RHFL4913A Rad-hard adjustable positive voltage regulator Datasheet - production data Description The RHFL4913A is a high-performance adjustable positive voltage regulator, able to provide 2 A of maximum current in FLAT-16 package (3 A in the SMD5C package) from an input voltage ranging from 3 V to 12 V, with a typical dropout voltage of 350 mV. )/$7 60'& FRQQHFWLRQ60' Features • Operating input voltage from 3 V to 12 V • Adjustable output voltage • 3 A maximum guaranteed output current in SMD5C package, 2 A in FLAT-16 The RHFL4913A features exceptional radiation performances. It is tested in accordance with Mil Std 883E Method 1019.6, in ELDRS conditions. The device is available in the FLAT-16 and the new SMD5C hermetic ceramic package, and the QML-V die is specifically designed for space and harsh radiation environments. It operates with an input supply of up to 12 V. The RHFL4913A is QML-V qualified, DSCC SMD #5962F02524. • Very low dropout voltage: 350 mV typ @ 400 mA • Embedded overtemperature and overcurrent protection • Adjustable overcurrent limitation • Very low noise: 40 µVRMS (10 Hz-100 kHz) • Output overload monitoring/signalling • Inhibit (ON/OFF) TTL-compatible control • Programmable output short-circuit current • Remote sensing operation • Low quiescent current: 1.5 mA typ @ no load, 150 µA in shutdown • Rad-hard: guaranteed up to 300 krad Mil Std 883E Method 1019.6 high dose rate and 0.01 rad/s in ELDRS conditions • Heavy ion, SEL immune. May 2014 This is information on a product in full production. DocID10005 Rev 17 1/32 www.st.com Contents RHFL4913A Contents 1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6 5.1 ADJ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2 Inhibit ON-OFF control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.3 Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.4 Programmable overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.5 OCM pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.1 Output capacitor selection and stability. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.2 Remote sensing operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.3 FPGA power supply lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.4 Notes on the 16-pin hermetic package . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8 Die information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8.1 Die bonding pad locations and electrical functions . . . . . . . . . . . . . . . . . 25 9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2/32 DocID10005 Rev 17 RHFL4913A List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin configuration (top view for FLAT-16, bottom view for SMD5C) . . . . . . . . . . . . . . . . . . . 7 Application diagram for remote sensing operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Baseline bias configuration with remote feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Local feedback configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reference voltage versus temperature (Vin=Vout+2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reference voltage versus temperature (Vin=12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reference voltage vs temperature (Vin=Vout+2.5 V, Iout=1 A) . . . . . . . . . . . . . . . . . . . . . . 16 Reference voltage vs temperature (Vin=12 V, Iout=1 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reference voltage vs temperature (Vin=Vout+2.5 V, Iout=2 A) . . . . . . . . . . . . . . . . . . . . . . 16 Reference voltage versus temperature (Vin=12 V, Iout=2 A). . . . . . . . . . . . . . . . . . . . . . . . 16 Line regulation vs temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Load regulation vs temperature (Iout=5 mA to 400 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Load regulation vs temperature (Iout=5 mA to 1 A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Inhibit threshold vs temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output voltage vs input voltage (Iout=0 mA,T=25 °C and T=125 °C) . . . . . . . . . . . . . . . . . 