Technical Data Sheet

LIS2DH
MEMS digital output motion sensor:
ultra low-power high performance 3-axis “femto” accelerometer
Features
■
Wide supply voltage, 1.71 V to 3.6 V
■
Independent IOs supply (1.8 V) and supply
voltage compatible
■
Ultra low-power mode consumption down to 2
µA
■
±2g/±4g/±8g/±16g dynamically selectable fullscale
■
I2C/SPI digital output interface
■
2 independent programmable interrupt
generators for free-fall and motion detection
■
6D/4D orientation detection
■
“Sleep to wake” and “return to sleep” function
■
Freefall detection
■
Motion detection
■
Embedded temperature sensor
■
Embedded FIFO
■
ECOPACK® RoHS and “Green” compliant
Description
The LIS2DH is an ultra low-power high
performance three-axis linear accelerometer
belonging to the “femto” family, with digital I2C/SPI
serial interface standard output.
The LIS2DH has dynamically user selectable full
scales of ±2g/±4g/±8g/±16g and it is capable of
measuring accelerations with output data rates
from 1 Hz to 5.3 kHz.
Applications
The self-test capability allows the user to check
the functioning of the sensor in the final
application.
The device may be configured to generate
interrupt signals by two independent inertial
wake-up/free-fall events as well as by the position
of the device itself.
■
Motion activated functions
■
Display orientation
■
Shake control
■
Pedometer
■
Gaming and virtual reality input devices
■
Impact recognition and logging
Table 1.
LGA-14 (2.0x2.0x1 mm)
The LIS2DH is available in small thin plastic land
grid array package (LGA) and is guaranteed to
operate over an extended temperature range from
-40 °C to +85 °C.
Device summary
Order codes
Temperature range [° C]
Package
Packaging
LIS2DH
-40 to +85
LGA-14
Tray
LIS2DHTR
-40 to +85
LGA-14
Tape and reel
November 2011
Doc ID 022516 Rev 1
1/49
www.st.com
49
Contents
LIS2DH
Contents
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2
I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6
Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
High resolution, normal mode, low power mode . . . . . . . . . . . . . . . . . . 14
2.6.4
Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.5
6D / 4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.6
“Sleep to wake” and “Return to sleep” . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7
Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8
IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1
4
2.6.3
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1
2/49
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Doc ID 022516 Rev 1
LIS2DH
5
Contents
4.1.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.4
Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.5
Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1
5.2
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7
Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1
STATUS_AUX (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2
OUT_TEMP_L (0Ch), OUT_TEMP_H (0Dh) . . . . . . . . . . . . . . . . . . . . . . 30
7.3
INT_COUNTER (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5
TEMP_CFG_REG (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.6
CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.7
CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.8
CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.9
CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.10
CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.11
CTRL_REG6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.12
REFERENCE/DATACAPTURE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.13
STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.14
OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.15
OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.16
OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.17
FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.18
FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.19
INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 022516 Rev 1
3/49
Contents
LIS2DH
7.20
INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.21
INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.22
INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.23
INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.24
INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.25
INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.26
INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.27
CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.28
CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.29
CLICK_THS (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.30
TIME_LIMIT (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.31
TIME_LATENCY (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.32
TIME WINDOW(3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.33
Act_THS(3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.34
Act_DUR (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4/49
Doc ID 022516 Rev 1
LIS2DH
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Operating mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Turn-on time for operating mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Operating modes current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SAD+read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 22
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 22
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STATUS_REG_AUX register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STATUS_REG_AUX description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
INT_COUNTER register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TEMP_CFG_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TEMP_CFG_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Self-test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CTRL_REG6 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STATUS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FIFO_CTRL_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIFO_CTRL_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Doc ID 022516 Rev 1
5/49
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
6/49
LIS2DH
INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
INT1_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CLICK_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CLICK_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TIME_LIMIT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TIME_LIMIT description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TIME_LATENCY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TIME_LATENCY description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TIME_WINDOW register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TIME_WINDOW register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Act_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Act_DUR description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
LGA-14 2x2x0.9 mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Doc ID 022516 Rev 1
LIS2DH
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
LIS2DH electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Multiple bytes SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Multiple bytes SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
LGA-14 2x2x0.9 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Doc ID 022516 Rev 1
7/49
Block diagram and pin description
LIS2DH
1
Block diagram and pin description
1.1
Block diagram
Figure 1.
Block diagram
X+
CHARGE
AMPLIFIER
Y+
Z+
a
CS
A/D
CONVERTER
MUX
I2C
CONTROL
LOGIC
SCL/SPC
SDA/SDO/SDI
SPI
Z-
SDO/SA0
YX-
TRIMMING
CIRCUITS
Temperature
Sensor
SELF TEST
CONTROL LOGIC
&
INTERRUPT GEN.
32 Level
FIFO
CLOCK
INT 1
INT 2
AM10218V1
Pin description
Pin connection
Res
Z
12
GND
1
Res
Figure 2.
Res
1.2
Pin 1 indicator
14
11
1
SDO/SA0
GND
4 CS
8
Y
(TOP VIEW)
5
INT1
X
Vdd_IO
7
INT2
Vdd
SC L/SPC
SDA/SDI/SDO
GND
(BOTTOM VIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
AM10218V1
8/49
Doc ID 022516 Rev 1
LIS2DH
Block diagram and pin description
Table 2.
Pin description
Pin#
Name
Function
1
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
2
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
3
SDO
SA0
SPI serial data output (SDO)
I2C less significant bit of the device address (SA0)
4
CS
5
INT2
Intterupt pin 2
6
INT1
Intterupt pin 1
7
Vdd_IO
8
Vdd
Power supply
9
GND
0 V supply
10
Res
Connect to GND
11
Res
Connect to GND
12-14
Res
Connect to GND
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
Power supply for I/O pins
Doc ID 022516 Rev 1
9/49
Mechanical and electrical specifications
LIS2DH
2
Mechanical and electrical specifications
2.1
Mechanical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(a)
Table 3.
Symbol
FS
So
Mechanical characteristics
Parameter
Measurement range(2)
Sensitivity
Test conditions
Min.
