LIS3DH MEMS digital output motion sensor ultra low-power high performance 3-axes “nano” accelerometer Features ■ Wide supply voltage, 1.71 V to 3.6 V ■ Independent IOs supply (1.8 V) and supply voltage compatible ■ Ultra low-power mode consumption down to 2 µA LGA-16 (3x3x1 mm) ■ ±2g/±4g/±8g/±16g dynamically selectable fullscale ■ I2C/SPI digital output interface ■ 16 bit data output ■ 2 independent programmable interrupt generators for free-fall and motion detection belonging to the “nano” family, with digital I2C/SPI serial interface standard output. The device features ultra low-power operational modes that allow advanced power saving and smart embedded functions. ■ Motion activated functions ■ Free-fall detection ■ Click/double click recognition The LIS3DH has dynamically user selectable full scales of ±2g/±4g/±8g/±16g and it is capable of measuring accelerations with output data rates from 1 Hz to 5 kHz. The self-test capability allows the user to check the functioning of the sensor in the final application. The device may be configured to generate interrupt signals by two independent inertial wake-up/free-fall events as well as by the position of the device itself. Thresholds and timing of interrupt generators are programmable by the end user on the fly. The LIS3DH has an integrated 32-level first in, first out (FIFO) buffer allowing the user to store data for host processor intervention reduction. The LIS3DH is available in small thin plastic land grid array package (LGA) and it is guaranteed to operate over an extended temperature range from -40 °C to +85 °C. ■ Intelligent power saving for handheld devices Table 1. ■ Pedometer ■ Display orientation ■ Gaming and virtual reality input devices ■ Impact recognition and logging ■ Vibration monitoring and compensation ■ 6D/4D orientation detection ■ Free-fall detection ■ Motion detection ■ Embedded temperature sensor ■ Embedded self-test ■ Embedded 96 levels of 16 bit data output FIFO ■ 10000 g high shock survivability ■ ECOPACK® RoHS and “Green” compliant Applications Device summary Order codes Temp. range [°C] Package Packaging LIS3DH -40 to +85 LGA-16 Tray LIS3DHTR -40 to +85 LGA-16 Tape and reel Description The LIS3DH is an ultra low-power high performance three axes linear accelerometer May 2010 Doc ID 17530 Rev 1 1/42 www.st.com 42 Contents LIS3DH Contents 1 2 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 3 3.2 2.4.2 I2C - Inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Normal mode, low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 6D / 4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.7 Auxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 5 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 4 2.4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.1 2/42 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Doc ID 17530 Rev 1 LIS3DH 6 Contents 5.1.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.4 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.5 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1.1 6.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2.3 SPI read in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8 Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.1 STATUS_AUX (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.2 OUT_1_L (08h), OUT_1_H (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.3 OUT_2_L (0Ah), OUT_2_H (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.4 OUT_3_L (0Ch), OUT_3_H (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.5 INT_COUNTER (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.6 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.7 TEMP_CFG_REG (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.8 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.9 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.10 CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.11 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.12 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.13 CTRL_REG6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.14 REFERENCE/DATACAPTURE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.15 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.16 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.17 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.18 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.19 FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Doc ID 17530 Rev 1 3/42 Contents LIS3DH 8.20 FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.21 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.22 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.23 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.24 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.25 CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.26 CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.27 CLICK_THS (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.28 TIME_LIMIT (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.29 TIME_LATENCY (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.30 TIME WINDOW(3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4/42 Doc ID 17530 Rev 1 LIS3DH List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 LIS3DH electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Multiple bytes SPI read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SPI read protocol