Technical Data Sheet

LSM6DS0
iNEMO inertial module:
3D accelerometer and 3D gyroscope
Datasheet - production data
Description
The LSM6DS0 is a system-in-package featuring a
3D digital accelerometer and a 3D digital
gyroscope. ST’s family of MEMS sensor modules
leverages the robust and mature manufacturing
processes already used for the production of
micromachined accelerometers and gyroscopes.
LGA-16L (3x3x0.86 mm)
The various sensing elements are manufactured
using specialized micromachining processes,
while the IC interfaces are developed using
CMOS technology that allows the design of a
dedicated circuit which is trimmed to better match
the sensing element characteristics.
Features
 Analog supply voltage: 1.71 V to 3.6 V
 Independent IOs supply (1.71 V)
 “Always on” eco power mode down to 1.8 mA
 3 independent acceleration channels and 3
angular rate channels
 ±2/±4/±8/±16 g full scale
 ±245/±500/±2000 dps full scale
 SPI/I2C serial interface
 Embedded temperature sensor
The LSM6DS0 has a full-scale acceleration range
of ±2/±4/±8/±16 g and an angular rate range of
±245/±500/±2000 dps. The LSM6DS0 has two
operating modes in that the accelerometer and
gyroscope sensors can be either activated at the
same ODR or the accelerometer can be enabled
while the gyroscope is in power-down.
The LSM6DS0 is available in a plastic land grid
array (LGA) package.
 Embedded FIFO
 ECOPACK®, RoHS and “Green” compliant
Table 1. Device summary
Applications
Part number
Temp.
range [°C]
LSM6DS0
-40 to +85
 GPS navigation systems
 Impact recognition and logging
 Gaming and virtual reality input devices
LSM6DS0TR -40 to +85
 Motion-activated functions
Package
LGA-16L
(3x3x0.86 mm)
Packing
Tray
Tape
and reel
 Intelligent power saving for handheld devices
 Vibration monitoring and compensation
 Free-fall detection
 6D orientation detection
November 2014
This is information on a product in full production.
DocID025604 Rev 3
1/59
www.st.com
Contents
LSM6DS0
Contents
1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1
3
4
2.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2
I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2
Zero-g and zero rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2
Gyroscope power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3
Multiple reads (burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4
Digital block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.3
Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.4
Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.5
Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1
4.2
2/59
Recommended power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DocID025604 Rev 3
LSM6DS0
Contents
4.2.3
5
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1
External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1
ACT_THS (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2
ACT_DUR (05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3
INT_GEN_CFG_XL (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4
INT_GEN_THS_X_XL (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5
INT_GEN_THS_Y_XL (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.6
INT_GEN_THS_Z_XL (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.7
INT_GEN_DUR_XL (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.8
REFERENCE_G (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.9
INT_CTRL (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.10
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.11
CTRL_REG1_G (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.12
CTRL_REG2_G (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.13
CTRL_REG3_G (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.14
ORIENT_CFG_G (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.15
INT_GEN_SRC_G (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.16
OUT_TEMP_L (15h), OUT_TEMP_H (16h) . . . . . . . . . . . . . . . . . . . . . . . 43
7.17
STATUS_REG (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.18
OUT_X_G (18h - 19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.19
OUT_Y_G (1Ah - 1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.20
OUT_Z_G (1Ch - 1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.21
CTRL_REG4 (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.22
CTRL_REG5_XL (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.23
CTRL_REG6_XL (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.24
CTRL_REG7_XL (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.25
CTRL_REG8 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.26
CTRL_REG9 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DocID025604 Rev 3
3/59
59
Contents
LSM6DS0
7.27
CTRL_REG10 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.28
INT_GEN_SRC_XL (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.29
STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.30
OUT_X_XL (28h - 29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.31
OUT_Y_XL (2Ah - 2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.32
OUT_Z_XL (2Ch - 2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.33
FIFO_CTRL (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.34
FIFO_SRC (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.35
INT_GEN_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.36
INT_GEN_THS_X_G (31h - 32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.37
INT_GEN_THS_Y_G (33h - 34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.38
INT_GEN_THS_Z_G (35h - 36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.39
INT_GEN_DUR_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4/59
DocID025604 Rev 3
LSM6DS0
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Gyroscope operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Operating mode current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Accelerometer turn-on time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Gyroscope turn-on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 28
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 28
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
ACT_THS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ACT_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ACT_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ACT_DUR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT_GEN_CFG_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT_GEN_CFG_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT_GEN_THS_X_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT_GEN_THS_X_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT_GEN_THS_Y_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT_GEN_THS_Y_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT_GEN_THS_Z_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT_GEN_THS_Z_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT_GEN_DUR_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT_GEN_DUR_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
INT_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CTRL_REG1_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ODR and BW configuration setting (after LPF1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ODR and BW configuration setting (after LPF2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG2_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG3_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Gyroscope high-pass filter cutoff frequency configuration [Hz]. . . . . . . . . . . . . . . . . . . . . . 42
DocID025604 Rev 3
5/59
59
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
6/59
LSM6DS0
ORIENT_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ORIENT_CFG_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
INT_GEN_SRC_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT_GEN_SRC_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
OUT_TEMP_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
OUT_TEMP_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
OUT_TEMP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STATUS_REG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CTRL_REG4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CTRL_REG5_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CTRL_REG5_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CTRL_REG6_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CTRL_REG6_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
ODR register setting (accelerometer only mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CTRL_REG7_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CTRL_REG7_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Low pass cut-off frequency in high resolution mode (HR = 1) . . . . . . . . . . . . . . . . . . . . . . 47
CTRL_REG8 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CTRL_REG8 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CTRL_REG9 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CTRL_REG9 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CTRL_REG10 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CTRL_REG10 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT_GEN_SRC_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT_GEN_SRC_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STATUS_REG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
FIFO_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
FIFO_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
FIFO mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
FIFO_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
FIFO_SRC example: OVR/FSS details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
INT_GEN_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
INT_GEN_CFG_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
INT_GEN_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_GEN_THS_XL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_GEN_THS_X_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_GEN_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_GEN_THS_YL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_GEN_THS_Y_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_GEN_THS_ZH_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT_GEN_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT_GEN_THS_Z_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT_GEN_DUR_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT_GEN_DUR_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DocID025604 Rev 3
LSM6DS0
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Recommended power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Switching operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Multiple reads: accelerometer only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Multiple reads: accelerometer and gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Digital block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Bypass-to-Continuous mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LSM6DS0 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT_SEL and OUT_SEL configuration gyroscope block diagram . . . . . . . . . . . . . . . . . . . 41
Wait bit disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Wait bit enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
LGA 3x3x0.86 16L package outline and dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DocID025604 Rev 3
7/59
59
Pin description
1
LSM6DS0
Pin description
Figure 1. Pin connections
Z
14
Z
X
8/59
+Ω
Y
+Ω
X
(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
ANGULAR RATES
DocID025604 Rev 3
BOTTOM
VIEW
9
5
8
6
RES
+Ω
1
INT
X
16
13
RES
GND
GND
RES
RES
RES
Vdd
Cap
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
RES
(TOP VIEW)
Y
Vdd_IO
SCL/SPC
SDA/SDI/SDO
SDO/SA0
CS
LSM6DS0
Pin description
Table 2. Pin description
Pin#
Name
Function
1
Vdd_IO(1)
2
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
3
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
4
SDO
SA0
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
5
CS
6
RES
Leave unconnected
7
INT
Programmable interrupt
8
RES
Connect to GND
9
RES
Connect to GND
10
RES
Connect to GND
11
RES
Connect to Vdd or GND
12
GND
0 V supply
13
GND
0 V supply
14
Cap
Connect to GND with ceramic capacitor(2)
15
RES
Connect to Vdd or GND
16
Vdd(3)
Power supply for I/O pins
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
Power supply
1. Recommended 100 nF filter capacitor.
2. 10 nF (±10%), 16 V. 1 nF minimum value has to be guaranteed under 11 V bias condition.
3. Recommended 100 nF plus 10 μF capacitors.
DocID025604 Rev 3
9/59
59
Module specifications
LSM6DS0
2
Module specifications
2.1
Mechanical characteristics
@ Vdd = 2.2 V, T = 25 °C unless otherwise noted(a)
Table 3. Mechanical characteristics
Symbol
Test
conditions
Parameter
Min.
Typ.(1)
Max.