17 Output voltage vs input voltage (Iout=0 mA,T=0 °C and T=-55 °C). . . . . . . . . . . . . . . . . . . 17 Output voltage vs input voltage (Iout=3 A, T=25 °C and T=125 °C) . . . . . . . . . . . . . . . . . . 18 Output voltage vs input voltage (Iout=3 A, T=0 °C and T=-55 °C). . . . . . . . . . . . . . . . . . . . 18 Quiescent current vs temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Quiescent current vs temperature (Iout=30 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Quiescent current vs temperature (Iout=300 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Quiescent current vs temperature (Iout=1 A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Quiescent current vs temperature (Iout=2 A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Quiescent current vs load current, (Vin=Vout+2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Quiescent current vs load current, (Vin=12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Dropout voltage vs temperature (Vout=3 V, no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Dropout voltage vs temperature (Vout=3 V, Iout=400 mA). . . . . . . . . . . . . . . . . . . . . . . . . . 19 Dropout voltage vs temperature (Vout=3 V, Iout=1 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Dropout voltage vs temperature (Vout=3 V, Iout=2 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Dropout voltage vs temperature (Vout=3 V, Iout=3 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Dropout voltage vs load current (Vout=3 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Dropout voltage vs load current (Vout=9 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SVR vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SVR vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SVR vs temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output noise spectum (Vout=Vadj). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output noise spectum (Vout=Vadj, Cout=1 µF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output noise spectum (Vout=9 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output noise spectum (Vout=9 V, Cout=1 µF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Short circuit current vs dropout voltage (T=25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Short circuit current vs dropout voltage (T=125 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Short circuit current vs dropout voltage (T=-55 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Short circuit current vs RSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Short circuit current vs RSH (zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Enable turn-on/off (Vout=9 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Enable turn-on/off (Vout=1.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Turn-on time (Vout=1.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID10005 Rev 17 3/32 32 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. 4/32 RHFL4913A Turn-on time (Vout=9 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Inhibit propagation delay (Lo-Hi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Inhibit propagation delay (Hi-Lo). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Line transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Stability plan (Vout=Vadj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Die map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 FLAT-16 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SMD5C mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID10005 Rev 17 RHFL4913A List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Recommended maximum operating ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 FLAT-16 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SMD5C mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Part numbers - SMD equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Environmental characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DocID10005 Rev 17 5/32 32 Diagram 1 RHFL4913A Diagram Figure 1. Block diagram $09 6/32 DocID10005 Rev 17 RHFL4913A 2 Pin configuration Pin configuration Figure 2. Pin configuration (top view for FLAT-16, bottom view for SMD5C) 60'& )/$7 $09 Table 1. Pin description Pin name FLAT-16 (1) SMD5C (2) VO 1, 2, 6, 7 1 VI 3, 4, 5 4 GND 13 5 ISC 8 OCM 10 INHIBIT 14 3 ADJ 15 2 NC 9, 11, 12, 16 1. The upper metallic package lid and the bottom metallization are neither connected to regulator die nor to package terminals, hence electrically floating. 