in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 LGA-16: Mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Doc ID 17530 Rev 1 5/42 List of tables LIS3DH List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 6/42 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operating mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 22 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 22 Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STATUS_REG_AUX register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 STATUS_REG_AUX description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 INT_COUNTER register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 TEMP_CFG_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 TEMP_CFG_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Self test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CTRL_REG6 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STATUS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Doc ID 17530 Rev 1 LIS3DH Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. List of tables INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 INT1_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 CLICK_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CLICK_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LIMIT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LIMIT description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LATENCY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LATENCY description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_WINDOW register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 LGA-16: Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Doc ID 17530 Rev 1 7/42 Block diagram and pin description LIS3DH 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram X+ Y+ CHARGE AMPLIFIER Z+ a A/D CONVERTER 1 MUX CS ZY- CONTROL LOGIC X- SCL/SPC I2C SDA/SDO/SDI SPI SDO/SA0 ADC1 - ADC Input1 ADC2 - ADC Input2 A/D CONVERTER 2 ADC3 - ADC Input3 TEMPERATURE SENSOR SELF TEST 1.2 TRIMMING CIRCUITS REFERENCE CONTROL LOGIC & INTERRUPT GEN. 96 Level FIFO CLOCK Pin description Figure 2. Pin connection X 1 ADC3 ADC1 ADC2 Vdd Z 13 Pin 1 indicator 1 NC INT1 NC SCL/SPC RES INT2 9 5 8/42 Doc ID 17530 Rev 1 SDA/SDI/SDO CS DIRECTION OF THE DETECTABLE ACCELERATIONS SDO/SA0 Y (TOP VIEW) Vdd_IO GND (BOTTOM VIEW) GND INT 1 INT 2 LIS3DH Block diagram and pin description Table 2. Pin description Pin# Name Function 1 Vdd_IO 2 NC Not connected 3 NC Not connected 4 SCL SPC I2C serial clock (SCL) SPI serial port clock (SPC) 5 GND 0V supply 6 SDA SDI SDO I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) 7 SDO SA0 SPI serial data output (SDO) I2C less significant bit of the device address (SA0) 8 CS 9 INT2 Inertial interrupt 2 10 RES Connect to GND 11 INT1 Inertial interrupt 1 12 GND 0 V supply 13 ADC3 Analog to digital converter input 3 14 Vdd 15 ADC2 Analog to digital converter input 2 16 ADC1 Analog to digital converter input 1 Power supply for I/O pins SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) Power supply Doc ID 17530 Rev 1 9/42 Mechanical and electrical specifications LIS3DH 2 Mechanical and electrical specifications 2.1 Mechanical characteristics Vdd = 2.5 V, T = 25 °C unless otherwise noted (a) Table 3. Symbol FS So Mechanical characteristics Parameter Measurement range(2) Sensitivity Test conditions Min. Typ.(1) Max. Unit FS bit set to 00 ±2.0 FS bit set to 01 ±4.0 FS bit set to 10 ±8.0 FS bit set to 11 ±16.0 g FS bit set to 00 1 mg/digit FS bit set to 01 2 mg/digit FS bit set to 10 4 mg/digit FS bit set to 11 12 mg/digit TCSo Sensitivity change vs temperature FS bit set to 00 0.01 %/°C TyOff Typical zero-g level offset accuracy(3),(4) FS bit set to 00 ±40 mg TCOff Zero-g level change vs temperature Max delta from 25 °C ±0.5 mg/°C Acceleration noise density FS bit set to 00, Normal Mode (Table 9), ODR = 100Hz 220 ug/sqrt(H z) FS bit set to 00 X axis 276 LSb FS bit set to 00 Self-test output change(5),(6),(7) Y axis 276 LSb FS bit set to 00 Z axis 984 LSb An Vst Top Operating temperature range -40 +85 1. Typical specifications are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Typical zero-g level offset value after MSL3 preconditioning. 4. Offset can be eliminated by enabling the built-in high pass filter. 5. The sign of “Self-test output change” is defined by CTRL_REG4 STsign bit, for all axes. 6. Self-test output changes with the power supply. “Self-test output change” is defined as OUTPUT[LSb](CTRL_REG4 ST bit=1) - OUTPUT[LSb](CTRL_REG4 ST bit=0). 1LSb=1mg, ±2 g Full-scale. 7. Output data reach 99% of final value after 1 ms when enabling self-test mode, due to device filtering. a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71V to 3.6 V. 10/42 Doc ID 17530 Rev 1 °C LIS3DH 2.2 Mechanical and electrical specifications Temperature sensor characteristics Vdd =2.5 V, T=25 °C unless otherwise noted (b) Table 4. Temperature sensor characteristics Symbol Parameter Test condition TSDr Temperature sensor output change vs temperature TODR Temperature refresh rate Top Operating temperature range Min. Typ.(1) Max. Unit 1 digit/°C(2) ODR Hz -40 +85 °C 1. Typical specifications are not guaranteed. 2. 8-bit resolution. 2.3 Electrical characteristics Vdd = 2.5 V, T = 25 °C unless otherwise noted (c) Table 5. Electrical characteristics Min. Typ.