Unit
±2
LA_FS
±4
Linear acceleration measurement range
g
±8
±16
±245
G_FS
Angular rate measurement range
±500
dps
±2000
LA_So
G_So
Linear acceleration sensitivity
Angular rate sensitivity
FS = ±2 g
0.061
FS = ±4 g
0.122
FS = ±8 g
0.244
FS = ±16 g
0.732
FS = ±245 dps
8.75
FS = ±500 dps
17.50
FS = ±2000 dps
70
mg/LSb
mdps/LSb
LA_TyOff
Linear acceleration typical zero-g level
offset accuracy(2)
FS = ±8 g
±90
mg
G_TyOff
Angular rate typical zero-rate level(3)
FS = ±2000 dps
±30
dps
Gyro ON
952
476
238
119
59.5
14.9
Hz
Gyro OFF
952
476
238
119
50
10
Hz
LA_ODR
Linear acceleration output data rate
a. The product is factory calibrated at 2.2 V. The operational power supply range is from 1.71 V to 3.6 V.
10/59
DocID025604 Rev 3
LSM6DS0
Module specifications
Table 3. Mechanical characteristics (continued)
Symbol
G_ODR
Top
Parameter
Test
conditions
Min.
Typ.(1)
Max.
952
476
238
119
59.5
14.9
Angular digital output data rate
Operating temperature range
-40
Unit
Hz
+85
°C
1. Typical specifications are not guaranteed.
2. Typical zero-g level offset value after soldering.
3. Typical zero-rate level offset value after MSL3 preconditioning.
DocID025604 Rev 3
11/59
59
Module specifications
2.2
LSM6DS0
Electrical characteristics
@ Vdd = 2.2 V, T = 25 °C unless otherwise noted
Table 4. Electrical characteristics
Symbol
Vdd
Parameter
Test conditions
Supply voltage
Vdd_IO Power supply for I/O
LA_Idd
G_Idd
Top
Trise
Twait
Accelerometer current consumption in
normal mode
Min.
Max.
Unit
1.71
3.6
V
1.71
Vdd + 0.1
V
ODR = 10 Hz
60
ODR = 50 Hz
160
ODR  119 Hz
330
Gyroscope current consumption in
normal mode
μA
4.0
Operating temperature range
Time for power supply rising
Typ.(1)
(2)
Time delay between Vdd_IO and Vdd
mA
-40
+85
°C
0.01
100
ms
0
10
ms
(2)
1. Typical specifications are not guaranteed.
2. Please refer to Section 2.2.1: Recommended power-up sequence for more details.
2.2.1
Recommended power-up sequence
For the power-up sequence please refer to the following figure, where:

Trise is the time for the power supply to rise from 10% to 90% of its final value

Twait is the time delay between the end of the Vdd_IO ramp (90% of its final value)
and the start of the Vdd ramp
Figure 2. Recommended power-up sequence
Trise
Vdd_IO
0V
Twait
Vdd
0V
Trise
12/59
DocID025604 Rev 3
LSM6DS0
2.3
Module specifications
Temperature sensor characteristics
@ Vdd = 2.2 V, T = 25 °C unless otherwise noted (b)
Table 5. Temperature sensor characteristics
Symbol
Parameter
TODR
Temperature refresh rate
TSen
Temperature sensitivity(3)
Top
Test condition
Min.
Gyro off(2)
Typ.(1)
Max.
50
Gyro on
Hz
59.5
16
Operating temperature range
-40
Unit
LSB/°C
+85
°C
1. Typical specifications are not guaranteed.
2. When the accelerometer ODR is set to 10 Hz and the gyroscope part is turned off, the TODR value is 10 Hz.
3. The output of the temperature sensor is 0 (typ.) at 25°C
b. The product is factory calibrated at 2.2 V.
DocID025604 Rev 3
13/59
59
Module specifications
LSM6DS0
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values
Value(1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
5
th(CS)
CS hold time
20
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Max
100
ns
10
MHz
ns
50
5
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production
Figure 3. SPI slave timing diagram
Note:
14/59
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output
ports.
DocID025604 Rev 3
LSM6DS0
2.4.2
Module specifications
I2C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.
Table 7. I2C slave timing values
Symbol
f(SCL)
I2C Standard mode(1)
Parameter
SCL clock frequency
I2C Fast mode (1)
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
tw(SP:SR)
Bus free time between STOP
and START condition
3.45
Unit
kHz
μs
ns
0
0.9
μs
μs
1. Data based on standard I2C protocol requirement, not tested in production.
Figure 4. I2C slave timing diagram
REPEATED
START
START
tsu(SR)
tw(SP:SR)
SDA
tsu(SDA)
START
th(SDA)
tsu(SP)
STOP
SCL
th(ST)
Note:
tw(SCLL)
tw(SCLH)
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
DocID025604 Rev 3
15/59
59
Module specifications
2.5
LSM6DS0
Absolute maximum ratings
Stresses above those listed as “Absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8. Absolute maximum ratings
Symbol
Maximum value
Unit
Vdd
Supply voltage
-0.3 to 4.8
V
TSTG
Storage temperature range
-40 to +125
°C
10,000
g
2
kV
0.3 to Vdd_IO +0.3
V
Sg
ESD
Vin
Note:
Ratings
Acceleration g for 0.1 ms
Electrostatic discharge protection (HBM)
Input voltage on any control pin
(including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
Supply voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damage to the part.
16/59
DocID025604 Rev 3
LSM6DS0
Module specifications
2.6
Terminology
2.6.1
Sensitivity
Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration
to the device. Because the sensor can measure DC accelerations, this can be done easily
by pointing the selected axis towards the ground, noting the output value, rotating the
sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and over time. The sensitivity tolerance describes
the range of sensitivities of a large number of sensors.
An angular rate gyroscope is a device that produces a positive-going digital output for
counterclockwise rotation around the considered axis. Sensitivity describes the gain of the
sensor and can be determined by applying a defined angular velocity to it. This value
changes very little over temperature and time.
2.6.2
Zero-g and zero rate level
Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output
signal from the ideal output signal if no acceleration is present. A sensor in a steady state on
a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will
measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content
of OUT registers 00h, data expressed as two’s complement number). A deviation from the
ideal value in this case is called zero-g offset.
Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can
slightly change after mounting the sensor onto a printed circuit board or exposing it to
extensive mechanical stress. Offset changes little over temperature, see “Linear
acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance
(TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.
The zero-rate level describes the actual output signal if there is no angular rate present. The
zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor
and therefore the zero-rate level can slightly change after mounting the sensor onto a
printed circuit board or after exposing it to extensive mechanical stress. This value changes
very little over temperature and time.
DocID025604 Rev 3
17/59
59
Functionality
LSM6DS0
3
Functionality
3.1
Operating modes
The LSM6DS0 has two operating modes available: only accelerometer active and
gyroscope in power-down or both accelerometer and gyroscope sensors active at the same
ODR. Switching from one mode to the other requires one write operation: writing to
CTRL_REG6_XL (20h), the accelerometer operates in normal mode and the gyroscope is
powered down, writing to CTRL_REG1_G (10h) both the accelerometer and gyroscope are
activated at the same ODR.
Figure 5 depicts both modes of operation from power down.
Figure 5. Switching operating modes
Accelerometer
Only
Write CTRL_REG6_XL
Power Down
Write CTRL_REG1_G
With CTRL_REG6_XL = PD
3.2
Write CTRL_REG1_G
Accelerometer
+
Gyro
Gyroscope power modes
In the LSM6DS0, the gyroscope can be configured in three different operating modes:
power-down, low-power and normal mode.
Low-power mode is available for lower ODR (14.9, 59.5, 119 Hz) while for greater ODR
(238, 476, 952 Hz) the device is automatically in normal mode. Table 9 summarizes the
ODR configuration (ODR_G[2:0] bits set in CTRL_REG1_G (10h)) and the corresponding
power modes.
To enable low-power mode, the LP_mode bit in CTRL_REG3_G (12h) has to be set to ‘1’.
Low-power mode allows reaching low-power consumption while maintaining the device
always on, refer to Table 10.
18/59
DocID025604 Rev 3
LSM6DS0
Functionality
Table 9. Gyroscope operating modes
ODR_G [2:0]
Power mode(1)
ODR [Hz]
000
Power-down
Power-down
001
14.9
Low-power/Normal mode
010
59.5
Low-power/Normal mode
011
119
Low-power/Normal mode
100
238
Normal mode
101
476
Normal mode
110
952
Normal mode
1. Gyroscope low-power mode is available for G_FS = ±2000 dps.
Table 10. Operating mode current consumption
ODR [Hz]
Current consumption(1)
Power mode
[mA]
14.9
Low-power
1.8
59.5
Low-power
2.3
119
Low-power
2.9
238
Normal mode
4.3
476
Normal mode
4.3
952
Normal mode
4.3
1. Typical values of gyroscope and accelerometer current consumption are based on characterization data
Table 11. Accelerometer turn-on time
BW = 400 Hz(1)
ODR [Hz]
BW = 200 Hz(1)
BW = 100 Hz(1)
BW = 50 Hz(1)
14.9
0
0
0
0
59.5
0
0
0
0
119
1
1
1
2
238
1
1
2
4
476
1
2
4
7
952
2
4
7
14
1. The table contains the number of samples to be discarded after switching between power-down mode
and normal mode.