2. The upper metallic package lid is neither connected to regulator die nor to package terminals, hence electrically floating. DocID10005 Rev 17 7/32 32 Maximum ratings 3 RHFL4913A Maximum ratings Table 2. Recommended maximum operating ratings (1) Symbol Parameter Value Unit 12 V 1.23 to 9 V VI DC input voltage, VI - VGROUND VO DC output voltage range IO Output current, RHFL4913KPA 2 IO Output current, RHFL4913SCA 3 PD TC = 25 °C power dissipation 15 W A TSTG Storage temperature range -65 to +150 °C TOP Operating junction temperature range -55 to +150 °C ESD Electrostatic discharge capability Class 3 1. Exceeding maximum ratings may damage the device. Table 3. Thermal data Symbol Parameter Value Unit RthJC Thermal resistance junction-case, FLAT-16 and SMD5C 8.3 °C/W TSOLD Maximum soldering temperature, 10 sec. 300 °C 8/32 DocID10005 Rev 17 RHFL4913A 4 Electrical characteristics Electrical characteristics TJ = 25 °C, VI = VO + 2.5 V, CI = CO = 1 µF, unless otherwise specified. Table 4. Electrical characteristics Symbol VI VO ISHORT Parameter Operating input voltage Output voltage Output current limit (1) ΔVO/ΔVI Line regulation ΔVO/ΔIO Load regulation ZOUT Output impedance Test conditions IO = 1 A, TJ = -55 to 125 °C Min. 3 IO = 1 A for FLAT-16, 2 A for SMD5C, VO = VADJ 1.19 IO = 1 A for FLAT-16, 2 A for SMD5C VO = 9 V 8.7 Adjustable by mask/external resistor Typ. 1 1.23 Max. Unit 12 V 1.27 V 9.3 V 4.5 A VI = VO+2.5 V to 12 V, IO = 5 mA, TJ = +25 °C 0.07 0.35 VI = VO+2.5 V to 12 V, IO = 5 mA, TJ = -55°C 0.05 0.4 VI = VO+2.5 V to 12 V, IO = 5 mA, TJ = +125°C 0.1 0.4 VI = 3 V to 12 V, IO = 5 mA, TJ = -55°C to +125°C 0.1 0.5 VI = VO+2.5 V, IO = 5 to 400 mA, TJ = +25°C 0.04 0.3 VI = VO+2.5 V, IO = 5 to 400 mA, TJ = -55°C 0.02 0.5 VI = VO+2.5 V, IO = 5 to 400 mA, TJ = +125°C 0.02 0.5 VI = VO+2.5 V, IO = 5 mA to 1 A, TJ = +25 °C 0.08 0.5 VI = VO+2.5 V, IO = 5 mA to 1A, TJ = -55 °C 0.05 0.6 VI = VO+2.5 V, IO = 5 mA to 1A, TJ = +125 °C 0.04 0.6 VI = 3 V, IO = 5 mA to 1 A, TJ = -55°C to +125°C 0.1 0.7 IO = 100 mA DC and 20 mA rms 100 DocID10005 Rev 17 % % mΩ 9/32 32 Electrical characteristics RHFL4913A Table 4. Electrical characteristics (continued) Symbol Iq Iq Iq(off) Vd Parameter Quiescent current Quiescent current ON mode Quiescent current Shutdown mode Dropout voltage Test conditions Min. Typ. Max. VI = VO+2.5 V, IO = 5 mA, ON mode (+25 °C) 1.5 6 VI = VO+2.5 V, IO = 30 mA, ON mode (+25 °C) 2.7 8 VI = VO+2.5 V, IO = 300 mA, ON mode (+25 °C) 11 25 VI = VO+2.5 V, IO = 1 A, ON mode (+25 °C) 32 60 VI = VO+2.5 V, IO = 30 mA, (-55 °C) 3 14 VI = VO+2.5 V, IO = 300 mA, (-55 °C) 15 40 VI = VO+2.5 V, IO = 1 A, (-55 °C) 52 100 VI = VO+2.5 V, IO = 30 mA, (+125 °C) 3 8 VI = VO+2.5 V, IO = 300 mA, (+125 °C) 8 20 VI = VO+2.5 V, IO = 1 A, (+125 °C) 20 40 VI = VO+2 V, VINH = 2.4 V, OFF mode 0.15 1 IO = 0 mA, VO = 2.5 V to 9 V 130 IO = 400 mA, VO = 2.5 to 9 V, (+25 °C) 350 450 IO = 400 mA, VO = 2.5 to 9 V, (-55 °C) 300 400 IO = 400 mA, VO = 2.5 to 9 V, (+125 °C) 450 550 IO = 1 A, VO = 2.5 to 9 V, (+25 °C) 500 650 IO = 1 A, VO = 2.5 to 9 V, (-55 °C) 400 550 IO = 1 A, VO = 2.5 to 9 V, (+125 °C) 640 800 IO = 2 A, VO = 2.5 to 9 V, (+25 °C) 750 IO = 2 A, VO = 2.5 to 9 V, (+125 °C) 950 mA mA VINH(ON) Inhibit voltage IO = 5 mA, TJ = -55 to +125 °C VINH(OFF) Inhibit voltage IO = 5 mA, TJ = -55 to +125 °C 2.4 VI = VO + 2.5 V ± 0.5 V, VO = 3 V IO = 5 mA f = 120 Hz 60 70 f = 33 KHz 30 40 SVR ISH VOCM 10/32 Supply voltage rejection (1) mA mV 0.8 V dB Shutdown input