(1) Max. Unit Supply voltage 1.71 2.5 3.6 V Vdd_IO I/O pins supply voltage(2) 1.71 Vdd+0.1 V Symbol Vdd Parameter Test conditions Idd Current consumption in normal mode 50 Hz ODR 11 µA Idd Current consumption in normal mode 1 Hz ODR 2 µA IddLP Current consumption in low-power mode 50 Hz ODR 6 µA IddPdn Current consumption in power-down mode 0.5 µA VIH Digital high level input voltage VIL Digital low level input voltage VOH High level output voltage VOL Low level output voltage BW System bandwidth(3) Ton Turn-on time(4) Top Operating temperature range 0.8*Vdd_IO V 0.2*Vdd_IO 0.9*Vdd_IO V 0.1*Vdd_IO ODR = 100 Hz -40 V V ODR/2 Hz 1 ms +85 °C 1. Typical specification are not guaranteed. 2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off. 3. Referred to Table 25 for the ODR value and configuration. 4. Time to obtain valid data after exiting power-down mode. b. The product is factory calibrated at 2.5 V. c. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V. Doc ID 17530 Rev 1 11/42 Mechanical and electrical specifications LIS3DH 2.4 Communication interface characteristics 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 6. SPI slave timing values Value (1) Symbol Parameter Unit Min tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 6 th(CS) CS hold time 8 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) Figure 3. CS 100 Note: 12/42 ns 9 50 SPI slave timing diagram (3) (3) tc(SPC) th(CS) (3) (3) (3) th(SI) LSB IN MSB IN tv(SO) SDO MHz 50 SDO output disable time tsu(SI) SDI ns 10 tsu(CS) SPC Max (3) tdis(SO) th(SO) MSB OUT (3) LSB OUT (3) 1 Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. 2 Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and output port. 3 When no communication is on-going, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors. Doc ID 17530 Rev 1 LIS3DH 2.4.2 Mechanical and electrical specifications I2C - Inter IC control interface Subject to general operating conditions for Vdd and top. Table 7. I2C slave timing values I2C standard mode (1) Symbol I2C fast mode (1) Parameter f(SCL) Unit SCL clock frequency Min Max Min Max 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0.01 kHz µs ns 3.45 0.01 0.9 tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb (2) 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb (2) 300 th(ST) START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 µs ns µs tw(SP:SR) Bus free time between STOP and START condition 1. Data based on standard I2C protocol requirement, not tested in production. 2. Cb = total capacitance of one bus line, in pF. Figure 4. I2C Slave timing diagram REPEATED START START tsu(SR) tw(SP:SR) SDA tf(SDA) tsu(SDA) tr(SDA) START th(SDA) tsu(SP) STOP SCL th(ST) Note: tw(SCLL) tw(SCLH) tr(SCL) tf(SCL) Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both port. Doc ID 17530 Rev 1 13/42 Mechanical and electrical specifications 2.5 LIS3DH Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 8. Absolute maximum ratings Symbol Vdd Vdd_IO Vin Note: Ratings Maximum value Unit Supply voltage -0.3 to 4.8 V I/O pins Supply voltage -0.3 to 4.8 V -0.3 to Vdd_IO +0.3 V 3000 for 0.5 ms g 10000 for 0.1 ms g 3000 for 0.5 ms g 10000 for 0.1 ms g Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) APOW Acceleration (any axis, powered, Vdd = 2.5 V) AUNP Acceleration (any axis, unpowered) TOP Operating temperature range -40 to +85 °C TSTG Storage temperature range -40 to +125 °C ESD Electrostatic discharge protection 2 (HBM) kV Supply voltage on any pin should never exceed 4.8 V This is a mechanical shock sensitive device, improper handling can cause permanent damages to the part. This is an ESD sensitive device, improper handling can cause permanent damages to the part. 14/42 Doc ID 17530 Rev 1 LIS3DH Terminology and functionality 3 Terminology and functionality 3.1 Terminology 3.1.1 Sensitivity Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also time. The sensitivity tolerance describes the range of Sensitivities of a large population of sensors. 3.1.2 Zero-g level Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface measure 0 g in X axis and 0 g in Y axis whereas the Z axis measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level change vs. temperature”. The Zero-g level tolerance (TyOff) describes the standard deviation of the range of Zero-g levels of a population of sensors. 3.2 Functionality 3.2.1 Normal mode, low power mode LIS3DH provides two different operating modes respectively reported as normal mode and low power mode. While normal mode guarantees high resolution, low power mode reduces further the current consumption. The table below reported summarizes how to select the operating mode. Table 9. Operating mode selection CTRL_REG1[3] CTRL_REG4[3] (LPen bit) (HR bit) 1 0 Low power mode 0 1 Normal mode Operating mode Doc ID 17530 Rev 1 15/42 Terminology and functionality 3.2.2 LIS3DH Self-test Self-test allows to check the sensor functionality without moving it. The self-test function is off when the self-test bit (ST) is programmed to ‘0‘. When the self-test bit is programmed to ‘1‘ an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs exhibit a change in their DC levels which are related to the selected full scale through the device sensitivity. When self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified inside Table 3, then the sensor is working properly and the parameters of the interface chip are within the defined specifications. 