Typ.(1)
FS bit set to 00
±2.0
FS bit set to 01
±4.0
FS bit set to 10
±8.0
FS bit set to 11
±16.0
FS bit set to 00;
Normal mode
4
FS bit set to 00;
High Resolution mode
1
FS bit set to 00;
Low power mode
16
FS bit set to 01;
Normal mode
8
FS bit set to 01;
High Resolution mode
2
FS bit set to 01;
Low power mode
32
FS bit set to 10;
Normal mode
16
FS bit set to 10;
High Resolution mode
4
FS bit set to 10;
Low power mode
64
FS bit set to 11;
Normal mode
48
FS bit set to 11;
High Resolution mode
12
FS bit set to 11;
Low power mode
192
Max.
Unit
g
mg/digit
mg/digit
mg/digit
mg/digit
TCSo
Sensitivity change vs
temperature
FS bit set to 00
0.01
%/°C
TyOff
Typical zero-g level
offset accuracy(3),(4)
FS bit set to 00
±40
mg
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71V to 3.6 V.
10/49
Doc ID 022516 Rev 1
LIS2DH
Table 3.
Symbol
TCOff
Vst
Top
Mechanical and electrical specifications
Mechanical characteristics (continued)
Parameter
Test conditions
Zero-g level change
vs temperature
Min.
Typ.(1)
Max delta from 25 °C
Max.
Unit
mg/°C
±0.5
FS bit set to 00
X axis; Normal mode
17
360
LSb
FS bit set to 00
Self-test
output change(5),(6),(7) Y axis; Normal mode
17
360
LSb
FS bit set to 00
Z axis; Normal mode
17
360
LSb
-40
+85
°C
Operating
temperature range
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high pass filter.
5. The sign of “Self-test output change” is defined by CTRL_REG4 ST bit, for all axes.
6. “Self-test output change” is defined as the absolute value of:
OUTPUT[LSb](Self test enabled) - OUTPUT[LSb](Self test disabled). 1LSb=4mg at 10bit representation, ±2 g Full-scale
7. After enabling ST, correct data is obtained after two samples (Low power mode / Normal mode) or after eight samples (high
resolution mode).
2.2
Temperature sensor characteristics
@ Vdd =2.5 V, T=25 °C unless otherwise noted(b)
Table 4.
Temperature sensor characteristics
Symbol
Parameter
TSDr
Temperature sensor output
change vs temperature
TODR
Temperature refresh rate
Top
Operating temperature range
Min.
-40
Typ.(1)
Max.
Unit
1
digit/°C(2)
ODR(3)
Hz
+85
°C
1. Typical specifications are not guaranteed.
2. 8-bit resolution.
3. Refer to Table 28: Data rate configuration.
b. The product is factory calibrated at 2.5 V. Temperature sensor operation is guaranteed in the range 2 V - 3.6 V
Doc ID 022516 Rev 1
11/49
Mechanical and electrical specifications
2.3
LIS2DH
Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(c)
Table 5.
Electrical characteristics
Symbol
Vdd
Vdd_IO
Parameter
Test conditions
Supply voltage
(2)
I/O pins supply voltage
Min.
Typ.(1)
Max.
Unit
1.71
2.5
3.6
V
Vdd+0.1
V
1.71
Idd
Current consumption
in Normal mode
50 Hz ODR
11
µA
Idd
Current consumption
in Normal mode
1 Hz ODR
2
µA
IddLP
Current consumption
in low-power mode
50 Hz ODR
6
µA
IddPdn
Current consumption in powerdown mode
0.5
µA
VIH
Digital high level input voltage
VIL
Digital low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
Top
Operating temperature range
0.8*Vdd_IO
V
0.2*Vdd_IO
0.9*Vdd_IO
-40
V
0.1*Vdd_IO
V
+85
°C
1. Typical specification are not guaranteed.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the
measurement chain is powered off.
c.
12/49
The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
Doc ID 022516 Rev 1
V
LIS2DH
Mechanical and electrical specifications
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6.
SPI slave timing values
Value (1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
5
th(CS)
CS hold time
20
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
Max
100
ns
10
MHz
ns
50
5
SDO output disable time
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production
Figure 3.
CS
SPI slave timing diagram(d)
(3)
(3)
tc(SPC)
tsu(CS)
SPC
(3)
(3)
tsu(SI)
SDI
(3)
th(SI)
LSB IN
MSB IN
tv(SO)
SDO
th(CS)
(3)
tdis(SO)
th(SO)
MSB OUT
(3)
LSB OUT
(3)
3. When no communication is on-going, data on SDO is driven by internal pull-up resistors
d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and output port.
Doc ID 022516 Rev 1
13/49
Mechanical and electrical specifications
2.4.2
LIS2DH
I2C - Inter IC control interface
Subject to general operating conditions for Vdd and top.
Table 7.
I2C slave timing values
I2C standard mode (1)
Symbol
I2C fast mode (1)
Parameter
f(SCL)
Unit
SCL clock frequency
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
kHz
µs
0
ns
3.45
0.01
0.9
tr(SDA) tr(SCL)
SDA and SCL rise time
1000
20 + 0.1Cb (2)
300
tf(SDA) tf(SCL)
SDA and SCL fall time
300
20 + 0.1Cb (2)
300
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
µs
ns
µs
tw(SP:SR)
Bus free time between STOP
and START condition
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
Figure 4.
CS
I2C Slave timing diagram (e)
(3)
(3)
tc(SPC)
tsu(CS)
SPC
(3)
(3)
tsu(SI)
SDI
(3)
th(SI)
LSB IN
MSB IN
tv(SO)
SDO
th(CS)
(3)
e. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both port.
14/49
Doc ID 022516 Rev 1
tdis(SO)
th(SO)
MSB OUT
(3)
LSB OUT
(3)
LIS2DH
2.5
Mechanical and electrical specifications
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8.
Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins Supply voltage
-0.3 to 4.8
V
-0.3 to Vdd_IO +0.3
V
Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
3000 g for 0.5 ms
APOW
Acceleration (any axis, powered, Vdd = 2.5 V)
AUNP
Acceleration (any axis, unpowered)
TOP
Operating temperature range
-40 to +85
°C
TSTG
Storage temperature range
-40 to +125
°C
ESD
Electrostatic discharge protection
2 (HBM)
kV
10000 g for 0.1 ms
3000 g for 0.5 ms
Note:
10000 g for 0.1 ms
Supply voltage on any pin should never exceed 4.8 V
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part
This is an ESD sensitive device, improper handling can cause permanent damage to
the part
Doc ID 022516 Rev 1
15/49
Mechanical and electrical specifications
2.6
LIS2DH
Terminology and functionality
Terminology
2.6.1
Sensitivity
Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and also time. The sensitivity tolerance describes
the range of Sensitivities of a large population of sensors.
2.6.2
Zero-g level
Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady state on a horizontal surface
will measure 0 g in X axis and 0 g in Y axis whereas the Z axis will measure 1 g. The output
is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h,
data expressed as 2’s complement number). A deviation from ideal value in this case is
called Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and
therefore the offset can slightly change after mounting the sensor onto a printed circuit
board or exposing it to extensive mechanical stress. Offset changes little over temperature,
see “Zero-g level change vs. temperature”. The Zero-g level tolerance (TyOff) describes the
standard deviation of the range of Zero-g levels of a population of sensors.
Functionality
2.6.3
High resolution, Normal mode, Low power mode
The LIS2DH provides three different operating modes respectively reported as High
resolution mode, Normal mode and Low power mode.
The table below reported summarizes how to select among the different operating modes.
Table 9.
Operating mode selection
Operating mode
16/49
CTRL_REG1[3] CTRL_REG4[3]
BW [Hz]
Turn-on
time [ms]
So @ ±2g
[mg/digit]
(LPen bit)
(HR bit)
Low power mode (8
bit data output)
1
0
ODR/2
1
16
Normal mode(10 bit
data output)
0
0
ODR/2
1.6
4
High resolution (12
bit data output)
0
1
ODR/9
7/ODR
1
Not allowed
1
1
--
--
--
Doc ID 022516 Rev 1
LIS2DH
Mechanical and electrical specifications
The turn-on time to change from all operating mode is reported into Table 10.: Turn-on time
for operating mode change.
Table 10.
Turn-on time for operating mode change
Turn-on Tim
Operating mode change
12-bit mode to 8 bit mode
1/ODR
12-bit mode to 10 bit mode
1/ODR
10-bit mode to 8 bit mode
1/ODR
10-bit mode to 12 bit mode
7/ODR
8-bit mode to 10 bit mode
1/ODR
8-bit mode to 12 bit mode
7/ODR
Table 11.
Operating modes current consumption
Operating mode [Hz]
2.6.4
[ms]
High resolution
Normal mode
Low power mode
(8 bit data output) (10 bit data output) (12 bit data output)
[μA]
[μA]
[μA]
1
2
2
2
10
3
4
4
25
4
6
6
50
6
11
11
100
10
20
20
200
18
38
38
400
36
73
73
1344
--
185
185
1620
100
--
--
5376
185
--
--
Self-test
Self-test allows the user to check the sensor functionality without moving it. When the selftest is enabled an actuation force is applied to the sensor, simulating a definite input
acceleration. In this case the sensor outputs will exhibit a change in their DC levels which
are related to the selected full scale through the device sensitivity. When self-test is
activated, the device output level is given by the algebraic sum of the signals produced by
the acceleration acting on the sensor and by the electrostatic test-force. If the output signals
change within the amplitude specified inside Table 3, then the sensor is working properly
and the parameters of the interface chip are within the defined specifications.
Doc ID 022516 Rev 1
17/49
Mechanical and electrical specifications
2.6.5
LIS2DH
6D / 4D orientation detection
The LIS2DH include 6D / 4D orientation detection.
6D / 4D orientation recognition
In this configuration the interrupt is generated when the device is stable in a known
direction. In 4D configuration Z axis position detection is disable.
2.6.6
“Sleep to wake” and “Return to sleep”
The LIS2DH can be programmed to automatically switch to Low power mode upon
recognition of a determined event.
Once the event condition is over, the device returns back to the preset Normal or High
resolution mode.
To enable this function the desired threshold value must be stored inside Act_THS(3Eh)
registers while the duration value written inside Act_DUR(3Fh) registers.
When acceleration module becomes lower than the treshold value, the device automatically
switches to Low power mode (10Hz ODR).
During this condition, ODRx bits and LPen bit inside CTRL_REG1 (20h) and HR bit in
CTRL_REG3 (22h) are not considered.
As soon as the acceleration goes back over the threshold, the systems restores the
operating mode and ODRs as for CTRL_REG1 (20h) and CTRL_REG3 (22h) settings.
2.7
Sensing element
A proprietary process is used to create a surface micro-machined accelerometer. The
technology allows carring out suspended silicon structures which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with the traditional packaging techniques a cap is placed on
top of the sensing element to avoid blocking the moving parts during the moulding phase of
the plastic encapsulation.
When an acceleration is applied to the sensor the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady state the nominal value of the capacitors are few pF and when an acceleration is
applied the maximum variation of the capacitive load is in the fF range.
2.8
IC interface
The complete measurement chain is composed by a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is
finally available to the user by an analog-to-digital converter.
The acceleration data may be accessed through an I2C/SPI interface thus making the
device particularly suitable for direct interfacing with a microcontroller.
The LIS2DH features a data-ready signal (RDY) which indicates when a new set of
measured acceleration data is available thus simplifying data synchronization in the digital
system that uses the device.
18/49
Doc ID 022516 Rev 1
LIS2DH
Mechanical and electrical specifications
The LIS2DH may also be configured to generate an inertial Wake-Up and Free-Fall interrupt
signal accordingly to a programmed acceleration event along the enabled axes. Both FreeFall and Wake-Up can be available simultaneously on two different pins.
2.9
Factory calibration
The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff).
The trimming values are stored inside the device in a non volatile memory. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be used
during the active operation. This allows to use the device without further calibration.
2.10
FIFO
The LIS2DH contains a 10 bit, 32-level FIFO. Buffered output allows 4 operation modes:
FIFO, stream, trigger and FIFO ByPass. Where FIFO bypass mode is activated FIFO is not
operating and remains empty. In FIFO mode, data from acceleration detection on x, y, and zaxes measurements are stored in FIFO.