current VINH = 5 V OCM pin voltage Sinked IOCM = 24 mA active low DocID10005 Rev 17 Unit 15 µA 0.38 V RHFL4913A Electrical characteristics Table 4. Electrical characteristics (continued) Symbol Parameter Test conditions Min. tPLH tPHL VI = VO + 2.5V, VINH = 2.4 V, IO = 400 Inhibit propagation delay (1) mA VO = 3 V eN Output noise voltage (1) Typ. Max. Unit ON-OFF 20 µs OFF-ON 100 µs B = 10 Hz to 100 kHz, IO = 5 mA to 2 A 40 µVrms 1. These values are guaranteed by design. For each application it is strongly recommended to comply with the maximum current limit of the package used. Figure 3. Application diagram for remote sensing operation 9R 9R 9, ,QSXW 6XSSO\ 6(16( &$'Q) 5 '87 &R $'&, 5(027( *1' 5 5: 5: $09 DocID10005 Rev 17 11/32 32 Device description 5 RHFL4913A Device description The RHFL4913A adjustable voltage regulator contains a PNP type power element controlled by a signal resulting from an amplified comparison between the internal temperature-compensated band-gap and the fraction of the desired output voltage value obtained from an external resistor divider bridge. The device is protected by several functional blocks. 5.1 ADJ pin The load output voltage feedback comes from an external resistor divider bridge mid-point connected to the ADJ pin (allowing all possible output voltage settings as per user requirements) established between load terminals. 5.2 Inhibit ON-OFF control By setting the INHIBIT pin TTL high, the device switches off the output current and voltage. The device is ON when the INHIBIT pin is set low. Since the INHIBIT pin is pulled down internally, it can be left floating in cases where the inhibit function is not used. 5.3 Overtemperature protection A temperature detector internally monitors the power element junction temperature. The device turns off when a temperature of approximately 175 °C is reached, returning to ON mode when back to approximately 135 °C. Combined with the other protection blocks, the device is protected from destructive junction temperature excursions in all load conditions. It should be noted that when the internal temperature detector reaches 175 °C, the active power element can be as high as 225 °C. Prolonged operation under these conditions far exceeds the maximum operating ratings and device reliability cannot be guaranteed. 5.4 Programmable overcurrent protection An internal non fold-back short circuit limitation is set with ISHORT > 3.8 A (VO is 0 V). This value can be decreased via an external RSH resistor connected between the ISC and VI pins, with a typical value range of 10 kΩ to 200 kΩ (refer to Figure 44. and Figure 45.). To maintain optimal VO regulation, it is necessary to set ISHORT 1.6 times greater than the maximum desired application IO. When IO reaches ISHORT – 300 mA, the current limiter overrules the regulation, VO starts to drop and the OCM flag is raised. When no current limitation adjustment is required, the ISC pin must be left unbiased (as it is in 3 pin packages). 5.5 OCM pin The OCM pin goes low when the current limit becomes active, otherwise VOCM = VI. It is buffered and can sink 10 mA. The OCM pin is internally pulled up by a 5 kΩ resistor. 12/32 DocID10005 Rev 17 RHFL4913A 6 Application information Application information To adjust the output voltage, the R2 resistor must be connected between the VO and ADJ pins. The R1 resistor must be connected between ADJ and ground. Resistor values can be derived from the following formula: VO = VADJ (R1+ R2) / R1 The VADJ is typically 1.23 V, controlled by the internal temperature-compensated band gap block. The minimum input voltage is 3 V. The RHFL4913A adjustable is functional as soon as the VI - VO voltage difference is slightly above the power element saturation voltage. The adjust pin to ground resistor (R1) value must not be greater than 10 kΩ, in order to keep the output feedback error below 0.2%. A minimum of 0.5 mA IO must be set to ensure perfect no-load regulation. It is advisable to dissipate this current into the divider bridge