3.2.3 6D / 4D orientation detection The LIS3DH include 6D / 4D orientation detection. 6D / 4D orientation recognition: In this configuration the interrupt is generated when the device is stable in a known direction. In 4D configuration Z axis position detection is disable. 3.3 Sensing element A proprietary process is used to create a surface micro-machined accelerometer. The technology allows carrying out suspended silicon structures which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. To be compatible with the traditional packaging techniques a cap is placed on top of the sensing element to avoid blocking the moving parts during the moulding phase of the plastic encapsulation. When an acceleration is applied to the sensor the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor. At steady state the nominal value of the capacitors are few pF and when an acceleration is applied the maximum variation of the capacitive load is in the fF range. 3.4 IC interface The complete measurement chain is composed by a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is finally available to the user by an analog-to-digital converter. The acceleration data may be accessed through an I2C/SPI interface thus making the device particularly suitable for direct interfacing with a microcontroller. The LIS3DH features a Data-Ready signal (RDY) which indicates when a new set of measured acceleration data is available thus simplifying data synchronization in the digital system that uses the device. The LIS3DH may also be configured to generate an inertial Wake-Up and Free-Fall interrupt signal accordingly to a programmed acceleration event along the enabled axes. Both FreeFall and Wake-Up can be available simultaneously on two different pins. 16/42 Doc ID 17530 Rev 1 LIS3DH 3.5 Terminology and functionality Factory calibration The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff). The trimming values are stored inside the device in a non volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during the active operation. This allows to use the device without further calibration. 3.6 FIFO The LIS3DH contains a 10 bit, 32-level FIFO. Buffered output allows 4 operation modes: FIFO, stream, trigger and FIFO ByPass. Where FIFO bypass mode is activated FIFO is not operating and remains empty. In FIFO mode, data from acceleration detection on x, y, and zaxes measurements are stored in FIFO. 3.7 Auxiliary ADC The LIS3DH contains an auxiliary 10 bit ADC with 3 separate dedicated inputs. Doc ID 17530 Rev 1 17/42 Application hints 4 LIS3DH Application hints Figure 5. LIS3DH electrical connection ADC1 ADC2 Vdd 16 10µF 14 1 Vdd_IO 13 ADC3 TOP VIEW INT1 100nF 9 5 8 INT2 Vdd_IO Rpu CS Rpu SDO/SA0 SDA/SDI/SDO SCL/SPC 6 Pull-up to be added when I2C interface is used GND Digital signal from/to signal controller.Signal’s levels are defined by proper selection of Vdd_IO The device core is supplied through Vdd line while the I/O pads are supplied through Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should be placed as near as possible to the pin 14 of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off. The functionality of the device and the measured acceleration data is selectable and accessible through the I2C or SPI interfaces.When using the I2C, CS must be tied high. The ADC1, ADC2 & ADC3 if not used can be left floating or keep connected to Vdd or GND. The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be completely programmed by the user through the I2C/SPI interface. 4.1 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Leave “Pin 1 Indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com. 18/42 Doc ID 17530 Rev 1 LIS3DH Digital main blocks 5 Digital main blocks 5.1 FIFO LIS3DH embeds a 32-slot of 10bit data FIFO for each of the three output channels, X, Y and Z. This allows a consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wakeup only when needed and burst the significant data out from the FIFO. This buffer can work accordingly to four different modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits into the FIFO_CTRL_REG (2E). Programmable Watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated interrupts on INT1/2 pin (configuration through FIFO_CFG_REG). 5.1.1 Bypass mode In Bypass mode, the FIFO is not operational and for this reason it remains empty. As described in the next figure, for each channel only the first address is used. The remaining FIFO slots are empty. 5.1.2 FIFO mode In FIFO mode, data from X, Y and Z channels are stored into the FIFO. A watermark interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG in order to be raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits of FIFO_CTRL_REG. The FIFO continues filling until it is full (32 slots of 10data for X, Y and Z). When full, the FIFO stops collecting data from the input channels. 5.1.3 Stream mode In the stream mode, data from X, Y and Z measurement are stored into the FIFO. A watermark interrupt can be enabled and set as in the FIFO mode.The FIFO continues filling until it’s full (32 slots of 10data for X, Y and Z). When full, the FIFO discards the older data as the new arrive. 