DocID025604 Rev 3
19/59
59
Functionality
LSM6DS0
Table 12. Gyroscope turn-on time
LPF1 only(1)
ODR [Hz]
LPF1 and LPF2(1)
14.9
2
LPF2 not available
59.5 or 119
3
13
238
4
14
476
5
15
952
8
18
1. The table contains the number of samples to be discarded after switching between low-power mode and
normal mode.
3.3
Multiple reads (burst)
When only the accelerometer is activated and the gyroscope is in power down, starting from
OUT_X_XL (28h - 29h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh) is
read, the system automatically restarts from OUT_X_XL (28h - 29h) (see Figure 6).
Figure 6. Multiple reads: accelerometer only
Read #1
Read #n
x,y,z
OUT_TEMP
(15-16)
OUT_X_XL OUT_Y_XL OUT_Z_XL
(2A-2B)
(28-29)
(2C-2D)
x,y,z
OUT_X_XL OUT_Y_XL OUT_Z_XL
(2A-2B)
(28-29)
(2C-2D)
When both accelerometer and gyroscope sensors are activated at the same ODR, starting
from OUT_X_G (18h - 19h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh)
is read, the system automatically restarts from OUT_X_G (18h - 19h) (see Figure 7).
Figure 7. Multiple reads: accelerometer and gyroscope
Read #1
Read #n
20/59
x,y,z
OUT_TEMP
(15-16)
OUT_X_G OUT_Y_G OUT_Z_G OUT_X_XL OUT_Y_XL OUT_Z_XL
(1A-1B)
(2A-2B)
(18-19)
(1C-1D) (28-29)
(2C-2D)
x,y,z
OUT_X_G OUT_Y_G OUT_Z_G OUT_X_XL OUT_Y_XLOUT_Z_XL
(1A-1B)
(2A-2B)
(18-19)
(1C-1D) (28-29)
(2C-2D)
DocID025604 Rev 3
LSM6DS0
3.4
Functionality
Digital block diagram
Figure 8. Digital block diagram
HR
HPIS1
0
0
LPF2
XL
1
1
LPF1
XL
ADC
XL
HPF
XL
Interrupt
Generator
XL
0
1
FDS
OUT_SEL
Data Reg
FIFO
0
ADC
Gyro
LPF1
Gyro
HPF
Gyro
1
I2C
SPI
LPF2
Gyro
SRC Registers
CFG Registers
HP_EN
Interrupt
Generator
Gyro
INT_SEL
DocID025604 Rev 3
21/59
59
Functionality
3.5
LSM6DS0
FIFO
The LSM6DS0 embeds 32 slots of 16-bit data FIFO for each of the gyroscope’s three output
channels, yaw, pitch and roll, and 16-bit data FIFO for each of the accelerometer’s three
output channels, X, Y and Z. This allows consistent power saving for the system, since the
host processor does not need to continuously poll data from the sensor, but it can wake up
only when needed and burst the significant data out from the FIFO. This buffer can work
accordingly to five different modes: Bypass mode, FIFO-mode, Continuous mode,
Continuous-to-FIFO mode and Bypass-to-Continuous. Each mode is selected by the
FMODE [2:0] bits in the FIFO_CTRL (2Eh) register. Programmable FIFO threshold status,
FIFO overrun events and the number of unread samples stored are available in the
FIFO_SRC (2Fh) register and can be set to generate dedicated interrupts on the INT pin
using the INT_CTRL (0Ch) register.
FIFO_SRC (2Fh)(FTH) goes to '1' when the number of unread samples (FIFO_SRC (2Fh)
(FSS5:0)) is greater than or equal to FTH [4:0] in FIFO_CTRL (2Eh). If FIFO_CTRL (2Eh)
(FTH[4:0]) is equal to 0, FIFO_SRC (2Fh)(FTH) goes to ‘0’.
FIFO_SRC (2Fh)(OVRN) is equal to '1' if a FIFO slot is overwritten.
FIFO_SRC (2Fh)(FSS [5:0]) contains stored data levels of unread samples. When FSS [5:0]
is equal to ‘000000’, FIFO is empty. When FSS [5:0] is equal to ‘100000’, FIFO is full and the
unread samples are 32.
The FIFO feature is enabled by writing '1' in CTRL_REG9 (23h) (FIFO_EN).
To guarantee the correct acquisition of data during the switching into and out of FIFO mode,
the first sample acquired must be discarded.
3.5.1
Bypass mode
In Bypass mode (FIFO_CTRL (2Eh)(FMODE [2:0]= 000), the FIFO is not operational and it
remains empty.
Bypass mode is also used to reset the FIFO when in FIFO mode.
As described in Figure 9, for each channel only the first address is used. When new data is
available the old data is overwritten.
Figure 9. Bypass mode
xi,yi,zi
empty
22/59
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
z31
DocID025604 Rev 3
LSM6DS0
3.5.2
Functionality
FIFO mode
In FIFO mode (FIFO_CTRL (2Eh) (FMODE [2:0] = 001) data from the output channels are
stored in the FIFO until it is overwritten.
To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL (2Eh)
(FMODE [2:0]) to '000'. After this reset command, it is possible to restart FIFO mode, writing
FIFO_CTRL (2Eh) (FMODE [2:0]) to '001'.
The FIFO buffer memorizes 32 levels of data, but the depth of the FIFO can be resized by
setting the STOP_ON_FTH bit in CTRL_REG9 (23h). If the STOP_ON_FTH bit is set to '1',
FIFO depth is limited to FIFO_CTRL (2Eh)(FTH [4:0]) + 1 data.
A FIFO threshold interrupt can be enabled (INT_OVR bit in INT_CTRL (0Ch)) in order to be
raised when the FIFO is filled to the level specified by the FTH[4:0] bits of FIFO_CTRL
(2Eh). When a FIFO threshold interrupt occurs, the first data has been overwritten and the
FIFO stops collecting data from the input channels.
Figure 10. FIFO mode
xi,yi,zi
3.5.3
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
z31
Continuous mode
Continuous mode (FIFO_CTRL (2Eh) (FMODE[2:0] = 110) provides a continuous FIFO
update: as new data arrives the older is discarded.
A FIFO threshold flag FIFO_SRC (2Fh)(FTH) is asserted when the number of unread
samples in FIFO is greater than or equal to FIFO_CTRL (2Eh)(FTH4:0).
It is possible to route FIFO_SRC (2Fh)(FTH) to the INT pin by writing the INT_FTH bit to ‘1’
in register INT_CTRL (0Ch).
A full-flag interrupt can be enabled (INT_CTRL (0Ch) (INT_ FSS5)= '1') when the FIFO
becomes saturated and in order to read the contents all at once. If an overrun occurs, the
oldest sample in FIFO is overwritten and the OVRN flag in FIFO_SRC (2Fh) is asserted.
In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of
unread samples available in FIFO_SRC (2Fh) (FSS[5:0]).
DocID025604 Rev 3
23/59
59
Functionality
LSM6DS0
Figure 11. Continuous mode
xi,yi,zi
3.5.4
x0
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
Continuous-to-FIFO mode
In Continuous-to-FIFO mode (FIFO_CTRL (2Eh)(FMODE [2:0] = 011), FIFO behavior
changes according to the INT_GEN_SRC_XL (26h)(IA_XL) bit. When the
INT_GEN_SRC_XL (26h)(IA_XL) bit is equal to '1', FIFO operates in FIFO mode. When the
INT_GEN_SRC_XL (26h)(IA_XL) bit is equal to '0', FIFO operates in Continuous mode.
The interrupt generator should be set to the desired configuration by means of
INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and
INT_GEN_THS_Z_XL (09h).
The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt.
Figure 12. Continuous-to-FIFO mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
xi,yi,zi
Continuous Mode
Trigger event
24/59
DocID025604 Rev 3
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
z31
FIFO Mode
LSM6DS0
3.5.5
Functionality
Bypass-to-Continuous mode
In Bypass-to-Continuous mode (FIFO_CTRL (2Eh)(FMODE[2:0] = '100'), data
measurement storage inside FIFO operates in Continuous mode when INT_GEN_SRC_XL
(26h)(IA_XL) is equal to '1', otherwise FIFO content is reset (Bypass mode).