2.11
Temperature sensor
The LIS2DH is supplied with an internal temperature sensor. Temperature data can be
enabled by setting the TEMP_EN bit of the TEMP_CFG_REG register to 1.
To retrieve the temperature sensor data BDU bit on CTRL_REG4 (23h) must be set to ‘1’.
Both OUT_TEMP_H and OUT_TEMP_L registers must be read.
Temperature data is stored inside OUT_TEMP_H as 2’s complement data in 8 bit format left
justified.
Doc ID 022516 Rev 1
19/49
Application hints
3
LIS2DH
Application hints
Figure 5.
LIS2DH electrical connection
Vdd_IO
Vdd
GND
Pin 1 indicator
14
12
SCL/SPC
11
1
GND
SDA/SDI/SDO
GND
SDO/SA0
GND
CS
4
8
10µF
Vdd
100nF
7
5
Vdd_IO
INT1
INT2
GND
Digital signal from/to signal controller.Signal’s levels are defined by proper selection of Vdd_IO
AM10220V1
The device core is supplied through Vdd line while the I/O pads are supplied through
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should
be placed as near as possible to the pin 8 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I2C or SPI interfaces.When using the I2C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be
completely programmed by the user through the I2C/SPI interface.
3.1
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
20/49
Doc ID 022516 Rev 1
LIS2DH
Digital main blocks
4
Digital main blocks
4.1
FIFO
The LIS2DH embeds a 32-slot data FIFO for each of the three output channels, X, Y and Z.
This allows a consistent power saving for the system, since the host processor does not
need to continuously poll data from the sensor, but it can wakeup only when needed and
burst the significant data out from the FIFO. This buffer can work accordingly to four different
modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each mode is
selected by the FIFO_MODE bits into the FIFO_CTRL_REG (2E). Programmable
Watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated
interrupts on INT1/2 pin (configuration through FIFO_CFG_REG).
4.1.1
Bypass mode
In bypass mode, the FIFO is not operational and for this reason it remains empty. As
described in the next figure, for each channel only the first address is used. The remaining
FIFO slots are empty.
4.1.2
FIFO mode
In FIFO mode, data from X, Y and Z channels are stored into the FIFO. A watermark
interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG (2E) in order to be
raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits of
FIFO_CTRL_REG (2E). The FIFO continues filling until it is full (32 slots of data for X, Y and
Z). When full, the FIFO stops collecting data from the input channels.
4.1.3
Stream mode
In the stream mode, data from X, Y and Z measurement are stored into the FIFO. A
watermark interrupt can be enabled and set as in the FIFO mode.The FIFO continues filling
until it’s full (32 slots of data for X, Y and Z). When full, the FIFO discards the older data as
the new arrive.
4.1.4
Stream-to-FIFO mode
In Stream-to_FIFO mode, data from X, Y and Z measurement are stored into the FIFO. A
watermark interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG) in order
to be raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits
of FIFO_CTRL_REG. The FIFO continues filling until it’s full (32 slots of 10 bit for for X, Y
and Z). When full, the FIFO discards the older data as the new arrive. Once trigger event
occurs, the FIFO starts operating in FIFO mode.
4.1.5
Retrieve data from FIFO
FIFO data is read through OUT_X (Addr reg 29h), OUT_Y (Addr reg 2Bh) and OUT_Z (Addr
reg 2Dh). When the FIFO is in stream, Trigger or FIFO mode, a read operation to the
OUT_X, OUT_Y or OUT_Z regiters provides the data stored into the FIFO. Each time data
is read from the FIFO, the oldest X, Y and Z data are placed into the OUT_X, OUT_Y and
OUT_Z registers and both single read and read_burst operations can be used.
Doc ID 022516 Rev 1
21/49
Digital main blocks
LIS2DH
The reading address is automatically updated by the device and it rolls back to 0x28 when
register 0x2D is reached. In order to read all FIFO levels in a multiple byte reading,192 bytes
(6 output registers by 32 levels) have to be read.
22/49
Doc ID 022516 Rev 1
LIS2DH
5
Digital interfaces
Digital interfaces
The registers embedded inside the LIS2DH may be accessed through both the I2C and SPI
serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, CS
line must be tied high (i.e. connected to Vdd_IO).
Table 12.
Serial interface pin description
Pin name
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
CS
5.1
Pin description
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
I2C serial interface
The LIS2DH I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
Table 13.
Serial interface pin description
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up
resistor. When the bus is free both the lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with the
Normal mode.
Doc ID 022516 Rev 1
23/49
Digital interfaces
5.1.1
LIS2DH
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the Master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the Master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the Master.
The Slave ADdress (SAD) associated to the LIS2DH is 001100xb. SDO/SA0 pad can be
used to modify less significant bit of the device address. If SA0 pad is connected to voltage
supply, LSb is ‘1’ (address 0011001b) else if SA0 pad is connected to ground, LSb value is
‘0’ (address 0011000b). This solution permits to connect and address two different
accelerometers to the same I2C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LIS2DH behaves like a slave device and the following protocol
must be adhered to. After the start condition (ST) a slave address is sent, once a slave
acknowledge (SAK) has been returned, a 8-bit sub-address (SUB) is transmitted: the 7 LSb
represent the actual register address while the MSB enables address auto increment. If the
MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow
multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the Master will transmit to the slave with direction unchanged. Table explains how the
SAD+read/write bit pattern is composed, listing all the possible configurations.
Table 14.
Command
SAD[6:1]
SAD[0] = SA0
R/W
Read
001100
0
1
00110001 (31h)
Write
001100
0
0
00110000 (30h)
Read
001100
1
1
00110011 (33h)
Write
001100
1
0
00110010 (32h)
Table 15.
Master
Slave
24/49
SAD+read/write patterns
SAD+R/W
Transfer when master is writing one byte to slave
ST
SAD + W
SUB
SAK
Doc ID 022516 Rev 1
DATA
SAK
SP
SAK
LIS2DH
Digital interfaces
Table 16.