5.1.4 Stream-to-FIFO mode In Stream-to_FIFO mode, data from X, Y and Z measurement are stored into the FIFO. A watermark interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG) in order to be raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits of FIFO_CTRL_REG. The FIFO continues filling until it’s full (32 slots of 10 data for X, Y and Z). When full, the FIFO discards the older data as the new arrive. Once trigger event occurs, the FIFO starts operating in FIFO mode. 5.1.5 Retrieve data from FIFO FIFO data is read through OUT_X (Addr reg 28h,29h), OUT_Y (Addr reg 2Ah,2Bh) and OUT_Z (Addr reg 2Ch,2Dh). When the FIFO is in stream, Trigger or FIFO mode, a read operation to the OUT_X, OUT_Y or OUT_Z registers provides the data stored into the FIFO. Each time data is read from the FIFO, the oldest X, Y and Z data are placed into the OUT_X, OUT_Y and OUT_Z registers and both single read and read_burst operations can be used. Doc ID 17530 Rev 1 19/42 Digital interfaces 6 LIS3DH Digital interfaces The registers embedded inside the LIS3DH may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, CS line must be tied high (i.e. connected to Vdd_IO). Table 10. Serial interface pin description Pin name SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) CS 6.1 Pin description SCL SPC I2C serial clock (SCL) SPI serial port clock (SPC) SDA SDI SDO I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) SA0 SDO I2C less significant bit of the device address (SA0) SPI serial data output (SDO) I2C serial interface The LIS3DH I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 11. Serial interface pin description Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistor. When the bus is free both the lines are high. The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with the normal mode. 20/42 Doc ID 17530 Rev 1 LIS3DH 6.1.1 Digital interfaces I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the Master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the Master. The Slave ADdress (SAD) associated to the LIS3DH is 001100xb. SDO/SA0 pad can be used to modify less significant bit of the device address. If SA0 pad is connected to voltage supply, LSb is ‘1’ (address 0011001b) else if SA0 pad is connected to ground, LSb value is ‘0’ (address 0011000b). This solution permits to connect and address two different accelerometers to the same I2C lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the LIS3DH behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, a 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow multiple data read/write. The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the Master transmit to the slave with direction unchanged. Table 12 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 12. SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Table 13. Transfer when master is writing one byte to slave Master ST SAD + W Slave Table 14. Master Slave SAD+R/W SUB SAK DATA SAK SP SAK Transfer when master is writing multiple bytes to slave: ST SAD + W SUB SAK DATA SAK Doc ID 17530 Rev 1 DATA SAK SP SAK 21/42 Digital interfaces LIS3DH Table 15. Master Transfer when master is receiving (reading) one byte of data from slave: ST SAD + W Slave Table 16. SUB SAK SR SAD + R SAK NMAK SAK SP DATA Transfer when master is receiving (reading) multiple bytes of data from slave Master ST SAD+W Slave SUB SAK SR SAD+R SAK MAK SAK DATA MAK DATA NMAK SP DATA Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real time function) the data line must be left HIGH by the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read. In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge. 6.2 SPI bus interface The LIS3DH SPI is a bus slave. The SPI allows to write and read the registers of the device. The Serial Interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO. Figure 6. Read and write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and 22/42 Doc ID 17530 Rev 1 LIS3DH Digital interfaces SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiple of 8 in case of multiple bytes read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip drives SDO at the start of bit 8. bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods is added. When MS bit is ‘0’ the address used to read/write data remains the same for every block. When MS bit is ‘1’ the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. 6.2.1 SPI read Figure 7. SPI read protocol CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 The SPI Read command is performed with 16 clock pulses. Multiple byte read command is performed adding blocks of 8 clock pulses at the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple reading. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple byte reading. Doc ID 17530 Rev 1 23/42 Digital interfaces LIS3DH Figure 8. Multiple bytes SPI read protocol (2 bytes example) CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8 6.2.2 SPI write Figure 9. SPI write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI Write command is performed with 16 clock pulses. Multiple byte write command is performed adding blocks of 8 clock pulses at the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple writing. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writing. Figure 10. Multiple bytes SPI write protocol (2 bytes example) CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8 RW MS AD5 AD4 AD3 AD2 AD1 AD0 24/42 Doc ID 17530 Rev 1 LIS3DH 6.2.3 Digital interfaces SPI read in 3-wires mode 3-wires mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in CTRL_REG4. Figure 11. SPI read protocol in 3-wires mode CS SPC SDI/O DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple reading. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). Multiple read command is also available in 3-wires mode. Doc ID 17530 Rev 1 25/42 Register mapping 7 LIS3DH Register mapping The table given below provides a listing of the 8 bit registers embedded in the device and the related addresses: Table 17. Register address map Register address Name Type Default Hex Reserved (do not modify) 00 - 06 Reserved STATUS_REG_AUX r 07 000 0111 OUT_ADC1_L r 08 000 1000 output OUT_ADC1_H r 09 000 1001 output OUT_ADC2_L r 0A 000 1010 output OUT_ADC2_H r 0B 000 1011 output OUT_ADC3_L r 0C 000 1100 output OUT_ADC3_H r 0D 000 1101 output INT_COUNTER_REG r 0E 000 1110 WHO_AM_I r 0F 000 1111 00110011 Dummy register Reserved (do not modify) 10 - 1E Reserved TEMP_CFG_REG rw 1F 001 1111 CTRL_REG1 rw 20 010 0000 00000111 CTRL_REG2 rw 21 010 0001 00000000 CTRL_REG3 rw 22 010 0010 00000000 CTRL_REG4 rw 23 010 0011 00000000 CTRL_REG5 rw 24 010 0100 00000000 CTRL_REG6 rw 25 010 0101 00000000 REFERENCE rw 26 010 0110 00000000 STATUS_REG2 r 27 010 0111 00000000 OUT_X_L r 28 010 1000 output OUT_X_H r 29 010 1001 output OUT_Y_L r 2A 010 1010 output OUT_Y_H r 2B 010 1011 output OUT_Z_L r 2C 010 1100 output OUT_Z_H r 2D 010 1101 output FIFO_CTRL_REG rw 2E 010 1110 00000000 FIFO_SRC_REG r 2F 010 1111 rw 30 011 0000 00000000 INT1_CFG 26/42 Comment Binary Doc ID 17530 Rev 1 LIS3DH Register mapping Table 17. Register address map Register address Name Type Default Hex INT1_SOURCE Comment Binary r 31 011 0001 00000000 INT1_THS rw 32 011 0010 00000000 INT1_DURATION rw 33 011 0011 00000000 Reserved rw 34-37 CLICK_CFG rw 38 011 1000 00000000 CLICK_SRC r 39 011 1001 00000000 CLICK_THS rw 3A 011 1010 00000000 TIME_LIMIT rw 3B 011 1011 00000000 TIME_LATENCY rw 3C 011 1100 00000000 TIME_WINDOW rw 3D 011 1101 00000000 00000000 Registers marked as Reserved must not be changed. The writing to those registers may cause permanent damages to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered-up. Doc ID 17530 Rev 1 27/42 Registers description LIS3DH 8 Registers description 8.1 STATUS_AUX (07h) Table 18. 321OR Table 19. 321OR STATUS_REG_AUX register 3OR 2OR 1OR 321DA 3DA 2DA 1DA STATUS_REG_AUX description 1, 2 and 3 axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous ones) 3OR 3 axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the 3-axis has overwritten the previous one) 2OR 2 axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the 4-axis has overwritten the previous one) 1OR 1 axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the 1-axis has overwritten the previous one) 321DA 3DA 1, 2 and 3 axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) 3 axis new data available. Default value: 0 (0: a new data for the 3-axis is not yet available; 1: a new data for the 3-axis is available) 8.2 2DA 2 axis new data available. Default value: 0 (0: a new data for the 2-axis is not yet available; 1: a new data for the 2-axis is available) 1DA 1 axis new data available. Default value: 0 (0: a new data for the 1-axis is not yet available; 1: a new data for the 1-axis is available) OUT_1_L (08h), OUT_1_H (09h) 1-axis acceleration data. The value is expressed in two’s complement. 8.3 OUT_2_L (0Ah), OUT_2_H (0Bh) 2-axis acceleration data. The value is expressed in two’s complement. 8.4 OUT_3_L (0Ch), OUT_3_H (0Dh) 3-axis acceleration data. The value is expressed in two’s complement. 28/42 Doc ID 17530 Rev 1 LIS3DH 8.5 Registers description INT_COUNTER (0Eh) Table 20. IC7 8.6 INT_COUNTER register IC6 IC5 IC4 IC3 IC2 IC1 IC0 WHO_AM_I (0Fh) Table 21. 0 WHO_AM_I register 0 1 1 0 0 1 1 0 0 0 0 Zen Yen Xen Device identification register. 8.7 TEMP_CFG_REG (1Fh) Table 22. ADC_PD Table 23. ADC_PD TEMP_EN 8.8 TEMP_CFG_REG register TEMP_EN 0 0 TEMP_CFG_REG description ADC enable. Default value: 0 (0: ADC disabled; 1: ADC enabled) Temperature sensor (T) enable. Default value: 0 (0: T disabled; 1: T enabled) CTRL_REG1 (20h) Table 24. ODR3 Table 25. ODR3-0 CTRL_REG1 register ODR2 ODR1 ODR0 LPen CTRL_REG1 description Data rate selection. Default value: 00 (0000:50 Hz; Others: Refer to Table 25, “Data rate configuration”) LPen Low power mode enable. Default value: 0 (0: normal mode, 1: low power mode) Zen Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled) Yen Y axis enable. Default value: 1 (0: Y axis disabled; 1: Y axis enabled) Xen X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled) Doc ID 17530 Rev 1 29/42 Registers description LIS3DH ODR<3:0> is used to set power mode and ODR selection. In the following table are reported all frequency resulting in combination of ODR<3:0> Table 26. Data rate configuration ODR3 8.9 ODR2 ODR0 Power mode selection 0 0 0 0 Power down mode 0 0 0 1 Normal / low power mode (1 Hz) 0 0 1 0 Normal / low power mode (10 Hz) 0 0 1 1 Normal / low power mode (25 Hz) 0 1 0 0 Normal / low power mode (50 Hz) 0 1 0 1 Normal / low power mode (100 Hz) 0 1 1 0 Normal / low power mode (200 Hz) 0 1 1 1 Normal / low power mode (400 Hz) 1 0 0 0 Low power mode (1.6 KHz) 1 0 0 1 Normal (1.25 kHz) / low power mode (5 KHz) CTRL_REG2 (21h) Table 27. CTRL_REG2 register HPM1 Table 28. HPM0 HPCF2 HPCF1 FDS HPCLICK HPIS2 HPIS1 CTRL_REG2 description HPM1 -HPM0 30/42 ODR1 High pass filter mode selection. Default value: 00 Refer to Table 29, "High pass filter mode configuration" HPCF2 HPCF1 High pass filter cut off frequency selection FDS Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO) HPCLICK High pass filter enabled for CLICK function. (0: filter bypassed; 1: filter enabled) HPIS2 High pass filter enabled for AOI function on interrupt 2, (0: filter bypassed; 1: filter enabled) HPIS1 High pass filter enabled for AOI function on interrupt 1, (0: filter bypassed; 1: filter enabled) Doc ID 17530 Rev 1 LIS3DH Registers description Table 29. High pass filter mode configuration HPM1 8.10 High pass filter mode 0 0 Normal mode (reset reading HP_RESET_FILTER) 0 1 Reference signal for filtering 1 0 Normal mode 1 1 Autoreset on interrupt event CTRL_REG3 (22h) Table 30. I1_CLICK Table 31. 