA = 85 °C
36 MHz
15.5
24 MHz
11.5
16 MHz
8.5
8 MHz
5.5
36 MHz
5
24 MHz
4.5
16 MHz
4
8 MHz
3
mA
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 15. Typical and maximum current consumptions in Stop and Standby modes
Typ(1)
Symbol
Parameter
Supply current
in Stop mode
IDD
Supply current
in Standby
mode
IDD_VBA
T
Backup
domain supply
current
VDD/VB
AT
= 2.0 V
VDD/
VBAT =
2.4 V
AT
TA =
85 °C(2)
Regulator in Run mode, 
Low-speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
-
23.5
24
200
Regulator in Low-Power mode, 
Low-speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
-
13.5
14
180
Low-speed internal RC oscillator and
independent watchdog ON
-
2.6
3.4
-
Low-speed internal RC oscillator ON,
independent watchdog OFF
-
2.4
3.2
-
Low-speed internal RC oscillator and
independent watchdog OFF, low-speed
oscillator and RTC OFF
-
1.7
2
4
0.9
1.1
1.4
1.9
Conditions
Low-speed oscillator and RTC ON
VDD/VB
Max
= 3.3 V
Unit
µA
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not rested in production.
DocID13586 Rev 17
39/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Figure 15. Typical current consumption on VBAT with RTC on versus temperature at
different
VBAT values
Consumption ( µA )
2.5
2
2V
1.5
2.4 V
1
3V
0.5
3.6 V
0
–40 °C
25 °C
70 °C
85 °C
105 °C
Temperature (°C)
ai17351
Figure 16. Typical current consumption in Stop mode with regulator in Run mode
versus
temperature at VDD = 3.3 V and 3.6 V
&RQVXPSWLRQ—$
9
9
7HPSHUDWXUHƒ&
40/101
DocID13586 Rev 17
069
STM32F101x8, STM32F101xB
Electrical characteristics
Figure 17. Typical current consumption in Stop mode with regulator in Low-power
mode versus
temperature at VDD = 3.3 V and 3.6 V
&RQVXPSWLRQ—$
9
9
±ƒ&
ƒ&
ƒ&
7HPSHUDWXUHƒ&
069
Figure 18. Typical current consumption in Standby mode versus temperature at VDD =
3.3 V and
3.6 V
&RQVXPSWLRQ—$
9
9
7HPSHUDWXUHƒ&
DocID13586 Rev 17
069
41/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Typical current consumption
The MCU is placed under the following conditions:

All I/O pins are in input mode with a static value at VDD or VSS (no load)

All peripherals are disabled except if it is explicitly mentioned

The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 36 MHz)

Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)

When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK =
fPCLK2/4
The parameters given in Table 16 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
Table 16. Typical current consumption in Run mode, code with data processing
running from Flash
Symbol
Parameter
Conditions
External
clock(3)
IDD
Supply
current in
Run mode
Running on
high speed
internal RC
(HSI), AHB
prescaler
used to
reduce the
frequency
Typ(1)
Typ(1)
fHCLK
All peripherals
enabled(2)
All peripherals
disabled
36 MHz
19
14.8
24 MHz
12.9
10.1
16 MHz
9.3
7.4
8 MHz
5.5
4.6
4 MHz
3.3
2.8
2 MHz
2.2
1.9
1 MHz
1.6
1.45
500 kHz
1.3
1.25
125 kHz
1.08
1.06
36 MHz
18.3
14.1
24 MHz
12.2
9.5
16 MHz
8.5
6.8
8 MHz
4.9
4
4 MHz
2.7
2.2
2 MHz
1.6
1.4
1 MHz
1.02
0.9
500 kHz
0.73
0.67
125 kHz
0.5
0.48
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
42/101
DocID13586 Rev 17
Unit
mA
STM32F101x8, STM32F101xB
Electrical characteristics
Table 17. Typical current consumption in Sleep mode, code running from Flash or
RAM
Symbol
Parameter
Conditions
(3)
External clock
IDD
Supply
current in
Sleep mode
Running on High
Speed Internal RC
(HSI), AHB
prescaler used to
reduce the
frequency
Typ(1)
Typ(1)
fHCLK
All peripherals
enabled(2)
All peripherals
disabled
36 MHz
7.6
3.1
24 MHz
5.3
2.3
16 MHz
3.8
1.8
8 MHz
2.1
1.2
4 MHz
1.6
1.1
2 MHz
1.3
1
1 MHz
1.11
0.98
500 kHz
1.04
0.96
125 kHz
0.98
0.95
36 MHz
7
2.5
24 MHz
4.8
1.8
16 MHz
3.2
1.2
8 MHz
1.6
0.6
4 MHz
1
0.5
2 MHz
0.72
0.47
1 MHz
0.56
0.44
500 kHz
0.49
0.42
125 kHz
0.43
0.41
Unit
mA
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed
under the following conditions:

all I/O pins are in input mode with a static value at VDD or VSS (no load)