Master
Transfer when master is writing multiple bytes to slave:
ST
SAD + W
Slave
SAK
Table 17.
Master
Master
Slave
ST
DATA
DATA
SAK
SAK
SP
SAK
Transfer when master is receiving (reading) one byte of data from slave:
ST
SAD + W
Slave
Table 18.
SUB
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Transfer when Master is receiving (reading) multiple bytes of data from slave
SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real time function) the data line must be left HIGH by
the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to be read.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
5.2
SPI bus interface
The LIS2DH SPI is a bus slave. The SPI allows to write and read the registers of the device.
The Serial Interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
Doc ID 022516 Rev 1
25/49
Digital interfaces
LIS2DH
Figure 6.
Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10129V1
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiple of 8 in case of multiple bytes read/write. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands.
When 1, the address is auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When MS
bit is ‘0’ the address used to read/write data remains the same for every block. When MS bit
is ‘1’ the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
26/49
Doc ID 022516 Rev 1
LIS2DH
5.2.1
Digital interfaces
SPI read
Figure 7.
SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10130V1
The SPI Read command is performed with 16 clock pulses. Multiple byte read command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 8.
Multiple bytes SPI read protocol (2 bytes example)
CS
SPC
SDI
RW
M S A D5 A D4 AD 3 A D2 A D1 A D0
SD O
DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0 DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8
AM10131V1
Doc ID 022516 Rev 1
27/49
Digital interfaces
5.2.2
LIS2DH
SPI write
Figure 9.
SPI write protocol
CS
SPC
SDI
D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0
RW
MS AD5 AD 4 AD 3 AD2 AD 1 AD0
AM10132V1
The SPI Write command is performed with 16 clock pulses. Multiple byte write command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2 bytes example)
CS
SPC
SDI
DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4DI13 D I1 2DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD 0
AM10133V1
5.2.3
SPI read in 3-wires mode
3-wires mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in
CTRL_REG4.
28/49
Doc ID 022516 Rev 1
LIS2DH
Digital interfaces
Figure 11. SPI read protocol in 3-wires mode
CS
SPC
SDI/O
D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD 4 AD 3 AD2 AD1 AD 0
AM10134V1
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wires mode.
Doc ID 022516 Rev 1
29/49
Register mapping
6
LIS2DH
Register mapping
The table given below provides a listing of the 8 bit registers embedded in the device and
the related addresses:
Table 19.
Register address map
Register address
Name
Type
Default
Hex
Reserved
00 - 06
Reserved
STATUS_REG_AUX
r
07
Reserved
r
08-0B
OUT_TEMP_L
r
0C
000 1100
Output
OUT_TEMP_H
r
0D
000 1101
Output
INT_COUNTER_REG
r
0E
000 1110
WHO_AM_I
r
0F
000 1111 00110011 Dummy register
Reserved
000 0111
Reserved
10 - 1E
Reserved
TEMP_CFG_REG
rw
1F
001 1111
CTRL_REG1
rw
20
010 0000 00000111
CTRL_REG2
rw
21
010 0001 00000000
CTRL_REG3
rw
22
010 0010 00000000
CTRL_REG4
rw
23
010 0011 00000000
CTRL_REG5
rw
24
010 0100 00000000
CTRL_REG6
rw
25
010 0101 00000000
REFERENCE
rw
26
010 0110 00000000
STATUS_REG2
r
27
010 0111 00000000
OUT_X_L
r
28
010 1000
Output
OUT_X_H
r
29
010 1001
Output
OUT_Y_L
r
2A
010 1010
Output
OUT_Y_H
r
2B
010 1011
Output
OUT_Z_L
r
2C
010 1100
Output
OUT_Z_H
r
2D
010 1101
Output
FIFO_CTRL_REG
rw
2E
010 1110 00000000
FIFO_SRC_REG
r
2F
010 1111
rw
30
011 0000 00000000
r
31
011 0001 00000000
INT1_THS
rw
32
011 0010 00000000
INT1_DURATION
rw
33
011 0011 00000000
INT1_CFG
INT1_SOURCE
30/49
Comment
Binary
Doc ID 022516 Rev 1
0010000
LIS2DH
Register mapping
Table 19.
Register address map (continued)
Register address
Name
Type
Default
Hex
INT2_CFG
rw
34
011 0100 00000000
r
35
011 0101 00000000
INT2_THS
rw
36
011 0110 00000000
INT2_DURATION
rw
37
011 0111 00000000
CLICK_CFG
rw
38
011 1000 00000000
CLICK_SRC
r
39
011 1001 00000000
CLICK_THS
rw
3A
011 1010 00000000
TIME_LIMIT
rw
3B
011 1011 00000000
TIME_LATENCY
rw
3C
011 1100 00000000
TIME_WINDOW
rw
3D
011 1101 00000000
Act_THS
rw
3E
011 1110 00000000
Act_DUR
rw
3F
011 1111 00000000
INT2_SOURCE
Comment
Binary
Registers marked as Reserved or not listed in the table above must not be changed. The
writing to those registers may cause permanent damages to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered-up.
Boot procedure is complete about 5 milliseconds just after powered up the device.
Doc ID 022516 Rev 1
31/49
Registers Description
LIS2DH
7
Registers Description
7.1
STATUS_AUX (07h)
Table 20.
--
Table 21.
7.2
STATUS_REG_AUX register
TOR
--
--
--
TDA
--
--
STATUS_REG_AUX description
TOR
Temperature Data Overrun. Default value: 0
(0: no overrun has occurred;
1: a new temperature data has overwritten the previous one)
TDA
Temperature new Data Available. Default value: 0
(0: a new temperature data is not yet available;
1: a new temperature data is available)
OUT_TEMP_L (0Ch), OUT_TEMP_H (0Dh)
Temperature sensor data. Refer to Section 2.11: Temperature sensor for details on how to
enable and read the temperature sensor output data.
7.3
INT_COUNTER (0Eh)
Table 22.
IC7
7.4
INT_COUNTER register
IC6
IC5
IC4
IC3
IC2
IC1
IC0
WHO_AM_I (0Fh)
Table 23.