The interrupt generator should be set to the desired configuration by means of
INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and
INT_GEN_THS_Z_XL (09h).
The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt.
Figure 13. Bypass-to-Continuous mode
xi,yi,zi
empty
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
z31
Bypass Mode
Continuous Mode
Trigger event
DocID025604 Rev 3
25/59
59
Digital interfaces
4
LSM6DS0
Digital interfaces
The registers embedded inside the LSM6DS0 may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e connected to Vdd_IO).
Table 13. Serial interface pin description
Pin name
Pin description
CS
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI
communication mode / I2C disabled)
SCL/SPC
SDA/SDI/SDO
SDO/SA0
4.1
I2C Serial Clock (SCL)
SPI Serial Port Clock (SPC)
I2C Serial Data (SDA)
SPI Serial Data Input (SDI)
3-wire Interface Serial Data Output (SDO)
SPI Serial Data Output (SDO)
I2C less significant bit of the device address
I2C serial interface
The LSM6DS0 I2C is a bus slave. The I2C is employed to write the data to the registers
whose content can also be read back.
The relevant I2C terminology is provided in the table below.
Table 14. I2C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines must be connected to Vdd_IO through an external pullup resistor. When the bus is free, both the lines are high.
The I2C interface is implemeted with fast mode (400 kHz) I2C standards as well as with the
standard mode.
In order to disable the I2C block, the I2C_disable bit must be written to ‘1’ in CTRL_REG9
(23h).
26/59
DocID025604 Rev 3
LSM6DS0
4.1.1
Digital interfaces
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a high-to-low transition on the data line while the SCL line is held high. After this
has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The Slave ADdress (SAD) associated to the LSM6DS0 is 110101xb. The SDO/SA0 pin can
be used to modify the less significant bit of the device address. If the SDO/SA0 pin is
connected to a voltage supply, LSb is ‘1’ (address 1101011b), else if the SDO/SA0 pin is
connected to ground, the LSb value is ‘0’ (address 1101010b). This solution permits to
connect and address two different inertial modules to the same I2C bus.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line low so that it
remains stable low during the high period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM6DS0 behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted.
The increment of the address is configured by the CTRL_REG8 (22h) (IF_ADD_INC).
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes. If the bit is ‘0’ (Write)
the master will transmit to the slave with direction unchanged. Table 15 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 15. SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
110101
0
1
11010101 (D5h)
Write
110101
0
0
11010100 (D4h)
Read
110101
1
1
11010111 (D7h)
Write
110101
1
0
11010110 (D6h)
Table 16. Transfer when master is writing one byte to slave
Master
ST
SAD + W
Slave
SUB
SAK
DATA
SAK
SP
SAK
Table 17. Transfer when master is writing multiple bytes to slave
Master
Slave
ST
SAD + W
SUB
SAK
DATA
SAK
DocID025604 Rev 3
DATA
SAK
SP
SAK
27/59
59
Digital interfaces
LSM6DS0
Table 18. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD + W
Slave
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 19. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
Slave
ST
SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DAT
A
NMAK
SP
DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL low to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left high by
the slave. The master can then abort the transfer. A low-to-high transition on the SDA line
while the SCL line is high is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
4.2
SPI bus interface
The LSM6DS0 SPI is a bus slave. The SPI allows to write and read the registers of the
device.
The serial interface connects to applications using 4 wires: CS, SPC, SDI and SDO.
Figure 14. Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
28/59
DocID025604 Rev 3
LSM6DS0
Digital interfaces
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the
CTRL_REG8 (22h) (IF_ADD_INC) bit is ‘0’, the address used to read/write data remains the
same for every block. When the CTRL_REG8 (22h)(IF_ADD_INC) bit is ‘1’, the address
used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
4.2.1
SPI read
Figure 15. SPI read protocol
CS
SPC
SDI
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI read command is performed with 16 clock pulses. A multiple byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
DocID025604 Rev 3
29/59
59
Digital interfaces
LSM6DS0
Figure 16. Multiple byte SPI read protocol (2-byte example)
CS
SPC
SDI
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8
4.2.2
SPI write
Figure 17. SPI write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1 -7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 18. Multiple byte SPI write protocol (2-byte example)
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
30/59
DocID025604 Rev 3
LSM6DS0
4.2.3
Digital interfaces
SPI read in 3-wire mode
3-wire mode is entered by setting the CTRL_REG8 (22h)(SIM) bit equal to ‘1’ (SPI serial
interface mode selection).
Figure 19. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
DocID025604 Rev 3
31/59
59
Application hints
5
LSM6DS0
Application hints
Figure 20. LSM6DS0 electrical connections
Vdd_IO
C2
100 nF
GND
Vdd_IO
SCL/SPC
SDO/SA0
CS
SDA /SDI/SDO
Vdd
C3
5
RES
100 nF
GND
Vdd
(TOP VIEW)
INT
C4
1
10 μF
GND
RES
RES
Cap
*C1
13
9
GND
10nF(16V)
GND
GND
RES
RES
RES
* C1 must guarantee 1 nF value under
11 V bias condition
GND
5.1
External capacitors
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C2,
C3 = 100 nF ceramic, C4 = 10 μF Al) should be placed as near as possible to the supply pin
of the device (common design practice).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
32/59
DocID025604 Rev 3
LSM6DS0
6
Register mapping
Register mapping
The table given below provides a list of the 8/16 bit registers embedded in the device and
the corresponding addresses.
Table 20. Register mapping
Register address
Name
Type
Default
Hex
Binary
Reserved
--
00-03
--
--
ACT_THS
r/w
04
00000100
00000000
ACT_DUR
r/w
05
00000101
00000000
INT_GEN_CFG_XL
r/w
06
00000110
00000000
INT_GEN_THS_X_XL
r/w
07
00000111
00000000
INT_GEN_THS_Y_XL
r/w
08
00001000
00000000
INT_GEN_THS_Z_XL
r/w
09
00001001
00000000
INT_GEN_DUR_XL
r/w
0A
00001010
00000000
REFERENCE_G
r/w
0B
00001011
00000000
INT_CTRL
r/w
0C
00001100
00000000
Reserved
--
0D-0E
--
--
WHO_AM_I
r
0F
00001111
01101000
CTRL_REG1_G
r/w
10
00010000
00000000
CTRL_REG2_G
r/w
11
00010001
00000000
CTRL_REG3_G
r/w
12
00010010
00000000
ORIENT_CFG_G
r/w
13
00010011
00000000
INT_GEN_SRC_G
r
14
00010100
output
OUT_TEMP_L
r
15
00010101
output
OUT_TEMP_H
r
16
00010110
output
STATUS_REG
r
17
00010111
output
OUT_X_L_G
r
18
00011000
output
OUT_X_H_G
r
19
00011001
output
OUT_Y_L_G
r
1A
00011010
output
OUT_Y_H_G
r
1B
00011011
output
OUT_Z_L_G
r
1C
00011100
output
OUT_Z_H_G
r
1D
00011101
output
CTRL_REG4
r/w
1E
00011110
00111000
CTRL_REG5_XL
r/w
1F
00011111
00111000
CTRL_REG6_XL
r/w
20
00100000
00000000
DocID025604 Rev 3
Note
Reserved
Reserved
33/59
59
Register mapping
LSM6DS0
Table 20. Register mapping (continued)
Register address
Name
Type
Default
Hex
Binary
CTRL_REG7_XL
r/w
21
00100001
00000000
CTRL_REG8
r/w
22
00100010
00000100
CTRL_REG9
r/w
23
00100011
00000000
CTRL_REG10
r/w
24
00100100
00000000
Reserved
--
25
--
--
INT_GEN_SRC_XL
r
26
00100110
output
STATUS_REG
r
27
00100111
output
OUT_X_L_XL
r
28
00101000
output
OUT_X_H_XL
r
29
00101001
output
OUT_Y_L_XL
r
2A
00101010
output
OUT_Y_H_XL
r
2B
00101011
output
OUT_Z_L_XL
r
2C
00101100
output
OUT_Z_H_XL
r
2D
00101101
output
FIFO_CTRL
r/w
2E
00101110
00000000
FIFO_SRC
r
2F
00101111
output
INT_GEN_CFG_G
r/w
30
00110000
00000000
INT_GEN_THS_XH_G
r/w
31
00110001
00000000
INT_GEN_THS_XL_G
r/w
32
00110010
00000000
INT_GEN_THS_YH_G
r/w
33
00110011
00000000
INT_GEN_THS_YL_G
r/w
34
00110100
00000000
INT_GEN_THS_ZH_G
r/w
35
00110101
00000000
INT_GEN_THS_ZL_G
r/w
36
00110110
00000000
INT_GEN_DUR_G
r/w
37
00110111
00000000
r
38-7F
--
--
Reserved
Note
Reserved
Reserved
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
To guarantee proper behavior of the device, all register addresses not listed in the above
table must not be accessed and the content stored on those registers must not be changed.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
34/59
DocID025604 Rev 3
LSM6DS0
7
Register description
Register description
The device contains a set of registers which are used to control its behavior and to retrieve
linear acceleration, angular rate and temperature data. The register addresses, consisting
of 7 bits, are used to identify them and to write the data through the serial interface.