resistor. All available VI pins, as well as all available VO pins, should always be externally interconnected, otherwise the stability and reliability of the device cannot be guaranteed. The inhibit function switches off the output current electronically, and therefore very quickly. According to Lenz’s Law, external circuitry reacts with LdI/dt terms which can be of high amplitude in case somewhere a serial coil inductance exists. Large transient voltage would develop on both device terminals. It is advisable to protect the device with Schottky diodes to prevent negative voltage excursions. In the worst case, a 14 V Zener diode could protect the device input. Since the RHFL4913A adjustable voltage regulator is manufactured with very high speed bipolar technology (6 GHz fT transistors), the PCB layout must be designed with exceptional care, with very low inductance and low mutually coupling lines. Otherwise, high frequency parasitic signals may be picked up by the device resulting in system self-oscillation. The benefit is an SVR performance extended to far higher frequencies. 6.1 Output capacitor selection and stability. The device has been designed for high stability and low dropout operation. To ensure regulator stability, input and output capacitors with a minimum 1 µF are mandatory. When large transient currents are expected, larger value capacitors are necessary. The detailed stability plane versus output capacitance and ESR is shown in Figure 54. In the case of high current operation with short circuit events expected, caution must be exercised with regard to capacitors. They must be connected as close as possible to the device terminals. As some tantalum capacitors may permanently fail when subjected to high charge-up surge currents, it is recommended to decouple them with 470 nF polyester capacitors. 6.2 Remote sensing operation A separate kelvin voltage sensing line provides the ADJ pin with exact load "high potential" information (see Figure 3). But variable remote load current consumption induces variable Iq current (Iq is roughly the IO current divided by the hFE of the internal PNP series power DocID10005 Rev 17 13/32 32 Application information RHFL4913A element) routed through the parasitic series line resistor RW2. To compensate for this parasitic voltage, resistor RW1can be introduced to provide the necessary compensating voltage signal to the ADJ pin. A ceramic or poliester 47nF CADJ capacitor between ADJ and VOUT pins is recommended when the remote sensing technique is implemented. 6.3 FPGA power supply lines Because FPGA devices are very sensitive to VDD transients beyond a few % of their nominal supply voltage (usually 1.5 V), special attention must be given by supply lines designers to mitigate possible heavy ion disturbances. The worst case heavy ion effect can be summarized as: the RHFL4913 internal control loop being cut (made open) or shortcircuited for a sub-microsecond duration. During such an event, the RHFL4913 power element can either provide excessive current or current supply stoppage to the output (VOUT) for a duration of about one microsecond, after which time the RHFL4913 smoothly recovers to nominal operation. According to the simulations, some very short SET (i.e. those having duration <100nsec) are dependent also on the stray inductances related to the PCB topology, especially those on the ground. To mitigate these "transients", it is recommended to implement the RHFL4913 PCB layout as follows: • Minimizing series/parallel parasitic inductances of the PCB path • Using an effective grounding scheme with short connections to GND, such as a starbus topology, whose board GND is at the GND force. The best solution is a ground plane. • Using a low ESR 47 µF COUT filtering capacitor, with ESR lower than 30mΩ, together with a 470 nF ceramic capacitor in parallel (to reduce dynamic ESR) • Implementing the SET mitigation circuit, by adding additional filtering components as described in Figure 4.and Figure 5. With this implementation, the ELDO simulated worst transient case shows no more than 90 mV deviation from the nominal line voltage value. Additional details and suggestions regarding the application techniques aimed to mitigate the SET effects on a linear voltage regulator can be found in the AN2984 (“Minimizing the SET-related effects on the output of a voltage linear regulator„ available on www.st.com). 