0
WHO_AM_I register
0
1
1
0
0
1
1
0
0
Device identification register.
7.5
TEMP_CFG_REG (1Fh)
Table 24.
TEMP_CFG_REG register
TEMP_EN1 TEMP_EN0
32/49
0
0
Doc ID 022516 Rev 1
0
0
LIS2DH
Registers Description
Table 25.
TEMP_CFG_REG description
TEMP_EN[1-0]
7.6
Temperature sensor (T) enable. Default value: 00
(00: T disabled; 11: T enabled)
CTRL_REG1 (20h)
Table 26.
CTRL_REG1 register
ODR3
Table 27.
ODR2
ODR1
ODR0
LPen
Zen
Yen
Xen
CTRL_REG1 description
ODR3-0
Data rate selection. Default value: 00
(0000:Power Down mode; Others: Refer to Table 28, "Data Rate Configuration")
LPen
Low power mode enable. Default value: 0
(0: Normal mode, 1: Low power mode)
(Refer to section 2.6.3: High resolution, Normal mode, Low power mode)
Zen
Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Yen
Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen
X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
ODR<3:0> is used to set Power Mode and ODR selection. In the following table are
reported all frequency resulting in combination of ODR<3:0>
Table 28.
Data rate configuration
ODR3
ODR2
ODR1
ODR0
Power mode selection
0
0
0
0
Power down mode
0
0
0
1
HR / normal / Low power mode (1 Hz)
0
0
1
0
HR / normal / Low power mode (10 Hz)
0
0
1
1
HR / normal / Low power mode (25 Hz)
0
1
0
0
HR / normal / Low power mode (50 Hz)
0
1
0
1
HR / normal / Low power mode (100 Hz)
0
1
1
0
HR / normal / Low power mode (200 Hz)
0
1
1
1
HR/ normal / Low power mode (400 Hz)
1
0
0
0
Low power mode (1.620 kHz)
1
0
0
1
HR/ normal (1.344 kHz);
Low power mode (5.376 kHz)
Doc ID 022516 Rev 1
33/49
Registers Description
7.7
LIS2DH
CTRL_REG2 (21h)
Table 29.
CTRL_REG2 register
HPM1
HPM0
Table 30.
FDS
HPCLICK
HPIS2
HPIS1
High Pass filter Mode Selection. Default value: 00
Refer to Table 31, "High pass filter mode configuration"
HPCF2 HPCF1
High Pass filter Cut Off frequency selection
FDS
Filtered Data Selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and
FIFO)
HPCLICK
High Pass filter enabled for CLICK function.
(0: filter bypassed; 1: filter enabled)
HPIS2
High Pass filter enabled for AOI function on Interrupt 2,
(0: filter bypassed; 1: filter enabled)
HPIS1
High Pass filter enabled for AOI function on Interrupt 1,
(0: filter bypassed; 1: filter enabled)
Table 31.
High pass filter mode configuration
HPM1
HPM0
High Pass filter Mode
0
0
Normal mode (reset reading REFERENCE/DATACAPTURE (26h) register)
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset on interrupt event
CTRL_REG3 (22h)
Table 32.
I1_CLICK
Table 33.
34/49
HPCF1
CTRL_REG2 description
HPM1 -HPM0
7.8
HPCF2
CTRL_REG3 register
I1_AOI1
I1_AOI2
I1_DRDY1
I1_DRDY2
I1_WTM
CTRL_REG3 description
I1_CLICK
CLICK interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_AOI1
AOI1 interrupt on INT1 pn. Default value 0.
(0: Disable; 1: Enable)
Doc ID 022516 Rev 1
I1_OVERRUN
--
LIS2DH
Registers Description
Table 33.
7.9
CTRL_REG3 description (continued)
I1_AOI2
AOI2 interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_DRDY1
DRDY1 interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_DRDY2
DRDY2 interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_WTM
FIFO Watermark interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_OVERRUN
FIFO Overrun interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
CTRL_REG4 (23h)
Table 34.
BDU
CTRL_REG4 register
BLE(1)
FS1
FS0
HR
ST1
ST0
SIM
1. BLE function can be activated only in High Resolution mode
Table 35.
CTRL_REG4 description
BDU
Block data update. Default value: 0
(0: continuos update; 1: output registers not updated until MSB and LSB have
been read)
BLE
Big/Little Endian data selection. Default value:0;
(0: data LSb at lower address; 1: data MSb at lower address)
The BLE function can be activated only in High Resolution mode
FS1-FS0
Full Scale selection. Default value: 00
(00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)
HR
Operating mode selection (refer to section 2.6.3: High resolution, Normal
mode, Low power mode)
ST1-ST0
Self Test Enable. Default value: 00
(00: Self Test Disabled; Other: See Table )
SIM
SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
Table 36.
Self test mode configuration
ST1
ST0
Self test mode
0
0
Normal mode
0
1
Self test 0
1
0
Self test 1
1
1
--
Doc ID 022516 Rev 1
35/49
Registers Description
7.10
CTRL_REG5 (24h)
Table 37.
BOOT
Table 38.
7.11
LIS2DH
CTRL_REG5 register
FIFO_EN
--
LIR_INT1
D4D_INT1
LIR_INT2
D4D_INT2
CTRL_REG5 description
BOOT
Reboot memory content. Default value: 0
(0: Normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
LIR_INT1
Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by
reading INT1_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT1
4D enable: 4D detection is enabled on INT1 pin when 6D bit on INT1_CFG is set to
1.
LIR_INT2
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT2
4D enable: 4D detection is enabled on INT2 pin when 6D bit on INT2_CFG is set to
1.
CTRL_REG6 (25h)
Table 39.
CTRL_REG6 register
I2_CLICKen I2_INT1
Table 40.
36/49
--
I2_INT2
BOOT_I2
P2_ACT
--
H_LACTIVE
CTRL_REG6 description
I2_CLICKen
Click interrupt on INT2 pin. Default value: 0
(0: disable; 1: enable)
I2_INT1
Interrupt 1 function enabled on INT2 pin. Default value: 0
(0: function disable; 1: function enable)
I2_INT2
Interrupt 2 function enabled on INT2 pin. Default value: 0
(0: function disable; 1: function enable)
BOOT_I2
Boot on INT2 pin enable. Default value: 0
(0: disable; 1:enable)
P2_ACT
Activity interrupt enable on INT2 pin. Default value: 0.