7.1
ACT_THS (04h)
Activity threshold register.
Table 21. ACT_THS register
SLEEP_ON
_INACT_EN
ACT_THS6
ACT_THS5
ACT_THS4
ACT_THS3
ACT_THS2
ACT_THS1 ACT_THS0
Table 22. ACT_THS register description
SLEEP_ON_
INACT_EN
Gyroscope operating mode during inactivity. Default value: 0
ACT_THS [6:0]
Inactivity threshold. Default value: 000 0000
7.2
(0: Gyroscope in power-down; 1: Gyroscope in sleep mode)
ACT_DUR (05h)
Inactivity duration register.
Table 23. ACT_DUR register
ACT_DUR7
ACT_DUR6
ACT_DUR5
ACT_DUR4
ACT_DUR3
ACT_DUR2
ACT_DUR1
ACT_DUR0
Table 24. ACT_DUR register description
ACT_DUR [7:0]
7.3
Inactivity duration. Default value: 0000 0000
INT_GEN_CFG_XL (06h)
Linear acceleration sensor interrupt generator configuration register.
Table 25. INT_GEN_CFG_XL register
AOI_XL
6D
ZHIE_XL
ZLIE_XL
YHIE_XL
DocID025604 Rev 3
YLIE_XL
XHIE_XL
XLIE_XL
35/59
59
Register description
LSM6DS0
Table 26. INT_GEN_CFG_XL register description
AOI_XL
AND/OR combination of accelerometer’s interrupt events. Default value: 0
(0: OR combination; 1: AND combination)
6D
6-direction detection function for interrupt. Default value: 0
(0: disabled; 1: enabled)
ZHIE_XL
Enable interrupt generation on accelerometer’s Z-axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value higher than
preset threshold)
ZLIE_XL
Enable interrupt generation on accelerometer’s Z-axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value lower than
preset threshold)
YHIE_XL
Enable interrupt generation on accelerometer’s Y-axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value higher than
preset threshold)
YLIE_XL
Enable interrupt generation on accelerometer’s Y-axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value lower than
preset threshold)
XHIE_XL
Enable interrupt generation on accelerometer’s X-axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value higher than
preset threshold)
XLIE_XL
Enable interrupt generation on accelerometer’s X-axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value lower than
preset threshold)
7.4
INT_GEN_THS_X_XL (07h)
Linear acceleration sensor interrupt threshold register.
Table 27. INT_GEN_THS_X_XL register
THS_XL_X7 THS_XL_X6 THS_XL_X5 THS_XL_X4 THS_XL_X3 THS_XL_X2 THS_XL_X1 THS_XL_X0
Table 28. INT_GEN_THS_X_XL register description
THS_XL_X [7:0]
36/59
X-axis interrupt threshold. Default value: 0000 0000
DocID025604 Rev 3
LSM6DS0
7.5
Register description
INT_GEN_THS_Y_XL (08h)
Linear acceleration sensor interrupt threshold register.
Table 29. INT_GEN_THS_Y_XL register
THS_XL_Y7 THS_XL_Y6 THS_XL_Y5 THS_XL_Y4 THS_XL_Y3 THS_XL_Y2 THS_XL_Y1 THS_XL_Y0
Table 30. INT_GEN_THS_Y_XL register description
THS_XL_Y [7:0]
7.6
Y-axis interrupt threshold. Default value: 0000 0000
INT_GEN_THS_Z_XL (09h)
Linear acceleration sensor interrupt threshold register.
Table 31. INT_GEN_THS_Z_XL register
THS_XL_Z7 THS_XL_Z6 THS_XL_Z5 THS_XL_Z4 THS_XL_Z3 THS_XL_Z2 THS_XL_Z1 THS_XL_Z0
Table 32. INT_GEN_THS_Z_XL register description
THS_XL_Z [7:0]
7.7
Z-axis interrupt threshold. Default value: 0000 0000
INT_GEN_DUR_XL (0Ah)
Linear acceleration sensor interrupt duration register.
Table 33. INT_GEN_DUR_XL register
WAIT_XL
DUR_XL6
DUR_XL5
DUR_XL4
DUR_XL3
DUR_XL2
DUR_XL1
DUR_XL0
Table 34. INT_GEN_DUR_XL register description
WAIT_XL
Wait function enabled on duration counter. Default value: 0
(0: wait function off; 1: wait for DUR_XL [6:0] samples before exiting interrupt)
DUR_XL [6:0]
7.8
Enter/exit interrupt duration value. Default value: 000 0000
REFERENCE_G (0Bh)
Angular rate sensor reference value register for digital high-pass filter (r/w)
Table 35. REFERENCE_G register
REF7_G
REF6_G
REF5_G
REF4_G
REF3_G
REF2_G
REF1_G
REF0_G
Table 36. REFERENCE_G register description
REF_G [7:0]
Reference value for gyroscope’s digital high-pass filter (r/w).
Default value: 0000 0000
DocID025604 Rev 3
37/59
59
Register description
7.9
LSM6DS0
INT_CTRL (0Ch)
INT pin control register.
Table 37. INT_CTRL register
INT_IG _G
INT_IG_XL
INT_ FSS5
INT_OVR
INT_FTH
INT_ Boot
INT_ DRDY_G
INT_
DRDY_XL
Table 38. INT_CTRL register description
Gyroscope interrupt enable on INT pin. Default value: 0
INT_IG_G
(0: disabled; 1: enabled)
Accelerometer interrupt generator on INT pin. Default value: 0
INT_ IG_XL
(0: disabled; 1: enabled)
FSS5 interrupt enable on INT pin. Default value: 0
INT_ FSS5
(0: disabled; 1: enabled)
Overrun interrupt on INT pin. Default value: 0
(0: disabled; 1: enabled)
INT_OVR
FIFO threshold interrupt on INT pin. Default value: 0
INT_FTH
(0: disabled; 1: enabled)
Boot status available on INT pin. Default value: 0
INT_ Boot
(0: disabled; 1: enabled)
Gyroscope data ready on INT pin. Default value: 0
INT_DRDY_G
INT_DRDY_XL
7.10
(0: disabled; 1: enabled)
Accelerometer data ready on INT pin. Default value: 0
(0: disabled; 1: enabled)
WHO_AM_I (0Fh)
Who_AM_I register.
Table 39. WHO_AM_I register
0
7.11
1
1
0
1
0
0
0
BW_G1
BW_G0
CTRL_REG1_G (10h)
Angular rate sensor control register 1.
Table 40. CTRL_REG1_G register
ODR_G2
ODR_G1
ODR_G0
FS_G1
FS_G0
1. This bit must be set to ‘0’ for the correct operation of the device
38/59
DocID025604 Rev 3
0(1)
LSM6DS0
Register description
Table 41. CTRL_REG1_G register description
Gyroscope output data rate selection. Default value: 000
ODR_G [2:0]
(Refer to Table 42 and Table 43)
FS_G [1:0]
Gyroscope full-scale selection. Default value: 00
(00: 245 dps; 01: 500 dps; 10: not available; 11: 2000 dps)
BW_G [1:0]
Gyroscope bandwidth selection. Default value: 00
ODR_G [2:0] are used to set ODR selection when both the accelerometer and gyroscope
are activated. BW_G [1:0] are used to set the bandwidth selection of the gyroscope.
The following table summarizes all frequencies available for each combination of the
ODR_G / BW_G bits after LPF1 (see Table 42) and LPF2 (see Table 43) when both the
accelerometer and gyroscope are activated. For more details regarding signal processing
please refer to Figure 21.
Table 42. ODR and BW configuration setting (after LPF1)
ODR_G2
ODR_G1
ODR_G0
ODR [Hz]
Cutoff [Hz](1)
0
0
0
Power-down
n.a.