8.11 HPM0 CTRL_REG3 register I1_AOI1 I1_AOI2 I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN -- CTRL_REG3 description I1_CLICK CLICK interrupt on INT1. Default value 0. (0: Disable; 1: Enable) I1_AOI1 AOI1 interrupt on INT1. Default value 0. (0: Disable; 1: Enable) I1_AOI2 AOI2 interrupt on INT1. Default value 0. (0: Disable; 1: Enable) I1_DRDY1 DRDY1 interrupt on INT1. Default value 0. (0: Disable; 1: Enable) I1_DRDY2 DRDY2 interrupt on INT1. Default value 0. (0: Disable; 1: Enable) I1_WTM FIFO Watermark interrupt on INT1. Default value 0. (0: Disable; 1: Enable) I1_OVERRUN FIFO Overrun interrupt on INT1. Default value 0. (0: Disable; 1: Enable) CTRL_REG4 (23h) Table 32. BDU Table 33. CTRL_REG4 register BLE FS1 FS0 HR ST1 ST0 SIM CTRL_REG4 description BDU Block data update. Default value: 0 (0: continuos update; 1: output registers not updated until MSB and LSB reading) BLE Big/little endian data selection. Default value 0. (0: Data LSB @ lower address; 1: Data MSB @ lower address) FS1-FS0 Full scale selection. default value: 00 (00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G) Doc ID 17530 Rev 1 31/42 Registers description Table 33. LIS3DH CTRL_REG4 description (continued) HR High resolution output mode: Default value: 0 (0: High resolution disable; 1: High resolution Enable) ST1-ST0 Self test enable. Default value: 00 (00: Self test disabled; Other: See Table 34) SIM SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface). Table 34. Self test mode configuration ST1 8.12 0 Normal mode 0 1 Self test 0 1 0 Self test 1 1 1 -- CTRL_REG5 (24h) BOOT Table 36. -- -- LIR_INT1 D4D_INT1 0 0 CTRL_REG5 description Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) FIFO_EN FIFO enable. Default value: 0 (0: FIFO disable; 1: FIFO Enable) LIR_INT1 Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by reading INT1_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) D4D_INT1 4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set to 1. CTRL_REG6 (25h) I2_CLICKen CTRL_REG6 register I2_INT1 0 BOOT_I1 0 -- H_LACTIVE - REFERENCE/DATACAPTURE (26h) Table 38. Ref7 32/42 CTRL_REG5 register FIFO_EN BOOT Table 37. 8.14 Self test mode 0 Table 35. 8.13 ST0 REFERENCE register Ref6 Ref5 Ref4 Ref3 Doc ID 17530 Rev 1 Ref2 Ref1 Ref0 LIS3DH Registers description Table 39. REFERENCE register description Ref 7-Ref0 8.15 STATUS_REG (27h) Table 40. ZYXOR Table 41. 8.16 Reference value for Interrupt generation. Default value: 0 STATUS register ZOR YOR XOR ZYXDA ZDA YDA XDA STATUS register description ZYXOR X, Y and Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous ones) ZOR Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous one) YOR Y axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous one) XOR X axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous one) ZYXDA X, Y and Z axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z axis new data available. Default value: 0 (0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available) YDA Y axis new data available. Default value: 0 (0: a new data for the Y-axis is not yet available; 1: a new data for the Y-axis is available) OUT_X_L (28h), OUT_X_H (29h) X-axis acceleration data. The value is expressed in two’s complement. 8.17 OUT_Y_L (2Ah), OUT_Y_H (2Bh) Y-axis acceleration data. The value is expressed in two’s complement. 8.18 OUT_Z_L (2Ch), OUT_Z_H (2Dh) Z-axis acceleration data. The value is expressed in two’s complement. Doc ID 17530 Rev 1 33/42 Registers description 8.19 LIS3DH FIFO_CTRL_REG (2Eh) Table 42. REFERENCE register FM1 FM0 Table 43. TR FIFO mode selection. Default value: 00 (see Table 44) TR Trigger selection. Default value: 0 0: Trigger event liked to trigger signal on INT1 1: Trigger event liked to trigger signal on INT2 FTH4:0 Default value: 0 FTH1 FTH0 FIFO mode configuration FM0 Self test mode 0 0 Bypass mode 0 1 FIFO mode 1 0 Stream mode 1 1 Trigger mode FIFO_SRC_REG (2Fh) Table 45. WTM FIFO_SRC register OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0 INT1_CFG (30h) Table 46. AOI 6D Table 47. 34/42 FTH2 FM1-FM0 FM1 8.21 FTH3 REFERENCE register description Table 44. 