(0: disable; 1:enable)
H_LACTIVE
interrupt active. Default value: 0.
(0: interrupt active high; 1: interrupt active low)
Doc ID 022516 Rev 1
-
LIS2DH
7.12
Registers Description
REFERENCE/DATACAPTURE (26h)
Table 41.
Ref7
Table 42.
REFERENCE register
Ref6
Ref3
Ref2
Ref1
Ref0
Reference value for Interrupt generation. Default value: 0
STATUS_REG (27h)
Table 43.
ZYXOR
Table 44.
7.14
Ref4
REFERENCE register description
Ref 7-Ref0
7.13
Ref5
STATUS register
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
XDA
STATUS register description
ZYXOR
X, Y and Z axis Data Overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous ones)
ZOR
Z axis Data Overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous
one)
YOR
Y axis Data Overrun. Default value: 0
(0: no overrun has occurred;
1: a new data for the Y-axis has overwritten the previous one)
XOR
X axis Data Overrun. Default value: 0
(0: no overrun has occurred;
1: a new data for the X-axis has overwritten the previous one)
ZYXDA
X, Y and Z axis new Data Available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA
Z axis new Data Available. Default value: 0
(0: a new data for the Z-axis is not yet available;
1: a new data for the Z-axis is available)
YDA
Y axis new Data Available. Default value: 0
(0: a new data for the Y-axis is not yet available;
1: a new data for the Y-axis is available)
OUT_X_L (28h), OUT_X_H (29h)
X-axis acceleration data. The value is expressed as two’s complement left justified.
Please refer to Section 2.6.3: High resolution, Normal mode, Low power mode.
Doc ID 022516 Rev 1
37/49
Registers Description
7.15
LIS2DH
OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis acceleration data. The value is expressed as two’s complement left justified.
Please refer to Section 2.6.3: High resolution, Normal mode, Low power mode.
7.16
OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis acceleration data. The value is expressed as two’s complement left justified.
Please refer to Section 2.6.3: High resolution, Normal mode, Low power mode.
7.17
FIFO_CTRL_REG (2Eh)
Table 45.
FM1
FIFO_CTRL_REG register
FM0
Table 46.
TR
FTH2
FTH1
FTH0
FIFO_CTRL_REG register description
FIFO mode selection. Default value: 00 (see Table 47)
TR
Trigger selection. Default value: 0
0: Trigger event allows to trigger signal on INT1
1: Trigger event allows to trigger signal on INT2
FTH4:0
Default value: 0
FIFO mode configuration
FM1
FM0
FIFO mode
0
0
Bypass mode
0
1
FIFO mode
1
0
Stream mode
1
1
Trigger mode
FIFO_SRC_REG (2Fh)
Table 48.
WTM
38/49
FTH3
FM1-FM0
Table 47.
7.18
FTH4
FIFO_SRC register
OVRN_FIFO
EMPTY
FSS4
Doc ID 022516 Rev 1
FSS3
FSS2
FSS1
FSS0
LIS2DH
7.19
Registers Description
INT1_CFG (30h)
Table 49.
AOI
INT1_CFG register
6D
Table 50.
ZHIE/
ZUPE
ZLIE/
ZDOWNE
YHIE/
YUPE
YLIE/
YDOWNE
XHIE/
XUPE
XLIE/
XDOWNE
INT1_CFG description
AOI
And/Or combination of Interrupt events. Default value: 0. Refer to Table 51, "Interrupt
mode"
6D
6 direction detection function enabled. Default value: 0. Refer to Table 51, "Interrupt
mode"
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on Direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on Direction recognition. Default value:
0 (0: disable interrupt request;1: enable interrupt request)
YHIE/
YUPE
Enable interrupt generation on Y high event or on Direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on Direction recognition. Default value:
0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on Direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOWN Enable interrupt generation on X low event or on Direction recognition. Default value:
E
0 (0: disable interrupt request; 1: enable interrupt request.)
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.
Table 51.
Interrupt mode
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6 direction movement recognition
1
0
AND combination of interrupt events
1
1
6 direction position recognition
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generate when orientation move from
unknown zone to known zone. The interrupt signal stay for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generate when orientation is inside a
known zone. The interrupt signal stay untill orientation is inside the zone.
Doc ID 022516 Rev 1
39/49
Registers Description
7.20
LIS2DH
INT1_SRC (31h)
Table 52.
INT1_SRC register
0
Table 53.
IA
ZH
ZL
YH
YL
XH
XL
INT1_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z High event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z Low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y High event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y Low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X High event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X Low event has occurred)
Interrupt 1 source register. Read only register.
Reading at this address clears INT1_SRC IA bit (and the interrupt signal on INT 1 pin) and
allows the refreshment of data in the INT1_SRC register if the latched option was chosen.
7.21
INT1_THS (32h)
Table 54.
INT1_THS register
0
Table 55.
THS6
THS4
THS3
INT1_THS description
THS6 - THS0
40/49
THS5
Interrupt 1 threshold. Default value: 000 0000
1LSb = 16mg @FS=2g
1LSb = 32 mg @FS=4g
1LSb = 62 mg @FS=8g
1LSb = 186 mg @FS=16g
Doc ID 022516 Rev 1
THS2
THS1
THS0
LIS2DH
7.22
Registers Description
INT1_DURATION (33h)
Table 56.
0
Table 57.
D6 - D0
INT1_DURATION register
D6
D5
D4
D3
D2
D1
D0
INT1_DURATION description
Duration value. Default value: 000 0000
1 LSb = 1/ODR
D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
Duration time is measured in N/ODR, where N is the content of the duration register.
7.23
INT2_CFG (34h)
Table 58.
AOI
Table 59.
AOI
6D
INT2_CFG register
6D
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
INT2_CFG description
AND/OR combination of interrupt events. Default value: 0.
(See table below)
6 direction detection function enabled. Default value: 0. Refer to Table 60, "Interrupt
mode"
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Doc ID 022516 Rev 1
41/49
Registers Description
Table 59.