all peripherals are disabled unless otherwise mentioned

the given value is calculated by measuring the current consumption

–
with all peripherals clocked off
–
with only one peripheral clocked on
ambient operating temperature and VDD supply voltage conditions summarized in
Table 5.
DocID13586 Rev 17
43/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Table 18. Peripheral current consumption
Typical consumption at 25 °C(1)
Peripheral
AHB (up to
36 MHz)
APB1 (up to
18 MHz)
APB2 (up to
36 MHz)
1.
DMA1
Unit
16.53
(2)
BusMatrix
8.33
APB1-Bridge
10.28
TIM2
32.50
TIM3
31.39
TIM4
31.94
SPI2
4.17
USART2
12.22
USART3
12.22
I2C1
10.00
I2C2
10.00
WWDG
2.50
PWR
1.67
BKP
2.50
IWDG
11.67
APB2-Bridge
3.75
GPIO A
6.67
GPIO B
6.53
GPIO C
6.53
GPIO D
6.53
GPIO E
6.39
ADC1(3)
17.50
SPI1
4.72
USART1
11.94
μA/MHz
fHCLK = 36 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.
2. The BusMatrix is automatically active when at least one master is ON.
3. Specific conditions for ADC: fHCLK = 28 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2 . When
ADON bit in the ADC_CR2 register is set to 1, the consumption added is equal to 0.65 mA. When the ADC
is enabled, a current consumption is added equal to 0.05 mA.
5.3.6
External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 19 result from tests performed using an high-speed
external clock source, and under the ambient temperature and supply voltage conditions
summarized in Table 8.
44/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Table 19. High-speed external user clock characteristics
Symbol
Parameter
Conditions
fHSE_ext
User external clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
VHSEL
OSC_IN input pin low level voltage
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
tr(HSE)
tf(HSE)
Cin(HSE)
Typ
Max
Unit
1
8
25
MHz
0.7VDD
-
VDD
VSS
-
0.3VDD
5
-
-
-
V
ns
(1)
OSC_IN rise or fall time
-
-
20
-
-
5
-
pF
-
45
-
55
%
VSS  VIN VDD
-
-
±1
µA
OSC_IN input capacitance(1)
DuCy(HSE) Duty cycle
IL
Min
OSC_IN Input leakage current
1. Guaranteed by design, not tested in production.
Low-speed external user clock generated from an external source
The characteristics given in Table 20 result from tests performed using an low-speed
external clock source, and under the ambient temperature and supply voltage conditions
summarized in Table 8.
Table 20. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
VSS
-
0.3VDD
fLSE_ext
User external clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
tw(LSE)
tw(LSE)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1)
-
-
50
-
-
5
-
pF
-
30
-
70
%
-
-
±1
µA
Cin(LSE)
ns
OSC32_IN input capacitance(1)
DuCy(LSE) Duty cycle
IL
V
-
OSC32_IN Input leakage current VSSVIN VDD
1. Guaranteed by design, not tested in production.
DocID13586 Rev 17
45/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Figure 19. High-speed external clock source AC timing diagram
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tW(HSE)
tW(HSE)
t
THSE
External
clock source
fHSE_ext
OSC _IN
IL
STM32F10xxx
ai14127b
Figure 20. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
tW(LSE)
t
TLSE
External
clock source
fLSE_ext
STM32F10xxx
ai14140c
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 21. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
46/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Table 21. HSE 4-16 MHz oscillator characteristics(1)(2)
Symbol
Conditions
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
16
MHz
RF
Feedback resistor
-
-
200
-
k
C
Recommended load capacitance
versus equivalent serial
RS = 30
resistance of the crystal (RS)(3)
-
30
-
pF
i2
HSE driving current
VDD = 3.3 V, VIN = VSS
with 30 pF load
-
-
1
mA
Oscillator transconductance
Startup
25
-
-
mA/V
Startup time
VDD is stabilized
-
2
-
ms
fOSC_IN
gm
tSU(HSE)
(4)
Parameter
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 21). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
CL1
fHSE
OSC_IN
8 MH z
resonator
CL2
REXT(1)
RF
OSC_OU T
Bias
controlled
gain
STM32F10xxx
ai14128b
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 22. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
DocID13586 Rev 17
47/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 22. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) (2)
Symbol
Parameter
Conditions
-
Min
Typ
Max
Unit
-
-
-
5
-
M
RF
Feedback resistor
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)
RS = 30 K
-
-
-
15
pF
I2
LSE driving current
VDD = 3.3 V
VIN = VSS
-
-
-
1.4
µA
gm
Oscillator transconductance
-
-
5
-
-
µA/V
TA = 50 °C
-
1.5
-
TA = 25 °C
-
2.5
-
TA = 10 °C
-
4
-
TA = 0 °C
-
6
-
TA = -10 °C
-
10
-
TA = -20 °C
-
17
-
TA = -30 °C
-
32
-
TA = -40 °C
-
60
-
tSU(LSE)(3)
VDD is
stabilized
Startup time
s
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2,
are usually the same size. The crystal manufacturer typically specifies a load capacitance
which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray
where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it
is between 2 pF and 7 pF.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF is chosen,
then CL1 = CL2 = 8 pF.
48/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Figure 22. Typical application with a 32.768 kHz crystal
Resonator with
integrated capacitors
CL1
fLSE
OSC32_IN
32.768 KH z
resonator
Bias
controlled
gain
RF
STM32F10xxx
OSC32_OU T
CL2
ai14129b
5.3.7
Internal clock source characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
High-speed internal (HSI) RC oscillator
Table 23. HSI oscillator characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fHSI
Frequency
-
-
8
-
MHz
DuCy(HSI)
Duty cycle
-
45
-
55
%
-
-
1(3)
%
TA = –40 to 105 °C
–2
-
2.5
%
TA = –10 to 85 °C
–1.5
-
2.2
%
TA = 0 to 70 °C
–1.3
-
2
%
TA = 25 °C
–1.1
-
1.8
%
User-trimmed with the RCC_CR
register(2)
ACCHSI
Accuracy of the HSI
Factoryoscillator
calibrated
(4) (5)
tsu(HSI)(4)
HSI oscillator
startup time
-
1
-
2
µs
IDD(HSI)(4)
HSI oscillator power
consumption
-
-
80
100
µA
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from
the ST website www.st.com.
3. Guaranteed by design, not tested in production.
4. Based on characterization, not tested in production.
5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified
range.
DocID13586 Rev 17
49/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Low-speed internal (LSI) RC oscillator
Table 24. LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)
Parameter
Frequency
Min
Typ
Max
Unit
30
40
60
kHz
(3)
LSI oscillator startup time
-
-
85
µs
(3)
LSI oscillator power consumption
-
0.65
1.2
µA
IDD(LSI)
1. VDD = 3 V, TA = –40 to 85 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Wakeup time from low-power mode
The wakeup times given in Table 25 are measured on a wakeup phase with an 8-MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:

Stop or Standby mode: the clock source is the RC oscillator

Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under the ambient temperature and VDD supply
voltage conditions summarized in Table 8.
Table 25. Low-power mode wakeup timings
Symbol
tWUSLEEP(1)
tWUSTOP(1)
tWUSTDBY(1)
Parameter
Typ
Unit
Wakeup from Sleep mode
1.8
µs
Wakeup from Stop mode (regulator in run mode)
3.6
Wakeup from Stop mode (regulator in low-power mode)
5.4
Wakeup from Standby mode
50
µs
µs
1. The wakeup times are measured from the wakeup event to the point at which the user application code
reads the first instruction.
5.3.8
PLL characteristics
The parameters given in Table 26 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
Table 26. PLL characteristics
Value
Symbol
fPLL_IN
fPLL_OUT
50/101
Parameter
Unit
Min(1)
Typ
Max(1)
PLL input clock(2)
1
8.0
25
MHz
PLL input clock duty cycle
40
-
60
%
PLL multiplier output clock
16
-
36
MHz
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Table 26. PLL characteristics (continued)
Value
Symbol
Parameter
Min(1)
Typ
Max(1)
Unit
tLOCK
PLL lock time
-
-
200
µs
Jitter
Cycle-to-cycle jitter
-
-
300
ps
1. Based on device characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
5.3.9
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 85 °C unless otherwise specified.
Table 27. Flash memory characteristics
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
tprog
16-bit programming time
TA–40 to +85 °C
40
52.5
70
µs
tERASE
Page (1 KB) erase time
TA –40 to +85 °C
20
-
40
ms
Mass erase time
TA –40 to +85 °C
20
-
40
ms
Read mode
fHCLK = 36 MHz with 1 wait
state, VDD = 3.3 V
-
-
20
mA
Write / Erase modes 
fHCLK = 36 MHz, VDD = 3.3 V
-
-
5
mA
Power-down mode / Halt,
VDD = 3.0 to 3.6 V
-
-
50
µA
2
-
3.6
V
tME
IDD
Vprog
Supply current
Programming voltage
-
1. Guaranteed by design, not tested in production.
5.3.10
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (Electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.

FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
DocID13586 Rev 17
51/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
The test results are given in Table 28. They are based on the EMS levels and classes
defined in application note AN1709.
Table 28. EMS characteristics
Symbol
Parameter
Conditions
Level/Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD 3.3 V, TA +25 °C, 
fHCLK 36 MHz
conforms to IEC 61000-4-2
2B
VEFTB
VDD3.3 V, TA +25 °C, 
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS pins fHCLK 36 MHz
to induce a functional disturbance
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and pre
qualification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:

Corrupted program counter

Unexpected reset

Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second. To complete these trials, ESD stress can be applied directly on the device, over the
range of specification values. When unexpected behavior is detected, the software can be
hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC61967-2 standard which specifies the test board and the pin loading.
Table 29. EMI characteristics
Symbol Parameter
SEMI
52/101
Peak level
Conditions
Monitored
frequency band
0.1 MHz to 30 MHz
VDD 3.3 V, TA 25 °C,
30 MHz to 130 MHz
LQFP100 package
compliant with
130 MHz to 1GHz
IEC 61967-2
SAE EMI Level
DocID13586 Rev 17
Max vs. [fHSE/fHCLK]
Unit
8/36 MHz
7
8
dBµV
13
3.5
-
STM32F101x8, STM32F101xB
5.3.11
Electrical characteristics
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 30. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Electrostatic discharge
voltage (human body model)
Conditions
Class
TA +25 °C
conforming to JESD22-A114
2
TA +25 °C
Electrostatic discharge
conforming to 
VESD(CDM)
voltage (charge device model)
ANSI/ESD STM5.3.1
Maximum
Unit
value(1)
2000
V
II
500
1. Based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:

A supply overvoltage is applied to each power supply pin

A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78 IC latch-up standard.
Table 31. Electrical sensitivities
Symbol
LU
5.3.12
Parameter
Static latch-up class
Conditions
TA +85 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
DocID13586 Rev 17
53/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 32
Table 32. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
54/101
Description
Negative
injection
Positive
injection
Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13
-0
+0
Injected current on all FT pins
-5
+0
Injected current on any other pin
-5
+5
DocID13586 Rev 17
Unit
mA
STM32F101x8, STM32F101xB
5.3.13
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 33 are derived from tests
performed under the conditions summarized in Table 8. All I/Os are CMOS and TTL
compliant.
Table 33. I/O static characteristics
Symbol
VIL
VIH
Parameter
Low level input
voltage
High level input
voltage
Conditions
Min
Typ
Max
Standard IO
input low level
voltage
-
-
0.28*(VDD-2 V)+0.8 V(1)
IO FT(3) input low
level voltage
-
-
0.32*(VDD-2 V)+0.75 V(1)
All I/Os except
BOOT0
-
-
0.35VDD(2)
Standard IO
input high level
voltage
0.41*(VDD-2 V)+1.3
V(1)
-
-
0.42*(VDD-2 V)+1 V(1)
-
-
0.65VDD(2)
-
-
200
-
-
IO FT(3) input
high level voltage
All I/Os except
BOOT0
Vhys
Ilkg
V
Standard IO Schmitt
trigger voltage
hysteresis(4)
-
IO FT Schmitt trigger
voltage hysteresis(4)
-
5% VDD(5)
-
-
VSS VIN VDD
Standard I/Os
-
-
1
VIN = 5 V
I/O FT
-
-
3
30
40
50
Input leakage current
(6)
Unit
mV
µA
RPU
Weak pull-up
equivalent resistor(7)
VIN VSS
RPD
Weak pull-down
equivalent resistor(7)
VIN VDD
30
40
50
CIO
I/O pin capacitance
-
-
5
-
k
pF
1. Data based on design simulation.
2. Tested in production.
3. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
disabled.
4. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
5. With a minimum of 100 mV.
6. Leakage could be higher than max. if negative current is injected on adjacent pins.
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
DocID13586 Rev 17
55/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 23 and Figure 24 for standard I/Os, and
in Figure 25 and Figure 26 for 5 V tolerant I/Os.
Figure 23. Standard I/O input characteristics - CMOS port
$UHDQRW
GHWHUPLQHG
9,+9,/9
QW9 ,+
WLRQ
SURGXF
7,+PLQ
7,/PD[
Q
7HVWHGL
9 ''
9 9 ,+ ''
XODWLRQV
LP
V
JQ
VL
RQGH
%DVHG
9 9 ''
LPXODWLRQV
,/
V
JQ
VL
GH
%DVHGRQ
9 ''
LUHPHQW9 ,/
D
VWDQG
&026
LUHPH
UGUHTX
UGUHTX
&026VWDQGD
GXFWLRQ
7HVWHGLQSUR
9''9
DLF
Figure 24. Standard I/O input characteristics - TTL port
9,+9,/9
7,+PLQ
$UHDQRW
GHWHUPLQHG
77/UHTXLUHPHQWV 9,+ 9
QV
LJQVLPXODWLR
9 ,/ 9 ''
7,/PD[
9 9 ,+ '' VLPXODWLRQV
JQ
VL
GH
Q
%DVHGR
HV
%DVHGRQG
77/UHTXLUHPHQWV 9,/ 9
9''9
DLE
56/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Figure 25. 5 V tolerant I/O input characteristics - CMOS port
$UHDQRW
GHWHUPLQHG
9,+9,/9
PHQWV9 ,+
UHTXLUH
QGDUG
026VWD
&
Q
WLR
SURGXF
Q
7HVWHGL
9 ''
9 ,+ 9 '' VLPXODWLRQV
LJQ
HV
G
RQ
G
%DVH
9 ,/ 9 ''
DWLRQV
HVLJQVLPXO
%DVHGRQG
9
HQW9 ,/ ''
GDUGUHTXLUP
&026VWDQ
GXFWLRQ
7HVWHGLQSUR
9''9
9''
DLF
Figure 26. 5 V tolerant I/O input characteristics - TTL port
9,+9,/9
$UHDQRW
GHWHUPLQHG
77/UHTXLUHPHQW9 ,+ 9
9 '' DWLRQV
9 ,+ VL
JQVLPXO
GH
Q
R
%DVHG
9 ,/ 9 '' LPXODWLRQV
GHVLJQV
Q
R
HG
DV
%
7,+PLQ
7,/PD[
77/UHTXLUHPHQWV9 ,/ 9
9''9
DLE
DocID13586 Rev 17
57/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Output driving current
The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:

The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 6).