8.20 FTH4 INT1_CFG register ZHIE/ ZUPE ZLIE/ ZDOWNE YHIE/ YUPE YLIE/ YDOWNE XHIE/ XUPE XLIE/ XDOWNE INT1_CFG description AOI And/Or combination of Interrupt events. Default value: 0. Refer to Table 48, "Interrupt mode" 6D 6 direction detection function enabled. Default value: 0. Refer to Table 48, "Interrupt mode" ZHIE/ ZUPE Enable interrupt generation on Z high event or on Direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request) Doc ID 17530 Rev 1 LIS3DH Registers description Table 47. INT1_CFG description ZLIE/ ZDOWNE Enable interrupt generation on Z low event or on Direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request) YHIE/ YUPE Enable interrupt generation on Y high event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) YLIE/ YDOWNE Enable interrupt generation on Y low event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XHIE/ XUPE Enable interrupt generation on X high event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XLIE/XDOWNE Enable interrupt generation on X low event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) Content of this register is loaded at boot. Write operation at this address is possible only after system boot. Table 48. Interrupt mode AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6 direction movement recognition 1 0 AND combination of interrupt events 1 1 6 direction position recognition Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’. AOI-6D = ‘01’ is movement recognition. An interrupt is generate when orientation move from unknown zone to known zone. The interrupt signal stay for a duration ODR. AOI-6D = ‘11’ is direction recognition. An interrupt is generate when orientation is inside a known zone. The interrupt signal stay until orientation is inside the zone. 8.22 INT1_SRC (31h) Table 49. 0 Table 50. INT1_SRC register IA ZH ZL YH YL XH XL INT1_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z High event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z Low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y High event has occurred) Doc ID 17530 Rev 1 35/42 Registers description Table 50. LIS3DH INT1_SRC description YL Y low. Default value: 0 (0: no interrupt, 1: Y Low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X High event has occurred) XL X low. Default value: 0 (0: no interrupt, 1: X Low event has occurred) Interrupt 1 source register. Read only register. Reading at this address clears INT1_SRC IA bit (and the interrupt signal on INT 1 pin) and allows the refreshment of data in the INT1_SRC register if the latched option was chosen. 8.23 INT1_THS (32h) Table 51. INT1_THS register 0 Table 52. THS6 THS4 THS3 THS2 THS1 THS0 D2 D1 D0 INT1_THS description THS6 - THS0 8.24 THS5 Interrupt 1 threshold. Default value: 000 0000 INT1_DURATION (33h) Table 53. INT1_DURATION register 0 Table 54. D6 D5 D4 D3 INT1_DURATION description D6 - D0 Duration value. Default value: 000 0000 D6 - D0 bits set the minimum duration of the Interrupt 1 event to be recognized. Duration steps and maximum values depend on the ODR chosen. 8.25 CLICK_CFG (38h) Table 55. -- 36/42 CLICK_CFG register -- ZD ZS YD Doc ID 17530 Rev 1 YS XD XS LIS3DH Registers description Table 56. 8.26 CLICK_CFG description ZD Enable interrupt double CLICK-CLICK on Z axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZS Enable interrupt single CLICK-CLICK on Z axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YD Enable interrupt double CLICK-CLICK on Y axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YS Enable interrupt single CLICK-CLICK on Y axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XD Enable interrupt double CLICK-CLICK on X axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XS Enable interrupt single CLICK-CLICK on X axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) CLICK_SRC (39h) Table 57. CLICK_SRC register IA Table 58. DCLICK SCLICK Sign Z Y X CLICK_SRC description - - IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) DCLICK Double CLICK-CLICK enable. Default value: 0 (0:double CLICK-CLICK detection disable, 1: double CLICK-CLICK detection enable) SCLICK Single CLICK-CLICK enable. Default value: 0 (0:Single CLICK-CLICK detection disable, 1: single CLICK-CLICK detection enable) Sign CLICK-CLICK Sign. 0: positive detection, 1: negative detection Z Z CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Z High event has occurred) Y Y CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Y High event has occurred) X X CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: X High event has occurred) Doc ID 17530 Rev 1 37/42 Registers description 8.27 LIS3DH CLICK_THS (3Ah) Table 59. - Table 60. CLICK_THS register Ths6 - Table 62. Ths1 Ths0 TLI1 TLI0 TLA1 TLA0 TW1 TW0 TIME_LIMIT register TLI6 TLI5 TLI4 TLI3 TLI2 TIME_LIMIT description CLICK-CLICK Time Limit. Default value: 000 0000 TIME_LATENCY (3Ch) Table 63. TLA7 Table 64. TIME_LATENCY register TLA6 TLA5 TLA4 TLA3 TLA2 TIME_LATENCY description TLA7-TLA0 CLICK-CLICK time latency. Default value: 000 0000 TIME WINDOW(3Dh) Table 65. TW7 Table 66. TW7-TW0 38/42 Ths2 CLICK-CLICK threshold. Default value: 000 0000 TLI7-TLI0 8.30 Ths3 TIME_LIMIT (3Bh) Table 61. 8.29 Ths4 CLICK_SRC description Ths6-Ths0 8.28 Ths5 TIME_WINDOW register TW6 TW5 TW4 TW3 TIME_WINDOW description CLICK-CLICK time window Doc ID 17530 Rev 1 TW2 LIS3DH 9 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Doc ID 17530 Rev 1 39/42 Package information LIS3DH Table 67. LGA-16: Mechanical data mm Dim Min. Typ. A1 Max. 1 A2 0.785 A3 0.2 D1 2.85 3 3.15 E1 2.85 3 3.15 L1 1 1.06 L2 2 2.06 N1 0.5 N2 1 M 0.04 0.1 P1 0.875 P2 1.275 0.16 T1 0.29 0.35 0.41 T2 0.19 0.25 0.31 d 0.15 k 0.05 Figure 12. LGA-16: Mechanical data and package dimensions 7983231 40/42 Doc ID 17530 Rev 1 LIS3DH 10 Revision history Revision history Table 68. Document revision history Date Revision 21-May-2010 1 Changes Initial release Doc ID 17530 Rev 1 41/42 LIS3DH Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 42/42 Doc ID 17530 Rev 1