LIS2DH
INT2_CFG description (continued)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.
Table 60.
Interrupt mode
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6 direction movement recognition
1
0
AND combination of interrupt events
1
1
6 direction position recognition
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generate when orientation move from
unknown zone to known zone. The interrupt signal stay for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generate when orientation is inside a
known zone. The interrupt signal stay untill orientation is inside the zone.
7.24
INT2_SRC (35h)
Table 61.
0
Table 62.
42/49
INT2_SRC register
IA
ZH
ZL
YH
YL
XH
XL
INT2_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
Doc ID 022516 Rev 1
LIS2DH
Registers Description
Table 62.
INT2_SRC description (continued)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 2 source register. Read only register.
Reading at this address clears INT2_SRC IA bit (and the interrupt signal on INT 2 pin) and
allows the refreshment of data in the INT2_SRC register if the latched option was chosen.
7.25
INT2_THS (36h)
Table 63.
INT2_THS register
0
Table 64.
THS6
THS5
THS4
THS3
THS2
THS1
THS0
D2
D1
D0
INT2_THS description
Interrupt 2 threshold. Default value: 000 0000
THS6 - THS0
7.26
1LSb = 16mg @FS=2g;
1LSb = 32mg @FS=4g;
1LSb = 62mg @FS=8g;
1LSb = 186mg @ FS=16g
INT2_DURATION (37h)
Table 65.
0
Table 66.
D6-D0
INT2_DURATION register
D6
D5
D4
D3
INT2_DURATION description
Duration value. Default value: 000 0000
1 LSb = 1/ODR(1)
1. Duration time is measured in N/ODR, where N is the content of the duration register.
D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration
time steps and maximum values depend on the ODR chosen.
Doc ID 022516 Rev 1
43/49
Registers Description
7.27
CLICK_CFG (38h)
Table 67.
--
Table 68.
7.28
LIS2DH
CLICK_CFG register
--
ZS
YD
YS
XD
XS
CLICK_CFG description
ZD
Enable interrupt double tap-tap on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS
Enable interrupt single tap-tap on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD
Enable interrupt double tap-tap on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS
Enable interrupt single tap-tap on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XD
Enable interrupt double tap-tap on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS
Enable interrupt single tap-tap on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
CLICK_SRC (39h)
Table 69.
CLICK_SRC register
IA
Table 70.
44/49
ZD
DClick
SClick
Sign
Z
Y
X
CLICK_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DClick
Double Click-Click enable. Default value: 0 (0:double Click-Click detection disable, 1:
double tap-tap detection enable)
Stap
Single Click-Click enable. Default value: 0 (0:Single Click-Click detection disable, 1: single Click-Click detection enable)
Sign
Click-Click Sign. 0: positive detection, 1: negative detection
Z
Z Click-Click detection. Default value: 0
(0: no interrupt, 1: Z High event has occurred)
Doc ID 022516 Rev 1
LIS2DH
Registers Description
Table 70.
7.29
CLICK_SRC description (continued)
Y
Y Click-Click detection. Default value: 0
(0: no interrupt, 1: Y High event has occurred)
X
X Click-Click detection. Default value: 0
(0: no interrupt, 1: X High event has occurred)
CLICK_THS (3Ah)
Table 71.
-
Table 72.
CLICK_THS register
Ths6
-
Table 74.
Ths2
Ths1
Ths0
TLI1
TLI0
TLA1
TLA0
TW1
TW0
Click-Click threshold. Default value: 000 0000
TIME_LIMIT register
TLI6
TLI5
TLI4
TLI3
TLI2
TIME_LIMIT description
TLI7-TLI0
Click-Click Time Limit. Default value: 000 0000
TIME_LATENCY (3Ch)
Table 75.
TLA7
Table 76.
TIME_LATENCY register
TLA6
TLA5
TLA4
TLA3
TLA2
TIME_LATENCY description
TLA7-TLA0
7.32
Ths3
TIME_LIMIT (3Bh)
Table 73.
7.31
Ths4
CLICK_SRC description
Ths6-Ths0
7.30
Ths5
Click-Click Time Latency. Default value: 000 0000
TIME WINDOW(3Dh)
Table 77.
TW7
TIME_WINDOW register
TW6
TW5
TW4
TW3
Doc ID 022516 Rev 1
TW2
45/49
Registers Description
Table 78.
TW7-TW0
7.33
--
Table 80.
Acth[6-0]
Click-Click Time Window
TIME_WINDOW register
Acth6
Acth5
Acth4
Acth3
Acth2
Acth1
Acth0
TIME_WINDOW description
Sleep to wake, return to Sleep activation threshold in Low power mode
1LSb = 16mg @FS=2g
1LSb = 32 mg @FS=4g
1LSb = 62 mg @FS=8g
1LSb = 186 mg @FS=16g
Act_DUR (3Fh)
Table 81.
ActD7
Table 82.
ActD[7-0]
46/49
TIME_WINDOW description
Act_THS(3Eh)
Table 79.
7.34
LIS2DH
Act_DUR register
ActD6
ActD5
ActD4
ActD3
Act_DUR description
Sleep to Wake, Return to Sleep duration
1LSb = (8*1[LSb]+1)/ODR
Doc ID 022516 Rev 1
ActD2
ActD1
ActD0
LIS2DH
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Table 83.
LGA-14 2x2x1 mechanical dimensions
Ref.
Min.
Typ.
A1
Max.
1
A2
0.785
A3
0.200
D1
1.850
2.000
2.150
E1
1.850
2.000
2.150
L1
0.900
L2
1.250
N1
0.350
T1
0.275
T2
0.200
P1
0.850
P2
0.850
d
0.150
M
0.100
K
0.050
Figure 12. LGA-14 2x2x1 mechanical drawing
8224765_A
Doc ID 022516 Rev 1
47/49
Revision history
9
LIS2DH
Revision history
Table 84.
48/49
Document revision history
Date
Revision
25-Nov-2011
1
Changes
Initial release.
Doc ID 022516 Rev 1
LIS2DH
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 022516 Rev 1
49/49