The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 6).
Output voltage levels
Unless otherwise specified, the parameters given in Table 34 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 8. All I/Os are CMOS and TTL compliant.
Table 34. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output Low level voltage for an I/O pin
when 8 pins are sunk at the same time
VOH(3)
Output High level voltage for an I/O pin
when 8 pins are sourced at the same time
VOL(1)
Output low level voltage for an I/O pin
when 8 pins are sunk at the same time
VOH(3)
Output high level voltage for an I/O pin
when 8 pins are sourced at the same time
VOL(1)
Output low level voltage for an I/O pin
when 8 pins are sunk at the same time
VOH (3)
Output high level voltage for an I/O pin
when 8 pins are sourced at the same time
VOL(1)
Output low level voltage for an I/O pin
when 8 pins are sunk at the same time
VOH(3)
Output high level voltage for an I/O pin
when 8 pins are sourced at the same time
Conditions
Min
Max
CMOS port(2),,
IIO = +8 mA,
2.7 V < VDD < 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
-
1.3
VDD–1.3
-
-
0.4
VDD–0.4
-
TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
IIO = +20 mA(4)
2.7 V < VDD < 3.6 V
IIO = +6 mA(4)
2 V < VDD < 2.7 V
Unit
V
V
V
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 6
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Based on characterization data, not tested in production.
58/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Table 35, respectively.
Unless otherwise specified, the parameters given in Table 35 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 8.
Table 35. I/O AC characteristics(1)
MODEx
[1:0] bit
value(1)
Symbol
Parameter
fmax(IO)out Maximum frequency(2)
10
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
fmax(IO)out Maximum frequency(2)
01
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
Fmax(IO)out Maximum
11
tf(IO)out
tr(IO)out
Frequency(2)
Output high to low level fall
time
Conditions
CL = 50 pF, VDD = 2 V to 3.6 V
tEXTIpw
Unit
2
MHz
125(3)
CL = 50 pF, VDD = 2 V to 3.6 V
ns
(3)
125
CL= 50 pF, VDD = 2 V to 3.6 V
10
MHz
25(3)
CL= 50 pF, VDD = 2 V to 3.6 V
ns
25(3)
CL= 30 pF, VDD = 2.7 V to 3.6 V
50
MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V
30
MHz
CL = 50 pF, VDD = 2 V to 2.7 V
20
MHz
CL = 30 pF, VDD = 2.7 V to 3.6 V
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
12(3)
CL = 30 pF, VDD = 2.7 V to 3.6
V
5(3)
Output low to high level rise
CL = 50 pF, VDD = 2.7 V to 3.6 V
time
CL = 50 pF, VDD = 2 V to 2.7 V
-
Max
Pulse width of external
signals detected by the
EXTI controller
-
ns
8(3)
12(3)
10
ns
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a
description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 27.
3. Guaranteed by design, not tested in production.
DocID13586 Rev 17
59/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Figure 27. I/O AC characteristics definition
(;7(51$/
287387
21S)
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWId7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\S)
DL
5.3.14
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 33).
Unless otherwise specified, the parameters given in Table 36 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 8.
Table 36. NRST pin characteristics
Symbol
VIL(NRST)(1)
VIH(NRST)
(1)
Vhys(NRST)
Conditions
Min
Typ
Max
NRST Input low level voltage
-
–0.5
-
0.8
NRST Input high level voltage
-
2
-
VDD+0.5
NRST Schmitt trigger voltage
hysteresis
-
-
200
-
mV
VIN VSS
30
40
50
k
NRST Input filtered pulse
-
-
-
100
ns
NRST Input not filtered pulse
-
300
-
-
ns
Weak pull-up equivalent resistor(2)
RPU
VF(NRST)(1)
VNF(NRST)
Parameter
(1)
Unit
V
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance must be minimum (~10% order).
60/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Figure 28. Recommended NRST pin protection
VDD
External
reset circuit(1)
NRST(2)
RPU
Internal reset
Filter
0.1 µF
STM32F10x
ai14132d
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 36. Otherwise the reset will not be taken into account by the device.
DocID13586 Rev 17
61/101
100
Electrical characteristics
5.3.15
STM32F101x8, STM32F101xB
TIM timer characteristics
The parameters given in Table 37 are guaranteed by design.
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output
alternate function characteristics (output compare, input capture, external clock, PWM
output).
Table 37. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
Parameter
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
fTIMxCLK = 36 MHz
27.8
-
ns
0
fTIMxCLK/2
MHz
fTIMxCLK = 36 MHz
0
18
MHz
Timer resolution
-
-
16
bit
16-bit counter clock period
when internal clock is
selected
-
1
65536
tTIMxCLK
1820
µs
Timer resolution time
Timer external clock
frequency on CH1 to CH4
tMAX_COUNT Maximum possible count
fTIMxCLK = 36 MHz 0.0278
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 36 MHz
-
119.2
s
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
5.3.16
Communications interfaces
I2C interface characteristics
The STM32F101xx medium-density access line I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 38. Refer also to Section 5.3.12: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
62/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Table 38. I2C characteristics
Standard mode I2C(1) Fast mode I2C(1)(2)
Symbol
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
20+0.1Cb
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition setup
time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
µs
tw(STO:STA)
Stop to Start condition time (bus
free)
4.7
-
1.3
-
µs
Cb
Capacitive load for each bus line
-
400
-
400
pF
µs
ns
µs
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C
fast mode clock.
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
DocID13586 Rev 17
63/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Figure 29. I2C bus AC waveforms and measurement circuit(1)
9''B,&
9''B,&
5S
5S
,ð&EXV
670)[
5V
6'$
5V
6&/
6WDUWUHSHDWHG
6WDUW
6WDUW
WVX67$
6'$
WI6'$
WU6'$
WK67$
WVX6'$
WZ6&//
WK6'$
WVX67267$
6WRS
6&/
WZ6&/+
WU6&/
WVX672
WI6&/
DLH
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
2. Rs = Series protection resistors, Rp = Pull-up resistors, VDD_I2C = I2C bus supply.
Table 39. SCL frequency (fPCLK1= 36 MHz, VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 k
400
0x801E
300
0x8028
200
0x803C
100
0x00B4
50
0x0168
20
0x0384
2
1. RP = External pull-up resistance, fSCL = I C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external
components used to design the application.
64/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 40 are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 8.
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI characteristics
Symbol
fSCK
1/tc(SCK)
Parameter
Conditions
SPI clock frequency
Min
Max
Master mode
0
18
Slave mode
0
18
SPI clock rise and fall
time
Capacitive load: C = 30 pF
tsu(NSS)(1)
NSS setup time
Slave mode
4 tPCLK
-
th(NSS)(1)
NSS hold time
Slave mode
73
-
tw(SCKH)
tw(SCKL)(1)
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
50
60
tsu(MI) (1)
Data input setup time
Master mode
SPI1
1
-
SPI2
5
-
tsu(SI)(1)
Data input setup time
Slave mode
1
-
th(MI) (1)
Data input hold time
Master mode
SPI1
1
-
SPI2
5
-
th(SI)(1)
Data input hold time
Slave mode
3
-
tr(SCK)
tf(SCK)
(1)
ta(SO)(1)(2)
-
-
8
Data output disable time Slave mode
0
55
0
4 tPCLK
10
(1)
Data output valid time
Slave mode (after enable edge)
-
25
tv(MO)(1)
Data output valid time
Master mode (after enable
edge)
-
3
Slave mode (after enable edge)
25
-
Master mode (after enable
edge)
4
-
tv(SO)
th(SO)(1)
th(MO)(1)
Data output hold time
MHz
ns
Slave mode, fPCLK = 36 MHz,
Data output access time presc = 4
Slave mode, fPCLK = 24 MHz
tdis(SO)(1)(3)
Unit
1. Based on characterization, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
DocID13586 Rev 17
65/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Figure 30. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
tSU(NSS)
SCK Input
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 31. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
tSU(NSS)
SCK Input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
M SB IN
B I T1 IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
66/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Figure 32. SPI timing diagram - master mode(1)
High
NSS input
SCK Input
SCK Input
tc(SCK)
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
MS BIN
tr(SCK)
tf(SCK)
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
tv(MO)
B I T1 OUT
LSB OUT
th(MO)
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID13586 Rev 17
67/101
100
Electrical characteristics
5.3.17
STM32F101x8, STM32F101xB
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 41 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 8.
Note:
It is recommended to perform a calibration after each power-up.
Table 41. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Power supply
-
2.4
-
3.6
V
VREF+
Positive reference voltage
-
2.4
-
VDDA
V
IVREF
Current on the VREF input
pin
-
-
160(1)
220(1)
µA
fADC
ADC clock frequency
-
0.6
-
14
MHz
fS(2)
Sampling rate
-
0.05
-
1
MHz
fADC = 14 MHz
-
-
823
kHz
-
-
-
17
1/fADC
-
0 (VSSA or VREFtied to ground)
-
VREF+
V
See Equation 1 and
Table 42 for details
-
-
50

fTRIG(2)
VAIN
External trigger frequency
Conversion voltage range(3)
RAIN(2)
External input impedance
RADC(2)
Sampling switch resistance
-
-
-
1