0
0
1
14.9
5
0
1
0
59.5
19
0
1
1
119
38
1
0
0
238
76
1
0
1
476
100
1
1
0
952
100
1
1
1
n.a.
n.a.
1. The values in the table are indicative and can vary proportionally with the specific ODR value.
DocID025604 Rev 3
39/59
59
Register description
LSM6DS0
Table 43. ODR and BW configuration setting (after LPF2)
ODR_G [2:0]
BW_G [1:0]
ODR [Hz]
Cutoff [Hz](1)
000
00
Power-down
n.a.
000
01
Power-down
n.a.
000
10
Power-down
n.a.
000
11
Power-down
n.a.
001
00
14.9
n.a.
001
01
14.9
n.a.
001
10
14.9
n.a.
001
11
14.9
n.a.
010
00
59.5
16
010
01
59.5
16
010
10
59.5
16
010
11
59.5
16
011
00
119
14
011
01
119
31
011
10
119
31
011
11
119
31
100
00
238
14
100
01
238
29
100
10
238
63
100
11
238
78
101
00
476
21
101
01
476
28
101
10
476
57
101
11
476
100
110
00
952
33
110
01
952
40
110
10
952
58
110
11
952
100
111
00
n.a.
n.a.
111
01
n.a.
n.a.
111
10
n.a.
n.a.
111
11
n.a.
n.a.
1. The values in the table are indicative and can vary proportionally with the specific ODR value.
40/59
DocID025604 Rev 3
LSM6DS0
7.12
Register description
CTRL_REG2_G (11h)
Angular rate sensor control register 2.
Table 44. CTRL_REG2_G register
(1)
0
0
(1)
0(1)
0(1)
INT_SEL1 INT_SEL0
OUT_SEL1
OUT_SEL0
1. These bits must be set to ‘0’ for the correct operation of the device
Table 45. CTRL_REG2_G register description
INT_SEL [1:0]
INT selection configuration. Default value: 00
(Refer to Figure 21)
OUT_SEL [1:0]
Out selection configuration. Default value: 00
(Refer to Figure 21)
Figure 21. INT_SEL and OUT_SEL configuration gyroscope block diagram
DataReg
FIFO
LPF2
ADC
LPF1
HPF
Interrupt
generator
7.13
CTRL_REG3_G (12h)
Angular rate sensor control register 3.
Table 46. CTRL_REG3_G register
LP_mode
HP_EN
0(1)
0(1)
HPCF3_G HPCF2_G
HPCF1_G
HPCF0_G
1. These bits must be set to ‘0’ for the correct operation of the device
Table 47. CTRL_REG3_G register description
LP_mode
Low-power mode enable. Default value: 0
(0: low-power disable; 1: low-power enable)
HP_EN
High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled, refer to Figure 21)
HPCF_G [3:0]
Gyroscope high-pass filter cutoff frequency selection. Default value: 0000
Refer to Table 48.
DocID025604 Rev 3
41/59
59
Register description
LSM6DS0
Table 48. Gyroscope high-pass filter cutoff frequency configuration [Hz](1)
HPCF_G [3:0] ODR= 14.9 Hz ODR= 59.5 Hz ODR= 119 Hz
ODR= 238 Hz
ODR= 476 Hz
ODR= 952 Hz
0000
1
4
8
15
30
57
0001
0.5
2
4
8
15
30
0010
0.2
1
2
4
8
15
0011
0.1
0.5
1
2
4
8
0100
0.05
0.2
0.5
1
2
4
0101
0.02
0.1
0.2
0.5
1
2
0110
0.01
0.05
0.1
0.2
0.5
1
0111
0.005
0.02
0.05
0.1
0.2
0.5
1000
0.002
0.01
0.02
0.05
0.1
0.2
1001
0.001
0.005
0.01
0.02
0.05
0.1
1. Values in the table are indicative and can vary proportionally with the specific ODR value.
7.14
ORIENT_CFG_G (13h)
Angular rate sensor sign and orientation register.
Table 49. ORIENT_CFG_G register
0(1)
0(1)
SignX_G
SignY_G
SignZ_G
Orient_2
Orient_1
1. These bits must be set to ‘0’ for the correct operation of the device
Table 50. ORIENT_CFG_G register description
SignX_G
Pitch axis (X) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
SignY_G
Roll axis (Y) angular rate sign. Default value: 0.
(0: positive sign; 1: negative sign)
SignZ_G
Yaw axis (Z) angular rate sign. Default value: 0.
(0: positive sign; 1: negative sign)
Orient [2:0]
42/59
Directional user orientation selection. Default value: 000
DocID025604 Rev 3
Orient_0
LSM6DS0
7.15
Register description
INT_GEN_SRC_G (14h)
Angular rate sensor interrupt source register.
Table 51. INT_GEN_SRC_G register
0
IA_G
ZH_G
ZL_G
YH_G
YL_G
XH_G
XL_G
Table 52. INT_GEN_SRC_G register description
7.16
IA_G
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH_G
Yaw (Z) high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL_G
Yaw (Z) low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH_G
Roll (Y) high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL_G
Roll (Y) low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH_G
Pitch (X) high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL_G
Pitch (X) low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
OUT_TEMP_L (15h), OUT_TEMP_H (16h)
Temperature data output register. L and H registers together express a 16-bit word in two’s
complement right-justified.
Table 53. OUT_TEMP_L register
Temp7
Temp6
Temp5
Temp11
Temp11
Temp11
Temp4
Temp3
Temp2
Temp1
Temp0
Temp9
Temp8
Table 54. OUT_TEMP_H register
Temp11
Temp11
Temp10
Table 55. OUT_TEMP register description
Temp [11:0]
Temperature sensor output data.
The value is expressed as two’s complement sign extended to the MSB.
DocID025604 Rev 3
43/59
59
Register description
7.17
LSM6DS0
STATUS_REG (17h)
Status register.
Table 56. STATUS_REG register
0
IG_XL
IG_G
INACT
BOOT_
STATUS
TDA
GDA
XLDA
Table 57. STATUS_REG register description
IG_XL
Accelerometer interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
IG_G
Gyroscope interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
INACT
Inactivity interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
BOOT_
STATUS
Boot running flag signal. Default value: 0
(0: no boot running; 1: boot running)
TDA
Temperature sensor new data available. Default value: 0
(0: new data is not yet available; 1: new data is available)
GDA
Gyroscope new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
XLDA
Accelerometer new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
7.18
OUT_X_G (18h - 19h)
Angular rate sensor pitch axis (X) angular rate output register. The value is expressed as a
16-bit word in two’s complement.
7.19
OUT_Y_G (1Ah - 1Bh)
Angular rate sensor roll axis (Y) angular rate output register. The value is expressed as a
16-bit word in two’s complement.
7.20
OUT_Z_G (1Ch - 1Dh)
Angular rate sensor yaw axis (Z) angular rate output register. The value is expressed as a
16-bit word in two’s complement.
44/59
DocID025604 Rev 3
LSM6DS0
7.21
Register description
CTRL_REG4 (1Eh)
Control register 4.
Table 58. CTRL_REG4 register
(1)
0
0
(1)
Zen_G
Yen_G
Xen_G
0(1)
LIR_XL1
4D_XL1
1. These bits must be set to ‘0’ for the correct operation of the device
Table 59. CTRL_REG4 register description
Zen_G
Yen_G
Xen_G
LIR_XL1
Gyroscope’s yaw axis (Z) output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Gyroscope’s roll axis (Y) output enable. Default value: 1
(0: Y-axis output disabled; 1: Y-axis output enabled)
Gyroscope’s pitch axis (X) output enable. Default value: 1
(0: X-axis output disabled; 1: X-axis output enabled)
Latched interrupt. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
4D option enabled on interrupt. Default value: 0
4D_XL1
(0: interrupt generator uses 6D for position recognition; 1: interrupt generator uses
4D for position recognition)
7.22
CTRL_REG5_XL (1Fh)
Linear acceleration sensor Control Register 5.
Table 60. CTRL_REG5_XL register
DEC_1
DEC_0
Zen_XL
Yen_XL
Xen_XL
0(1)
0(1)
0(1)
1. These bits must be set to ‘0’ for the correct operation of the device
Table 61. CTRL_REG5_XL register description
Decimation of acceleration data on OUT REG and FIFO. Default value: 00
(00: no decimation;
DEC_ [0:1]
01: update every 2 samples;
10: update every 4 samples;
11: update every 8 samples)
Zen_XL
Yen_XL
Xen_XL
Accelerometer’s Z-axis output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Accelerometer’s Y-axis output enable. Default value: 1
(0: Y-axis output disabled; 1: Y-axis output enabled)
Accelerometer’s X-axis output enable. Default value: 1
(0: X-axis output disabled; 1: X-axis output enabled)
DocID025604 Rev 3
45/59
59
Register description
7.23
LSM6DS0
CTRL_REG6_XL (20h)
Linear acceleration sensor control register 6.