14/32 DocID10005 Rev 17 RHFL4913A Application information Figure 4. Baseline bias configuration with remote feedback $09 Figure 5. Local feedback configuration $09 6.4 Notes on the 16-pin hermetic package The bottom section of the 16-pin package is metallized in order to allow the user to directly solder the RHFL4913A onto PCB, no heat sink needed for enhanced heat removal. DocID10005 Rev 17 15/32 32 Typical characteristics 7 RHFL4913A Typical characteristics 9 5()>9@ 9 5()>9@ Figure 6. Reference voltage versus temperature Figure 7. Reference voltage versus temperature (Vin=Vout+2.5 V) (Vin=12 V) 7HPSHUDWXUH> &@ 9LQ 9RXW9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW P$ 7HPSHUDWXUH> &@ $09 Figure 9. Reference voltage vs temperature (Vin=12 V, Iout=1 A) 9 5()>9@ 9 5()>9@ Figure 8. Reference voltage vs temperature (Vin=Vout+2.5 V, Iout=1 A) 7HPSHUDWXUH> &@ 9LQ 9RXW9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW $ 7HPSHUDWXUH> &@ 9 5()>9@ 9 5()>9@ Figure 11. Reference voltage versus temperature (Vin=12 V, Iout=2 A) 7HPSHUDWXUH> &@ 9LQ 9RXW9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW $ 7HPSHUDWXUH> &@ 9LQ 9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW $ $09 16/32 $09 Figure 10. Reference voltage vs temperature (Vin=Vout+2.5 V, Iout=2 A) 9LQ 9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW $ $09 9LQ 9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW P$ $09 DocID10005 Rev 17 $09 RHFL4913A Typical characteristics Figure 13. Load regulation vs temperature (Iout=5 mA to 400 mA) /RDGUHJXODWLRQ >@ /LQHUHJXODWLRQ >@ Figure 12. Line regulation vs temperature 7HPSHUDWXUH> &@ 9RXW9 9LQ 99RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW P$ 7HPSHUDWXUH> &@ $09 Figure 15. Inhibit threshold vs temperature /RDGUHJXODWLRQ >@ ,QKLELWWKUHVKROG>9@ 7HPSHUDWXUH> &@ 9LQ 9RXW9 9LQ 9 7HPSHUDWXUH> &@ $09 $09 Figure 17. Output voltage vs input voltage (Iout=0 mA,T=0 °C and T=-55 °C) & & 9 287>9@ & 9287 > 9@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW QRORDG 9LQ 9RXW9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW P$ ,RXW $ Figure 16. Output voltage vs input voltage (Iout=0 mA,T=25 °C and T=125 °C) 9LQ 9RXW9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW P$ ,RXW $ $09 Figure 14. Load regulation vs temperature (Iout=5 mA to 1 A) & 9,1>9@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW 1RORDG 7 &7 & 9,1>9@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW 1RORDG 7 &7 & $09 DocID10005 Rev 17 $09 17/32 32 Typical characteristics RHFL4913A Figure 18. Output voltage vs input voltage (Iout=3 A, T=25 °C and T=125 °C) & & & 9287 >9@ 9287>9@ Figure 19. Output voltage vs input voltage (Iout=3 A, T=0 °C and T=-55 °C) & 9,1 >9@ 9,1 >9@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW $ 7 &7 & 9RXW 9DGM&LQ ȝ)&RXW ȝ)WDQW ,RXW $7 &7 & $09 $09 Figure 20. Quiescent current vs temperature (no load) Figure 21. Quiescent current vs temperature (Iout=30 mA) 9LQ 9RXW9 9LQ 9RXW9 9LQ 9 4XLHVFHQWFXUUHQW>P$@ 4XLHVFHQWFXUUHQW>P$@ 9LQ 9 7HPSHUDWXUH> &@ 7HPSHUDWXUH> &@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW 1RORDG Figure 23. Quiescent current vs temperature (Iout=1 A) 9LQ 9RXW9 9LQ 9 7HPSHUDWXUH> &@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW $09 4XLHVFHQWFXUUHQW>P$@ 4XLHVFHQWFXUUHQW>P$@ Figure 22. Quiescent current vs temperature (Iout=300 mA) P$ $09 9LQ 9RXW9 9LQ 9 7HPSHUDWXUH> &@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW P$ $09 18/32 DocID10005 Rev 17 $ $09 RHFL4913A Typical characteristics Figure 25. Quiescent current vs load current, (Vin=Vout+2.5 V) 9LQ 9RXW9 & 9LQ 9 4XLHVFHQWFXUUHQW>P$@ 4XLHVFHQWFXUUHQW>P$@ Figure 