CADC(2)
Internal sample and hold
capacitor
-
-
-
8
pF
tCAL(2)
Calibration time
fADC = 14 MHz
5.9
µs
-
83
1/fADC
tlat(2)
Injection trigger conversion
latency
fADC = 14 MHz
-
-
0.214
µs
-
-
-
3(4)
1/fADC
tlatr(2)
Regular trigger conversion
latency
fADC = 14 MHz
-
-
0.143
µs
tS(2)
Sampling time
fADC = 14 MHz
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time
(including sampling time)
-
(4)
1/fADC
-
-
2
0.107
-
17.1
µs
1.5
-
239.5
1/fADC
-
0
0
1
µs
fADC = 14 MHz
1
-
18
µs
-
14 to 252 (tS for sampling +12.5 for
successive approximation)
1/fADC
1. Based on characterization results, not tested in production.
2. Guaranteed by design, not tested in production.
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 3: Pinouts and pin description for further details.
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 41.
68/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Electrical characteristics
Equation 1: RAIN max formula:
TS
- – R ADC
R AIN  ------------------------------------------------------------N+2
f ADC  C ADC  ln  2

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 42. RAIN max for fADC = 14 MHz(1)
Ts (cycles)
tS (µs)
RAIN max (k)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design, not tested in production.
Table 43. ADC accuracy - limited test conditions(1) (2)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
Typ
Max(3)
fPCLK2 = 28 MHz,
fADC = 14 MHz, RAIN < 10 k,
VDDA = 3 V to 3.6 V
TA = 25 °C
Measurements made after
ADC calibration
±1.3
±2
±1
±1.5
±0.5
±1.5
±0.7
±1
±0.8
±1.5
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should
be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially
inject negative current. 
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not
affect the ADC accuracy.
3. Based on characterization, not tested in production.
DocID13586 Rev 17
69/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Table 44. ADC accuracy(1) (2) (3)
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK2 = 28 MHz,
fADC = 14 MHz, RAIN < 10 k,
VDDA = 2.4 V to 3.6 V
Measurements made after
ADC calibration
Typ
Max(4)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to
standard analog pins which may potentially inject negative current. 
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not
affect the ADC accuracy.
4. Based on characterization, not tested in production.
Figure 33. ADC accuracy characteristics
V
V
[1LSBIDEAL = REF+ (or DDA depending on package)]
4096
4096
EG
4095
4094
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4093
(2)
ET
(3)
7
(1)
6
5
4
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
70/101
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
2
3
4
5
6
7
4093 4094 4095 4096
VDDA
DocID13586 Rev 17
ai14395b
STM32F101x8, STM32F101xB
Electrical characteristics
Figure 34. Typical connection diagram using the ADC
STM32F10xxx
VDD
RAIN(1)
Sample and hold ADC
converter
VT
0.6 V
RADC(1)
AINx
VT
0.6 V
VAIN
Cparasitic
12-bit
converter
CADC(1)
IL±1 µA
ai14139d
1. Refer to Table 41 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 35 or Figure 36,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 35. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F10xxx
V REF+
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF-
ai14380b
1. VREF+ and VREF- inputs are available only on 100-pin packages.
DocID13586 Rev 17
71/101
100
Electrical characteristics
STM32F101x8, STM32F101xB
Figure 36. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F10xxx
VREF+/VDDA
1 µF // 10 nF
VREF–/VSSA
ai14381b
1. VREF+ and VREF- inputs are available only on 100-pin packages.
5.3.18
Temperature sensor characteristics
Table 45. TS characteristics
Symbol
Parameter
TL(1)
Avg_Slope
Typ
Max
Unit
-
1
2
°C
Average slope
4.0
4.3
4.6
mV/°C
Voltage at 25°C
1.34
1.43
1.52
V
Startup time
4
-
10
µs
ADC sampling time when reading the
temperature
-
-
17.1
µs
VSENSE linearity with temperature
(1)
V25(1)
tSTART
Min
(2)
TS_temp(3)(2)
1. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
72/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Package characteristics
6
Package characteristics
6.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.2
UFQFPN48 package information
Figure 37. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
'
$
(
(
7
GGG
$
6HDWLQJ
SODQH
E
H
'HWDLO<
'
([SRVHGSDG
DUHD
<
'
/
&[ƒ
SLQFRUQHU
(
5W\S
'HWDLO=
=
$%B0(B9
1. Drawing is not to scale.
2. There is an exposed die pad on the underside of the QFPN package, this pad is not internally connected to
the VSS or VDD power pads. It is recommended to connect it to VSS.
3. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.
DocID13586 Rev 17
73/101
100
Package characteristics
STM32F101x8, STM32F101xB
Table 46. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 38. UFQFPN48 recommended footprint
1. Dimensions are expressed in millimeters.
74/101
DocID13586 Rev 17
$%B)3B9
STM32F101x8, STM32F101xB
Package characteristics
Device Marking for UFQFPN48
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 39. UFQFPN48 marking example (package top view)
3URGXFW,GHQWLILFDWLRQ
670
)&8
< ::
5HYLVLRQFRGH
;
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID13586 Rev 17
75/101
100
Package characteristics
6.3
STM32F101x8, STM32F101xB
VFQFPN36 package information
Figure 40. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad
flat
package outline
6HDWLQJSODQH
&
GGG
&
$ $
$
$
(
E
H
'
'
.
3LQ,'
5 (
/
/
=5B0(B9
1. Drawing is not to scale.
76/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Package characteristics
Table 47. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad
flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.800
0.900
1.000
0.0315
0.0354
0.0394
A1
-
0.020
0.050
-
0.0008
0.0020
A2
-
0.650
1.000
-
0.0256
0.0394
A3
-
0.200
-
-
0.0079
-
b
0.180
0.230
0.300
0.0071
0.0091
0.0118
D
5.875
6.000
6.125
0.2313
0.2362
0.2411
D2
1.750
3.700
4.250
0.0689
0.1457
0.1673
E
5.875
6.000
6.125
0.2313
0.2362
0.2411
E2
1.750
3.700
4.250
0.0689
0.1457
0.1673
e
0.450
0.500
0.550
0.0177
0.0197
0.0217
L
0.350
0.550
0.750
0.0138
0.0217
0.0295
K
0.250
-
-
0.0098
-
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID13586 Rev 17
77/101
100
Package characteristics
STM32F101x8, STM32F101xB
Figure 41. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad
flat
package recommended footprint
=5B)3B9
1. Dimensions are expressed in millimeters.
78/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Package characteristics
Device Marking for VFQFPN36
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 42. VFQFPN36 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670
)78
'DWHFRGH
< ::
5HYLVLRQFRGH
3LQLGHQWLILHU
5
06Y9
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID13586 Rev 17
79/101
100
Package characteristics
6.4
STM32F101x8, STM32F101xB
LQFP100 package information
Figure 43. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline
PP
F
$
$
$
6($7,1*3/$1(
&
*$8*(3/$1(
'
$
.
FFF &
/
'
/
'
3,1
,'(17,),&$7,21
(
(
(
E
H
/B0(B9
1. Drawing is not to scale.
Table 48. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
80/101
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Package characteristics
Table 48. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 44. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
DLF
1. Dimensions are expressed in millimeters.
DocID13586 Rev 17
81/101
100
Package characteristics
STM32F101x8, STM32F101xB
Device Marking for LQFP100
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 45. LQFP100 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670)
2SWLRQDOJDWHPDUN
97;
5HYLVLRQFRGH
'DWHFRGH
< ::
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
82/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
LQFP64 package information
Figure 46. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
6($7,1*3/$1(
&
$
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
E
(
6.5
Package characteristics
H
:B0(B9
1. Drawing is not to scale.
Table 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DocID13586 Rev 17
83/101
100
Package characteristics
STM32F101x8, STM32F101xB
Table 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
DLF
1. Dimensions are expressed in millimeters.
84/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Package characteristics
Device Marking for LQFP64
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 48. LQFP64 marking example (package top view)
5HYLVLRQFRGH
5
(QJLQHHULQJ6DPSOHPDUNLQJ
670)
57
3LQLGHQWLILHU
'DWHFRGH
< ::
06Y9
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID13586 Rev 17
85/101
100
Package characteristics
6.6
STM32F101x8, STM32F101xB
LQFP48 package information
Figure 49. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
F
$
$
$
6($7,1*
3/$1(
&
PP
*$8*(3/$1(
FFF &
.
$
'
'
/
/
'
3,1
,'(17,),&$7,21
(
H
1. Drawing is not to scale.
86/101
(
(
E
DocID13586 Rev 17
%B0(B9
STM32F101x8, STM32F101xB
Package characteristics
Table 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID13586 Rev 17
87/101
100
Package characteristics
STM32F101x8, STM32F101xB
Figure 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
DLG
1. Dimensions are expressed in millimeters.
88/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Package characteristics
Device Marking for LQFP48
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 51. LQFP48 marking example (package top view)
3URGXFW,GHQWLILFDWLRQ
670)
&%7
'DWHFRGH
< ::
5HYLVLRQFRGH
5
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID13586 Rev 17
89/101
100
Package characteristics
6.7
STM32F101x8, STM32F101xB
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 8: General operating conditions on page 33.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x JA)
Where:

TA max is the maximum ambient temperature in C,

JA is the package junction-to-ambient thermal resistance, in C/W,

PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),

PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 51. Package thermal characteristics
Symbol
JA
6.7.1
Parameter
Value
Thermal resistance junction-ambient
LQFP 100 - 14 x 14 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP 64 - 10 x 10 mm / 0.5 mm pitch
45
Thermal resistance junction-ambient
LQFP 48 - 7 x 7 mm / 0.5 mm pitch
55
Thermal resistance junction-ambient
UFQFPN 48 - 6 x 6 mm / 0.5 mm pitch
32
Thermal resistance junction-ambient
VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch
18
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
90/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Evaluating the maximum junction temperature for an application
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 52: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature. Here, only
temperature range 6 is available (–40 to 85 °C).
The following example shows how to calculate the temperature range needed for a given
application, making it possible to check whether the required temperature range is
compatible with the STM32F101xx junction temperature range.
Example: high-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
mode at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Table 51 TJmax is calculated as follows:
–
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C
This is within the junction temperature range of the STM32F101xx (–40 < TJ < 105 °C).
Figure 52. LQFP64 PD max vs. TA
700
600
PD (mW)
6.7.2
Package characteristics
500
400
Suffix 6
300
200
100
0
65
75
85
95
105
115
TA (°C)
DocID13586 Rev 17
91/101
100
Ordering information scheme
7
STM32F101x8, STM32F101xB
Ordering information scheme
Table 52. Ordering information scheme