Table 62. CTRL_REG6_XL register
ODR_XL2
ODR_XL1
ODR_XL0
FS1_XL
FS0_XL
BW_SCAL
_ODR
BW_XL1
BW_XL0
Table 63. CTRL_REG6_XL register description
ODR_XL [2:0]
Output data rate and power mode selection. Default value: 000 (see Table 67)
FS_XL [1:0]
Accelerometer full-scale selection. Default value: 00
(00: ±2g; 01: ±16g; 10: ±4g; 11: ±8g)
Bandwidth selection. Default value: 0
(0: bandwidth determined by ODR selection:
- BW = 408 Hz when ODR = 952 Hz, 50 Hz, 10 Hz;
BW_SCAL_ODR - BW = 211 Hz when ODR = 476 Hz;
- BW = 105 Hz when ODR = 238 Hz;
- BW = 50 Hz when ODR = 119 Hz;
1: bandwidth selected according to BW_XL [2:1] selection)
Anti-aliasing filter bandwidth selection. Default value: 00
(00: 408 Hz; 01: 211 Hz; 10: 105 Hz; 11: 50 Hz)
BW_XL [1:0]
ODR_XL [2:0] is used to set the power mode and ODR selection. Table 64 summarizes all
available frequencies when only the accelerometer is activated.
Table 64. ODR register setting (accelerometer only mode)
ODR_XL2
46/59
ODR_XL1
ODR_XL0
ODR selection [Hz]
0
0
0
Power-down
0
0
1
10 Hz
0
1
0
50 Hz
0
1
1
119 Hz
1
0
0
238 Hz
1
0
1
476 Hz
1
1
0
952 Hz
1
1
1
n.a.
DocID025604 Rev 3
LSM6DS0
7.24
Register description
CTRL_REG7_XL (21h)
Linear acceleration sensor control register 7.
Table 65. CTRL_REG7_XL register
HR
DCF1
DCF0
0(1)
0(1)
0(1)
FDS
HPIS1
1. These bits must be set to ‘0’ for the correct operation of the device
Table 66. CTRL_REG7_XL register description
High resolution mode for accelerometer enable. Default value: 0
(0: disabled; 1: enabled). Refer to Table 67.
HR
DCF[1:0]
FDS
Accelerometer digital filter (high-pass and low-pass) cutoff frequency selection: the bandwidth of the high-pass filter depends on the selected ODR. Refer to Table 67.
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)
High-pass filter enabled for acceleration sensor interrupt function on interrupt. Default
HPIS1
value: 0
(0: filter bypassed; 1: filter enabled)
Table 67. Low pass cut-off frequency in high resolution mode (HR = 1)
HR
7.25
CTRL_REG7 (DCF [1:0])
LP cutoff freq. [Hz]
1
00
ODR/50
1
01
ODR/100
1
10
ODR/9
1
11
ODR/400
CTRL_REG8 (22h)
Control register 8.
Table 68. CTRL_REG8 register
BOOT
BDU
H_LACTIVE
PP_OD
SIM
DocID025604 Rev 3
IF_ADD_INC
BLE
SW_RESET
47/59
59
Register description
LSM6DS0
Table 69. CTRL_REG8 register description
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content(1))
BDU
Block Data Update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB read)
H_LACTIVE
Interrupt activation level. Default value: 0
(0: interrupt output pins active high; 1: interrupt output pins active low)
PP_OD
Push-pull/Open Drain selection on INT pin. Default value: 0
(0: push-pull mode; 1: open drain mode)
SIM
SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
IF_ADD_INC
Register address automatically incremented during a multiple byte access with a
serial interface (I2C or SPI). Default value: 1
(0: disabled; 1: enabled)
BLE
Big/Little Endian Data Selection. Default value 0
(0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET
Software reset. Default value: 0
(0: normal mode; 1: reset device)
1. Boot request is executed as soon as the internal oscillator is turned-on. It is possible to set the bit while in
power-down mode, in this case it will be served at the next normal mode or sleep mode.
7.26
CTRL_REG9 (23h)
Control register 9.
Table 70. CTRL_REG9 register
0(1)
SLEEP_G
0(1)
FIFO_
TEMP_EN
DRDY_
mask_bit
I2C_disable FIFO_EN
STOP_ON
_FTH
1. These bits must be set to ‘0’ for the correct operation of the device
Table 71. CTRL_REG9 register description
SLEEP_G
Gyroscope sleep mode enable. Default value: 0
(0: disabled; 1: enabled)
FIFO_TEMP_EN Temperature data storage in FIFO enable. Default value: 0
(0: temperature data not stored in FIFO; 1: temperature data stored in FIFO)
DRDY_mask_bit
Data available enable bit. Default value: 0
(0: DA timer disabled; 1: DA timer enabled)
I2C_disable
Disable I2C interface. Default value: 0.
(0: both I2C and SPI enabled; 1: I2C disabled, SPI only)
FIFO_EN
FIFO memory enable. Default value: 0
(0: disabled; 1: enabled)
STOP_ON_FTH
Enable FIFO threshold level use. Default value: 0.
(0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)
48/59
DocID025604 Rev 3
LSM6DS0
7.27
Register description
CTRL_REG10 (24h)
Control register 10.
Table 72. CTRL_REG10 register
(1)
0
(1)
0
0
(1)
0(1)
0(1)
ST_G
0(1)
ST_XL
1. These bits must be set to ‘0’ for the correct operation of the device
Table 73. CTRL_REG10 register description
7.28
ST_G
Angular rate sensor self-test enable. Default value: 0
(0: Self-test disabled; 1: Self-test enabled)
ST_XL
Linear acceleration sensor self-test enable. Default value: 0
(0: Self-test disabled; 1: Self-test enabled)
INT_GEN_SRC_XL (26h)
Linear acceleration sensor interrupt source register.
Table 74. INT_GEN_SRC_XL register
0
IA_XL
ZH_XL
ZL_XL
YH_XL
YL_XL
XH_XL
XL_XL
Table 75. INT_GEN_SRC_XL register description
IA_XL
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH_XL
Accelerometer’s Z high event. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL_XL
Accelerometer’s Z low event. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH_XL
Accelerometer’s Y high event. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL_XL
Accelerometer’s Y low event. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH_XL
Accelerometer’s X high event. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL_XL
Accelerometer’s X low event. Default value: 0
(0: no interrupt, 1: X low event has occurred)
DocID025604 Rev 3
49/59
59
Register description
7.29
LSM6DS0
STATUS_REG (27h)
Status register.
Table 76. STATUS_REG register
0
IG_XL
IG_G
INACT
BOOT_
STATUS
TDA
GDA
XLDA
Table 77. STATUS_REG register description
IG_XL
Accelerometer interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
IG_G
Gyroscope interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
INACT
Inactivity interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
BOOT_
STATUS
Boot running flag signal. Default value: 0
(0: no boot running; 1: boot running)
TDA
Temperature sensor new data available. Default value: 0
(0: new data is not yet available; 1: new data is available)
GDA
Gyroscope new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
XLDA
Accelerometer new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
7.30
OUT_X_XL (28h - 29h)
Linear acceleration sensor X-axis output register. The value is expressed as a 16-bit word in
two’s complement.
7.31
OUT_Y_XL (2Ah - 2Bh)
Linear acceleration sensor Y-axis output register. The value is expressed as a 16-bit word in
two’s complement.
7.32
OUT_Z_XL (2Ch - 2Dh)
Linear acceleration sensor Z-axis output register. The value is expressed as a 16-bit word in
two’s complement.
50/59
DocID025604 Rev 3
LSM6DS0
7.33
Register description
FIFO_CTRL (2Eh)
FIFO control register.
Table 78. FIFO_CTRL register
FMODE2
FMODE1
FMODE0
FTH4
FTH3
FTH2
FTH1
FTH0
Table 79. FIFO_CTRL register description
FMODE [2:0]
FIFO mode selection bits. Default value: 000
For further details refer to Table 80.
FTH [4:0]
FIFO threshold level setting. Default value: 0 0000
Table 80. FIFO mode selection
FMODE2
7.34
FMODE1
FMODE0
Mode
0
0
0
Bypass mode. FIFO turned off
0
0
1
FIFO mode. Stop collecting data when FIFO is full.