24. Quiescent current vs temperature (Iout=2 A) & & 7HPSHUDWXUH> &@ 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW ,RXW /RDGFXUUHQW>$@ 9LQ 9RXW9 9RXW 9DGM &LQ ȝ)&RXW ȝ)WDQW $ $09 Figure 26. Quiescent current vs load current, (Vin=12 V) $09 Figure 27. Dropout voltage vs temperature (Vout=3 V, no load) & & 'URSRXWYROWDJH>P9@ 4XLHVFHQWFXUUHQW>P$@ & /RDGFXUUHQW>$@ 9LQ 99RXW 9DGM&LQ ȝ)&RXW ȝ)WDQW 7HPSHUDWXUH>&@ $09 Figure 29. Dropout voltage vs temperature (Vout=3 V, Iout=1 A) 'URSRXWYROWDJH>P9@ 'URSRXWYROWDJH>P9@ Figure 28. Dropout voltage vs temperature (Vout=3 V, Iout=400 mA) 7HPSHUDWXUH>&@ 9RXW 9&LQ ȝ)&RXW ȝ)WDQW1R /RDG $09 9RXW 9&LQ ȝ)&RXW ȝ)WDQW ,RXW P$ $09 DocID10005 Rev 17 7HPSHUDWXUH>&@ 9RXW 9&LQ ȝ)&RXW ȝ)WDQW ,RXW $ $09 19/32 32 Typical characteristics RHFL4913A Figure 31. Dropout voltage vs temperature (Vout=3 V, Iout=3 A) 'URSRXWYROWDJH>P9@ 'URSRXWYROWDJH>P9@ Figure 30. Dropout voltage vs temperature (Vout=3 V, Iout=2 A) 7HPSHUDWXUH>&@ 9RXW 9&LQ ȝ)&RXW ȝ)WDQW ,RXW $ 7HPSHUDWXUH>&@ 9RXW 9&LQ ȝ)&RXW ȝ)WDQW ,RXW $ $09 Figure 32. Dropout voltage vs load current (Vout=3 V) $09 Figure 33. Dropout voltage vs load current (Vout=9 V) & & & 2XWSXWFXUUHQW>$@ 9RXW 9&LQ ȝ)&RXW ȝ)WDQW & & & 'URSRXWYROWDJH>P9@ 'URSRXWYROWDJH>P9@ 2XWSXWFXUUHQW>$@ $09 Figure 34. SVR vs frequency Figure 35. SVR vs load current 9RXW 9DGM 9RXW 9 9RXW 9 695>G%@ 695>G%@ 9RXW 9&LQ ȝ)&RXW ȝ)WDQW $09 9RXW 9DGM 9RXW 9 9RXW 9 )UHTXHQF\>+]@ 9ULSSOH 9&LQ ȝ)&RXW ȝ)WDQW ,RXW P$7 & $09 20/32 DocID10005 Rev 17 2XWSXWFXUUHQW>$@ 9ULSSOH 9&LQ ) &RXW )WDQW7&) +] $09 RHFL4913A Typical characteristics Figure 36. SVR vs temperature Figure 37. Output noise spectum (Vout=Vadj) ,RXW $ ,RXW P$ 1RLVH> Q9 ¥+]@ 695>G%@ 9RXW 9DGM 9RXW 9 9RXW 9 9ULSSOH 7HPSHUDWXUH> &@ 9,RXW P$&LQ )&RXW )WDQW 7&) +] )UHTXHQF\>+]@ 9,1 99 287 9 $'- & ,1 )& 287 )WDQWDOXP) FHUDPLF $09 Figure 38. Output noise spectum (Vout=Vadj, Cout=1 µF) $09 Figure 39. Output noise spectum (Vout=9 V) ,RXW $ ,RXW $ ,RXW P$ ,RXW P$ 1RLVH> Q9¥+]@ 1RLVH> Q9¥+]@ 9,1 9 9287 9 $'- &,1 )& 287 9,1 9 9287 9 &,1 )& ) WDQWDOXP 287 )WDQWDOXP)FHUDPLF $09 Figure 40. Output noise spectum (Vout=9 V, Cout=1 µF) $09 Figure 41. Short circuit current vs dropout voltage (T=25 °C) ,RXW P$ ,RXW $ ,VF >$@ 1RLVH> Q9¥+]@ )UHTXHQF\>+]@ )UHTXHQF\>+]@ 9RXW 9DGM 9RXW 9 9RXW 9 )UHTXHQF\>+]@ 9'URS >9@ &,1 ) &287 )WDQWDOXP7 &1R56+ 9,1 9 9287 9 &,1 ) &287 ) WDQWDOXP $09 DocID10005 Rev 17 $09 21/32 32 Typical characteristics RHFL4913A Figure 42. Short circuit current vs dropout voltage (T=125 °C) 9RXW 9DGM 9RXW 9 9RXW 9 ,VF >$@ ,VF >$@ Figure 43. Short circuit current vs dropout voltage (T=-55 °C) 9RXW 9DGM 9RXW 9 9RXW 9 &,1 ) &287 )WDQWDOXP 7 &1R5 6+ &,1 )&287 )WDQWDOXP7 &1R56+ $09 Figure 44. Short circuit current vs RSH $09 Figure 45. Short circuit current vs RSH (zoom) ,VF >$@ ,VF >$@ 9'URS >9@ 9'URS >9@ 9RXW 9DGM 9RXW 9 9RXW 9DGM 9RXW 9 9RXW 9 9RXW 9 56+ >.RKP @ &,1 )&287 )WDQWDOXP 56+ >.RKP @ &,1 )&287 )WDQWDOXP $09 Figure 46. Enable turn-on/off (Vout=9 V) $09 Figure 47. Enable turn-on/off (Vout=1.5 V) 9287 9287 9,1+ 9,1+ 9,1 99,1+ IURP9WR99287 9 ,287 P$ &,1 &287 )7U 7I V 9,1 99,1+ IURP9WR99287 9 ,287 P$ &,1 &287 )7U 7I V $0 22/32 DocID10005 Rev 17 $0 RHFL4913A Typical characteristics Figure 48. Turn-on time (Vout=1.5 V) Figure 49. Turn-on time (Vout=9 V) 9287 9287 9,1 9,1 9,1 IURPWR99(1 *1'9287 9,287 P$&,1 &287 )7I V 9,1 IURPWR99(1 *1'9287 9,287 P$&,1 &287 )7I V $0 Figure 50. Inhibit propagation delay (Lo-Hi) $0 Figure 51. Inhibit propagation delay (Hi-Lo) 9287 9287 9,1+ 9,1+ ,287 ,287 9,1 99,1+ IURP9WR9,287 P$9287 9&,1 &287 )7I V 9,1 99,1+ IURP9WR9,287 P$9287 9&,1 &287 )7U V $0 $0 Figure 52. Line transient Figure 53. Load transient ,287 9287$& 9,1 9287$& 9,1 IURPWR9 9287 9$'- ,287 P$&287 )7U V 9,1 9 9287 9$'- ,287 IURPWRP$&287 )7I V $0 DocID10005 Rev 17 $0 23/32 32 Typical characteristics RHFL4913A Figure 54. Stability plan (Vout=Vadj) (65# N+]>ȍ@ 67$%,/,7<$5($ &287 >)@QRPLQDOYDOXH 9,1 IURPWR9 , 287 IURPP$WR $9 24/32 287 9$'-& ,1 )7 DocID10005 Rev 17 & $09 RHFL4913A 8 Die information Die information Figure 55. Die map $09 Note: Pad numbers reflect terminal numbers when placed in case FLAT-16. 