Example:
STM32 F
101 C
8
T
6
xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
101 = access line
Pin count
T = 36 pins
C = 48 pins
R = 64 pins
V = 100 pins
Flash memory size(1)
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
Package
T = LQFP
U = VFQFPN or UFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
Options
xxx = programmed parts
TR = tape and real
1. Although STM32F101x6 devices are not described in this datasheet, orderable part numbers that do not
show the A internal code after temperature range code 6 should be referred to this datasheet for the
electrical characteristics. The low-density datasheet only covers STM32F101x6 devices that feature the A
code.
92/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Ordering information scheme
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact the nearest ST sales office.
DocID13586 Rev 17
93/101
100
Revision history
8
STM32F101x8, STM32F101xB
Revision history
Table 53. Document revision history
Date
Revision
06-Jun-2007
1
First draft.
2
IDD values modified in Table 11: Maximum current consumption in Run
and Sleep modes (TA = 85 °C).
VBAT range modified in Power supply schemes.
VREF+ min value, tSTAB, tlat and fTRIG added to Table 41: ADC
characteristics. Table 37: TIMx characteristics modified.
Note 6 modified and Note 8, Note 5 and Note 7 added below Table 4:
Medium-density STM32F101xx pin definitions.
Figure 20: Low-speed external clock source AC timing diagram,
Figure 11: Power supply scheme, Figure 28: Recommended NRST pin
protection and Figure 29: I2C bus AC waveforms and measurement
circuit(1) modified.
Sample size modified and machine model removed in Electrostatic
discharge (ESD).
Number of parts modified and standard reference updated in Static latchup. 25 °C and 85 °C conditions removed and class name modified in
Table 31: Electrical sensitivities.
tSU(LSE) changed to tSU(LSE) in Table 21: HSE 4-16 MHz oscillator
characteristics.
In Table 27: Flash memory characteristics, typical endurance added, data
retention for TA = 25 °C removed and data retention for TA = 85 °C added.
Note removed below Table 8: General operating conditions.
VBG changed to VREFINT in Table 11: Embedded internal reference
voltage. IDD max values added to Table 11: Maximum current
consumption in Run and Sleep modes (TA = 85 °C).
IDD(HSI) max value added to Table 23: HSI oscillator characteristics.
RPU and RPD min and max values added to Table 33: I/O static
characteristics. RPU min and max values added to Table 36: NRST pin
characteristics (two notes removed).
Datasheet title corrected. USB characteristics section removed.
Features on page 1 list optimized. Small text changes.
20-Jul-07
94/101
Changes
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Revision history
Table 53. Document revision history (continued)
Date
18-Oct-2007
Revision
Changes
3
VESD(CDM) value added to Table 30: ESD absolute maximum ratings.
Note added below Table 10: Embedded reset and power control block
characteristics. and below Table 21: HSE 4-16 MHz oscillator
characteristics.
Note added below Table 34: Output voltage characteristics and VOH
parameter description modified.
Table 41: ADC characteristics and Table 43: ADC accuracy - limited test
conditions modified.
Figure 33: ADC accuracy characteristics modified.
Packages are ECOPACK® compliant.
Tables modified in Section 5.3.5: Supply current characteristics.
ADC and ANTI_TAMPER signal names modified (see Table 4: Mediumdensity STM32F101xx pin definitions). Table 4: Medium-density
STM32F101xx pin definitions modified. Note 4 removed and values
updated in Table 21: Typical current consumption in Standby mode.
Vhys modified in Table 33: I/O static characteristics.
Updated: Table 28: EMS characteristics and Table 29: EMI
characteristics.
tVDD modified in Table 9: Operating conditions at power-up / power-down.
Typical values modified, note 2 modified and note 3 removed in Table 25:
Low-power mode wakeup timings.
Maximum current consumption Table 12, Table 13 and Table 14 updated.
Values added and notes added in Table 15: Typical and maximum current
consumptions in Stop and Standby modes.
On-chip peripheral current consumption on page 43 added.
Package mechanical data inch values are calculated from mm and
rounded to 4 decimal digits (see Section 6: Package characteristics).
Vprog added to Table 27: Flash memory characteristics.
TS_temp added to Table 45: TS characteristics.
TS_vrefint added to Table 11: Embedded internal reference voltage.
Handling of unused pins specified in General input/output characteristics
on page 55. All I/Os are CMOS and TTL compliant.
Table 4: Medium-density STM32F101xx pin definitions: table clarified and
Note 7 modified.
Internal LSI RC frequency changed from 32 to 40 kHz (see Table 24: LSI
oscillator characteristics). Values added to Table 25: Low-power mode
wakeup timings. NEND modified in Table 27: Flash memory
characteristics.
Option byte addresses corrected in Figure 8: Memory map.
ACCHSI modified in Table 23: HSI oscillator characteristics.
tJITTER removed from Table 26: PLL characteristics.
Appendix A: Important notes on page 71 added.
Added: Figure 13, Figure 14, Figure 16 and Figure 18.
DocID13586 Rev 17
95/101
100
Revision history
STM32F101x8, STM32F101xB
Table 53. Document revision history (continued)
Date
22-Nov-2007
96/101
Revision
Changes
4
Document status promoted from preliminary data to datasheet. Small text
changes.
STM32F101CB part number corrected in Table 1: Device summary.
Number of communication peripherals corrected for STM32F101Tx in
Table 2: Device features and peripheral counts (STM32F101xx mediumdensity access line) and Number of GPIOs corrected for LQFP package.
Power supply schemes on page 16 modified.
Main function and default alternate function modified for PC14 and PC15
in Table 4: Medium-density STM32F101xx pin definitions, Note 6 added,
Remap column added.
Figure 11: Power supply scheme modified. VDD VSS ratings modified
and Note 1 modified in Table 5: Voltage characteristics. Note 1 modified in
Table 6: Current characteristics.
Note 2 added in Table 10: Embedded reset and power control block
characteristics.
48 and 72 MHz frequencies removed from Table 12, Table 13 and
Table 14. MCU ‘s operating conditions modified in Typical current
consumption on page 42. 
IDD_VBAT typical value at 2.4 V modified and IDD_VBAT maximum value
added in Table 15: Typical and maximum current consumptions in Stop
and Standby modes. Note added in Table 16 on page 42 and Table 17 on
page 43. Table 18: Peripheral current consumption modified.
Figure 17: Typical current consumption in Stop mode with regulator in
Low-power mode versus temperature at VDD = 3.3 V and 3.6 V added.
Note removed below Figure 30: SPI timing diagram - slave mode and
CPHA = 0. Note added below Figure 31: SPI timing diagram - slave mode
and CPHA = 1(1).
Figure 34: Typical connection diagram using the ADC modified.
tSU(HSE) and tSU(LSE) conditions modified in Table 21 and Table 22,
respectively. Maximum values removed from Table 25: Low-power mode
wakeup timings. tRET conditions modified in Table 27: Flash memory
characteristics. Conditions modified in Table 28: EMS characteristics.
Impedance size specified in A.4: Voltage glitch on ADC input 0 on
page 71. Small text changes in Table 34: Output voltage characteristics.
Section 5.3.11: Absolute maximum ratings (electrical sensitivity) updated.
Details on unused pins removed from General input/output characteristics
on page 55.
Table 40: SPI characteristics updated. Notes added and Ilkg removed in
Table 41: ADC characteristics. Note added in Table 42 and Table 45.
Note 3 and Note 2 added below Table 43: ADC accuracy - limited test
conditions. Avg_Slope and V25 modified in Table 45: TS characteristics.
JAvalue for VFQFPN36 package added in Table 51: Package thermal
characteristicsI2C interface characteristics on page 62 modified.
Order codes replaced by Section 7: Ordering information scheme.
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Revision history
Table 53. Document revision history (continued)
Date
14-Mar-2008
21-Mar-2008
22-May-2008
Revision
Changes
5
Figure 2: Clock tree on page 13 added.
CRC added (see CRC (cyclic redundancy check) calculation unit on
page 9 and Figure 8: Memory map on page 29 for address).
Maximum TJ value given in Table 7: Thermal characteristics on page 33.
PD, TA and TJ added, tprog values modified and tprog description clarified in
Table 27: Flash memory characteristics on page 51.
IDD modified in Table 15: Typical and maximum current consumptions in
Stop and Standby modes on page 39.
ACCHSI modified in Table 23: HSI oscillator characteristics on page 49,
note 2 removed.
tRET modified in Table 27: Flash memory characteristics.
VNF(NRST) unit corrected in Table 36: NRST pin characteristics on
page 60.
Table 40: SPI characteristics on page 65 modified.
IVREF added in Table 41: ADC characteristics on page 68.