0
1
0
Reserved
0
1
1
Continuous mode until trigger is deasserted, then FIFO mode.
1
0
0
Bypass mode until trigger is deasserted, then Continuous
mode.
1
1
0
Continuous mode. If the FIFO is full, the new sample overwrites the older sample.
FIFO_SRC (2Fh)
FIFO status control register.
Table 81. FIFO_SRC register
FTH
OVRN
FSS5
FSS4
FSS3
FSS2
FSS1
FSS0
Table 82. FIFO_SRC register description
FTH
FIFO threshold status.
(0: FIFO filling is lower than threshold level; 1: FIFO filling is equal to or higher than
the threshold level
OVRN
FIFO overrun status.
(0: FIFO is not completely filled; 1: FIFO is completely filled and at least one sample
has been overwritten)
For further details refer to Table 83.
FSS [5:0]
Number of unread samples stored in FIFO.
(000000: FIFO empty; 100000: FIFO full, 32 unread samples)
For further details refer to Table 83.
DocID025604 Rev 3
51/59
59
Register description
LSM6DS0
Table 83. FIFO_SRC example: OVR/FSS details
FTH
0
OVRN
FSS5
FSS4
FSS3
FSS2
FSS1
FSS0
Description
0
0
0
0
0
0
0
FIFO empty
0
0
0
0
0
0
1
1 unread sample
--(1)
0
1
0
0
0
0
0
32 unread sample
1
1
1
0
0
0
0
0
At least one sample has
been overwritten
(1)
--
...
1. When the number of unread samples in FIFO is greater than the threshold level set in register FIFO_CTRL
(2Eh), the FTH value is ‘1’.
7.35
INT_GEN_CFG_G (30h)
Angular rate sensor interrupt generator configuration register.
Table 84. INT_GEN_CFG_G register
AOI_G
LIR_G
ZHIE_G
ZLIE_G
YHIE_G
YLIE_G
XHIE_G
XLIE_G
Table 85. INT_GEN_CFG_G register description
AOI_G
AND/OR combination of gyroscope’s interrupt events. Default value: 0
(0: OR combination; 1: AND combination)
LIR_G
Latch gyroscope interrupt request. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
ZHIE_G
Enable interrupt generation on gyroscope’s yaw (Z) axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value
higher than preset threshold)
ZLIE_G
Enable interrupt generation on gyroscope’s yaw (Z) axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value lower
than preset threshold)
YHIE_G
Enable interrupt generation on gyroscope’s roll (Y) axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value
higher than preset threshold)
YLIE_G
Enable interrupt generation on gyroscope’s roll (Y) axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value lower
than preset threshold)
XHIE_G
Enable interrupt generation on gyroscope’s pitch (X) axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value
higher than preset threshold)
XLIE_G
Enable interrupt generation on gyroscope’s pitch (X) axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value lower
than preset threshold)
52/59
DocID025604 Rev 3
LSM6DS0
7.36
Register description
INT_GEN_THS_X_G (31h - 32h)
Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15bit word in two’s complement.
Table 86. INT_GEN_THS_XH_G register
DCRM_G
THS_G_
X14
THS_G_
X13
THS_G_
X12
THS_G_
X11
THS_G_
X10
THS_G_
X9
THS_G_
X8
THS_G_
X1
THS_G_
X0
Table 87. INT_GEN_THS_XL_G register
THS_G_
X7
THS_G_
X6
THS_G_
X5
THS_G_
X4
THS_G_
X3
THS_G_
X2
Table 88. INT_GEN_THS_X_G register description
Decrement or reset counter mode selection. Default value: 0
DCRM_G
(0: Reset; 1: Decrement, as per counter behavior in Figure 22 and Figure 23)
THS_G_X [14:0]
7.37
Angular rate sensor interrupt threshold on pitch (X) axis.
Default value: 0000000 00000000
INT_GEN_THS_Y_G (33h - 34h)
Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15bit word in two’s complement.
Table 89. INT_GEN_THS_YH_G register
0(1)
THS_G_
Y14
THS_G_
Y13
THS_G_
Y12
THS_G_
Y11
THS_G_
Y10
THS_G_
Y9
THS_G_
Y8
THS_G_
Y1
THS_G_
Y0
1. This bit must be set to ‘0’ for the correct operation of the device
Table 90. INT_GEN_THS_YL_G register
THS_G_
Y7
THS_G_
Y6
THS_G_
Y5
THS_G_
Y4
THS_G_
Y3
THS_G_
Y2
Table 91. INT_GEN_THS_Y_G register description
THS_G_Y [14:0]
Angular rate sensor interrupt threshold on roll (Y) axis.
Default value: 0000000 00000000
DocID025604 Rev 3
53/59
59
Register description
7.38
LSM6DS0
INT_GEN_THS_Z_G (35h - 36h)
Angular rate sensor interrupt generator threshold registers. The value is expressed as 15bit
word in two’s complement.
Table 92. INT_GEN_THS_ZH_G register
0(1)
THS_G_
Z14
THS_G_
Z13
THS_G_
Z12
THS_G_
Z11
THS_G_
Z10
THS_G_
Z9
THS_G_
Z8
THS_G_
Z1
THS_G_
Z0
1. This bit must be set to ‘0’ for the correct operation of the device
Table 93. INT_GEN_THS_ZL_G register
THS_G_
Z7
THS_G_
Z6
THS_G_
Z5
THS_G_
Z4
THS_G_
Z3
THS_G_
Z2
Table 94. INT_GEN_THS_Z_G register description
THS_G_Z [14:0]
7.39
Angular rate sensor interrupt thresholds on yaw (Z) axis.
Default value: 0000000 00000000
INT_GEN_DUR_G (37h)
Angular rate sensor interrupt generator duration register.
Table 95. INT_GEN_DUR_G register
WAIT_G
DUR_G6
DUR_G5
DUR_G4
DUR_G3
DUR_G2
DUR_G1
DUR_G0
Table 96. INT_GEN_DUR_G register description
WAIT_G
Exit from Interrupt Wait function enable. Default value: 0
(0: wait function off; 1: wait for DUR_G [6:0] samples before exiting interrupt)
DUR_G [6:0]
Enter/exit interrupt duration value. Default value: 000 0000
The DUR_G [6:0] bits set the minimum duration of the interrupt event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
The WAIT_G bit has the following meaning:
‘0’: the interrupt falls immediately if the signal crosses the selected threshold
‘1’: if the signal crosses the selected threshold, the interrupt falls after a number of samples
equal to the value of the duration counter register.
For further details refer to Figure 22 and Figure 23.
54/59
DocID025604 Rev 3
LSM6DS0
Register description
Figure 22. Wait bit disabled
• Wait bit = ‘0’ Interrupt disabled as soon as condition
is no longer valid (ex: Rate value below threshold)
Rate
(dps)
0
t(n)
Rate
Threshold
Counter
Duration
Value
t(n)
Interrupt
“Wait”
Disabled
t(n)
Figure 23. Wait bit enabled
• Wait bit = ‘1’ Interrupt disabled after duration
sample (sort of hysteresis)
Rate
(dps)
0
t(n)
Rate
Threshold
Counter
Duration
Value
t(n)
Interrupt
“Wait”
Enabled
t(n)
Duration value is the same used to validate interrupt
DocID025604 Rev 3
55/59
59
Soldering information
8
LSM6DS0
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
56/59
DocID025604 Rev 3
LSM6DS0
9
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 24. LGA 3x3x0.86 16L package outline and dimensions
Dimensions are in millimeter unless otherwise specified
General Tolerance is +/-0.1mm unless otherwise specified
OUTER DIMENSIONS
ITEM
Length [L]
W idth [W ]
Height [H]
DIMENSION [mm]
3.00
3.00
0.86
DocID025604 Rev 3
TOLERANCE [mm]
±0.1
±0.1
MA X
57/59
59
Revision history
10
LSM6DS0
Revision history
Table 97. Document revision history
Date
Revision
28-Nov-2013
1
Initial release
2
Updated Vdd to 2.2 V in Section 2: Module specifications
Updated SW_RESET bit in Table 69: CTRL_REG8 register
description
Updated dimensions and revised package presentation in Section 9:
Package information
3
Document status promoted from preliminary to production data
Added ±16 g linear acceleration full scale throughout datasheet
Updated footnote 2 of Table 2: Pin description
Updated Figure 20: LSM6DS0 electrical connections
31-Mar-2014
03-Nov-2014
58/59
Changes
DocID025604 Rev 3
LSM6DS0
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved
DocID025604 Rev 3
59/59
59