8.1 Die bonding pad locations and electrical functions Die physical dimensions: – Die size: 150 mils x 110 mils (3.81 mm by 2.79 mm) – Die thickness: 375 µm ± 25 µm (14.8 mils ± 1 mil) Pad size: VIN, VOUT pads: 450 µm x 330 µm (17.7 mils by 13 mils) – Control pads: 184 µm x 184 µm (7.25 mils square) Interface materials: – Top metallization: Al/Si/Cu, 1.05 µm ± 0.15 µm – Backside metallization: none Glassivation: – Type: p. vapox + nitride – Thickness: 0.6 µm ± 0.1 µm + 0.6 µm ± 0.08 µm Substrate: – bare silicon DocID10005 Rev 17 25/32 32 Die information RHFL4913A Assembly related information: 26/32 – Substrate potential: floating recommended to be tied to ground. – Special assembly instructions: "Sense" pad not used; not internally connected to any part of the IC. Can be connected to ground when space anti-static electricity rules apply. DocID10005 Rev 17 RHFL4913A 9 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 56. FLAT-16 mechanical drawing DocID10005 Rev 17 27/32 32 Package mechanical data RHFL4913A Table 5. FLAT-16 mechanical data Dimensions Symbol Min. Max. A 2.42 2.88 b 0.38 0.48 c 0.10 0.18 D 9.71 10.11 E 6.71 7.11 E2 3.30 E3 0.76 e 28/32 Typ. 3.45 3.60 1.27 L 6.35 7.36 Q 0.66 1.14 S1 0.13 DocID10005 Rev 17 RHFL4913A Package mechanical data Figure 57. SMD5C mechanical drawing % Table 6. SMD5C mechanical data Dimensions Symbol Min. Typ. Max. A 2.84 3.00 3.15 A1 0.25 0.38 0.51 b 7.13 7.26 7.39 b1 4.95 5.08 5.21 b2 2.28 2.41 2.54 b3 2.92 3.05 3.18 D 13.71 13.84 13.97 D1 0.76 E 7.39 7.52 7.65 e 1.91 DocID10005 Rev 17 29/32 32 Ordering information 10 RHFL4913A Ordering information Table 7. Order codes FLAT-16 SMD5C Terminal finish Output voltage Quality level RHFL4913KPA-01V RHFL4913SCA07V Gold Adj QML-V Solder Adj QML-V Gold Adj EM1 L4913ADIE2V Adj QML-V die L4913ADIES Adj EM1 die Die RHFL4913KPA-02V RHFL4913KPA1 RHFL4913SCA1 Table 8. Part numbers - SMD equivalent ST part number SMD part number RHFL4913KPA-01V 5962F0252401VXC RHFL4913KPA-02V 5962F0252401VXA RHFL4913SCA07V 5962F0252403VUC L4913ADIE2V 5962F0252401V9A Table 9. Environmental characteristics Parameter Conditions Value Unit Output voltage thermal drift -55°C to +125°C 40 ppm/°C Output voltage radiation drift From 0 krad to 300 krad at 0.55 rad/s 8 ppm/krad Output voltage radiation drift From 0 krad to 300 krad, Mil Std 883E Method 1019.6 6 ppm/krad 30/32 DocID10005 Rev 17 RHFL4913A 11 Revision history Revision history Table 10. Document revision history Date Revision Changes 29-Oct-2004 3 New order codes added - Tables 4 and 5. 27-May-2005 4 Features, Tables 4, 5 and the Figure 1 has been updated. Add the Mechanical Data SOC-16. 08-Jun-2005 5 Mistake on Table 4 (Q.ty Level), Table 7 has been updated and add DIE Information. 30-Jan-2006 6 Added new package SMD5C and removed old package SOC-16. 26-Jan-2007 7 DIE Information and DIE Pad has been updated par. 6, pages 9 and 10. 23-Nov-2007 8 Pin information for the SMD5C package updated in Table 1; added section 6.3: FPGA power supply lines on page 14. Minor text changes. 22-Sep-2008 9 Modified Application information on page 13. 17-Nov-2008 10 Modified Table 8 on page 30. 21-Jan-2010 11 Modified Table 7 on page 30. 18-Oct-2010 12 Modified Section 6.2 on page 13. 07-Feb-2011 13 Added: note Table 1 on page 7. 07-Dec-2011 14 Removed the note under Table 1 on page 7 and added footnotes 1 and 2. 20-Aug-2012 15 Order code updated in Table 7 on page 30 about the SMD5C package 15-Jan-2014 16 Updated Features in cover page. Added Section 7: Typical characteristics. Modified Table 4: Electrical characteristics. Updated Section 9: Package mechanical data and Section 10: Ordering information. Minor text changes. 05-May-2014 17 Updated Figure 18: Output voltage vs input voltage (Iout=3 A, T=25 °C and T=125 °C). Minor text changes. DocID10005 Rev 17 31/32 32 RHFL4913A Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 32/32 DocID10005 Rev 17