Table 43: ADC accuracy - limited test conditions added. Table 44: ADC
accuracy modified.
LQFP100 package specifications updated (see Section 6: Package
characteristics on page 73).
Recommended LQFP100, LQFP64, LQFP48 and VFQFPN36 footprints
added (see Figure 44, Figure 47, Figure 50 and Figure 41).
Section 6.7: Thermal characteristics on page 90 modified.
Appendix A: Important notes removed.
6
Small text changes.
In Table 27: Flash memory characteristics:
– NEND tested over the whole temperature range
– cycling conditions specified for tRET
– tRET min modified at TA = 55 °C
Figure 2: Clock tree corrected. Figure 8: Memory map clarified.
V25, Avg_Slope and TL modified in Table 45: TS characteristics.
CRC feature removed.
7
Section 1: Introduction modified, Section 2.2: Full compatibility throughout
the family added. CRC feature added.
IDD_VBAT removed from Table 21: Typical current consumption in Standby
mode on page 42.
Values added to Table 39: SCL frequency (fPCLK1= 36 MHz, VDD_I2C =
3.3 V) on page 64.
Figure 30: SPI timing diagram - slave mode and CPHA = 0 on page 66
modified. Equation 1 corrected.
Section 6.7.2: Evaluating the maximum junction temperature for an
application on page 91 added.
Axx option added to Table 52: Ordering information scheme on page 92.
DocID13586 Rev 17
97/101
100
Revision history
STM32F101x8, STM32F101xB
Table 53. Document revision history (continued)
Date
Revision
Changes
21-Jul-2008
8
Small text changes.
Power supply supervisor on page 16 modified and VDDA added to Table 8:
General operating conditions on page 33.
Capacitance modified in Figure 11: Power supply scheme on page 31.
Table notes revised in Section 5: Electrical characteristics.
Maximum value of tRSTTEMPO modified in Table 10: Embedded reset and
power control block characteristics on page 35.
Values added to Table 15: Typical and maximum current consumptions in
Stop and Standby modes and Table 21: Typical current consumption in
Standby mode removed.
fHSE_ext modified in Table 19: High-speed external user clock
characteristics on page 45. fPLL_IN modified in Table 26: PLL
characteristics on page 50.
fHCLK corrected in Table 28: EMS characteristics.
Minimum SDA and SCL fall time value for Fast mode removed from
Table 38: I2C characteristics on page 63, note 1 modified.
th(NSS) modified in Table 40: SPI characteristics on page 65 and
Figure 30: SPI timing diagram - slave mode and CPHA = 0 on page 66.
CADC modified in Table 41: ADC characteristics on page 68 and
Figure 34: Typical connection diagram using the ADC modified.
fPCLK2 corrected in Table 43: ADC accuracy - limited test conditions and
Table 44: ADC accuracy.
Typical TS_temp value removed from Table 45: TS characteristics on
page 72.
LQFP48 package specifications updated (see Table 50, Table 49 and
Table 50).
Axx option removed from Table 52: Ordering information scheme on
page 92.
24-Jul-2008
9
First page modified: “Up to 2 x I²C interfaces” instead of “1 x I²C interface”
10
STM32F101xx devices with 32 Kbyte Flash memory capacity removed,
document updated accordingly.
Section 2.2: Full compatibility throughout the family on page 14 updated.
Notes modified in Table 4: Medium-density STM32F101xx pin definitions
on page 24.
Note 2 modified below Table 5: Voltage characteristics on page 32,
|VDDx| min and |VDDx| min removed.
Note 2 added to Table 8: General operating conditions on page 33.
Measurement conditions specified in Section 5.3.5: Supply current
characteristics on page 36.
IDD in standby mode at 85 °C modified in Table 15: Typical and maximum
current consumptions in Stop and Standby modes on page 39.
General input/output characteristics on page 55 modified.
Note added below Table 52: Ordering information scheme.
Section 7.1: Future family enhancements removed. Small text changes.
23-Sep-2008
98/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
Revision history
Table 53. Document revision history (continued)
Date
21-Apr-2009
22-Sep-2009
20-May-2010
Revision
Changes
11
I/O information clarified on page 1. Figure 8: Memory map modified.
In Table 4: Medium-density STM32F101xx pin definitions: PB4, PB13,
PB14, PB15, PB3/TRACESWO moved from Default column to Remap
column.
Note modified in Table 12: Maximum current consumption in Run mode,
code with data processing running from Flash and Table 14: Maximum
current consumption in Sleep mode, code running from Flash or RAM.
Figure 16, Figure 17 and Figure 18 show typical curves.
Table 19: High-speed external user clock characteristics and Table 20:
Low-speed external user clock characteristics modified.
ACCHSI max values modified in Table 23: HSI oscillator characteristics.
Small text changes.
12
Note 5 updated and Note 4 added in Table 4: Medium-density
STM32F101xx pin definitions.
VRERINT and TCoeff added to Table 11: Embedded internal reference
voltage. Typical IDD_VBAT value added in Table 15: Typical and maximum
current consumptions in Stop and Standby modes. Figure 15: Typical
current consumption on VBAT with RTC on versus temperature at
different VBAT values added.
fHSE_ext min modified in Table 19: High-speed external user clock
characteristics.
CL1 and CL2 replaced by C in Table 21: HSE 4-16 MHz oscillator
characteristics and Table 22: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables.
Table 23: HSI oscillator characteristics modified. Conditions removed from
Table 25: Low-power mode wakeup timings.
Figure 28: Recommended NRST pin protection modified.
Note 1 modified below Figure 21: Typical application with an 8 MHz
crystal.
Figure 28: Recommended NRST pin protection modified.
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to
IEC 61967-2 in Section 5.3.10: EMC characteristics on page 51.
Jitter added to Table 26: PLL characteristics. CADC and RAIN parameters
modified in Table 41: ADC characteristics. RAIN max values modified in
Table 42: RAIN max for fADC = 14 MHz.
Small text changes.
13
Added STM32F101TB devices.
Added VFQFPN48 package.
Updated note 2 below Table 38: I2C characteristics
Updated Figure 29: I2C bus AC waveforms and measurement circuit(1)
Updated Figure 28: Recommended NRST pin protection
Updated Section 5.3.12: I/O current injection characteristics
DocID13586 Rev 17
99/101
100
Revision history
STM32F101x8, STM32F101xB
Table 53. Document revision history (continued)
Date
Revision
Changes
14
Updated footnotes below Table 5: Voltage characteristics on page 32 and
Table 6: Current characteristics on page 33
Updated tw min in Table 19: High-speed external user clock
characteristics on page 45
Updated startup time in Table 22: LSE oscillator characteristics (fLSE =
32.768 kHz) on page 48
Added Section 5.3.12: I/O current injection characteristics
Updated Section 5.3.13: I/O port characteristics
15
Replaced VQFN48 package with UQFN48 in cover page packages,
Table 2: Device features and peripheral counts (STM32F101xx mediumdensity access line), Figure 7: STM32F101xx medium-density access line
UVFQPFN48 pinout, Table 4: Medium-density STM32F101xx pin
definitions, Figure 4: STM32F101xx medium-density access line LQFP64
pinout, added Figure 37: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package
outline, Table 47: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package
mechanical data, Table 52: Ordering information scheme and updated
Table 51: Package thermal characteristics
Updated ‘All GPIOs are high current...’ in Section 2.3.22: GPIOs (generalpurpose inputs/outputs)
Updated Table 4: Medium-density STM32F101xx pin definitions
Corrected Sigma letter in Section 5.1.1: Minimum and maximum values
Updated Table 6: Current characteristics
Added ‘VIN’ in Table 8: General operating conditions
Removed the first sentence in Section 5.3.16: Communications interfaces
Updated first sentence in Output driving current
Added note 5. in Table 23: HSI oscillator characteristics
Updated ‘VIL’ and ‘VIH’ in Table 33: I/O static characteristics
Added notes to Figure 23: Standard I/O input characteristics - CMOS port,
Figure 24: Standard I/O input characteristics - TTL port, Figure 25: 5 V
tolerant I/O input characteristics - CMOS port and Figure 26: 5 V tolerant
I/O input characteristics - TTL port
Updated note 2. in Table 44: ADC accuracy
Updated Figure 29: I2C bus AC waveforms and measurement circuit(1)
Updated note 2. and 3.,removed note “the device must internally...” in
Table 38: I2C characteristics
Updated title of Table 39: SCL frequency (fPCLK1= 36 MHz, VDD_I2C =
3.3 V)
05-Aug-2013
16
Updated the reference for ‘VESD(CDM)’ in Table 30: ESD absolute
maximum ratings
Corrected ‘tf(IO)out’ in Figure 27: I/O AC characteristics definition
Updated Table 46: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package
mechanical data
19-Jun-2015
17
Updated Section 6.1: Package mechanical data and Table 18: Peripheral
current consumption.
19-Apr-2011
15-May-2013
100/101
DocID13586 Rev 17
STM32F101x8, STM32F101xB
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID13586 Rev 17
101/101
101