L6470 - STMicroelectronics

L6470
dSPIN™ fully integrated microstepping motor driver with motion
engine and SPI
Datasheet - production data
Applications
 Bipolar stepper motors
Description
POWERSO36
HTSSOP28
Features
 Operating voltage: 8 - 45 V
 7.0 A out peak current (3.0 A r.m.s.)
 Low RDS(on) Power MOSFETs
 Programmable speed profile and positioning
 Programmable power MOS slew rate
 Up to 1/128 microstepping
 Sensorless stall detection
 SPI interface
 Low quiescent and standby currents
 Programmable non-dissipative overcurrent
protection on high and low-side
 Two-levels of overtemperature protection
The L6470 device, realized in analog mixed
signal technology, is an advanced fully integrated
solution suitable for driving two-phase bipolar
stepper motors with microstepping. It integrates
a dual low RDS(on) DMOS full bridge with all of the
power switches equipped with an accurate onchip current sensing circuitry suitable for nondissipative current control and overcurrent
protection. Thanks to a unique control system,
a true 1/128 steps resolution is achieved. The
digital control core can generate user defined
motion profiles with acceleration, deceleration,
speed or target position, easily programmed
through a dedicated registers set. All commands
and data registers, including those used to set
analogue values (i.e. current control value,
current protection trip point, deadtime, PWM
frequency, etc.) are sent through a standard
5-Mbit/s SPI. A very rich set of protections
(thermal, low bus voltage, overcurrent, motor
stall) allows the design of a fully protected
application, as required by the most demanding
motor control applications.
Table 1. Device summary
Order codes
Package
Packaging
L6470H
HTSSOP28
Tube
L6470HTR
HTSSOP28
Tape and reel
L6470PD
POWERSO36
Tube
L6470PDTR
POWERSO36
Tape and reel
May 2014
This is information on a product in full production.
DocID16737 Rev 6
1/73
www.st.com
Contents
L6470
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1
Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2
Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4
Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Automatic full-step mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5
Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.6
Programmable speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.7
Motor control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.8
6.9
2/73
6.7.1
Constant speed commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.7.2
Positioning commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.7.3
Motion commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.7.4
Stop commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.7.5
Step-clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.7.6
GoUntil and ReleaseSW commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.8.1
Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.8.2
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DocID16737 Rev 6
L6470
Contents
6.10
Undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.11
Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.12
Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.13
External switch (SW pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.14
Programmable DMOS slew rate, deadtime and blanking time . . . . . . . . . 31
6.15
Integrated analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.16
Internal voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.17
BUSY\SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.18
7
6.17.1
BUSY operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.17.2
SYNC operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1
PWM sinewave generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2
Sensorless stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3
Low speed optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4
BEMF compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5
Motor supply voltage compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6
Winding resistance thermal drift compensation . . . . . . . . . . . . . . . . . . . . 37
8
Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9
Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1
Registers and flags description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.1
ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.1.2
EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.1.3
MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.4
SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.5
ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.6
DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.7
MAX_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.8
MIN_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.9
FS_SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1.10
KVAL_HOLD, KVAL_RUN, KVAL_ACC and KVAL_DEC . . . . . . . . . . . 44
9.1.11
INT_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.12
ST_SLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DocID16737 Rev 6
3/73
73
Contents
L6470
9.2
9.1.13
FN_SLP_ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.14
FN_SLP_DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.15
K_THERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.16
ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.17
OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1.18
STALL_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1.19
STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1.20
ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1.21
CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1.22
STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2.1
Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.2
Nop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.3
SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.4
GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.5
Run (DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.6
StepClock (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.7
Move (DIR, N_STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.8
GoTo (ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.9
GoTo_DIR (DIR, ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.10
GoUntil (ACT, DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.11
ReleaseSW (ACT, DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2.12
GoHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2.13
GoMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2.14
ResetPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.2.15
ResetDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.2.16
SoftStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.2.17
HardStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2.18
SoftHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2.19
HardHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2.20
GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4/73
DocID16737 Rev 6
L6470
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
EL_POS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
MIN_SPEED register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Voltage amplitude regulation registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Winding resistance thermal drift compensation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 46
ADC_OUT value and motor supply voltage compensation feature . . . . . . . . . . . . . . . . . . 46
Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Stall detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SYNC output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Oscillator management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
External switch hard stop interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Overcurrent event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Programmable power bridge output slew rate values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Motor supply voltage compensation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PWM frequency: integer division factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
PWM frequency: multiplication factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Available PWM frequencies [kHz]: 8-MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . . 53
Available PWM frequencies [kHz]: 16-MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . 53
Available PWM frequencies [kHz]: 24-MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . 54
Available PWM frequencies [kHz]: 32-MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . 54
STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STATUS register MOT_STATUS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Nop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Run command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Stepclock command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Move command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
GoTo command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
GoTo_DIR command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
GoUntil command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ReleaseSW command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
GoHome command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
DocID16737 Rev 6
5/73
73
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
6/73
L6470
GoMark command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
ResetPos command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
ResetDevice command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SoftStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
HardStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SoftHiZ command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
HardHiZ command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
HTSSOP28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
POWERSO36 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DocID16737 Rev 6
L6470
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
HTSSOP28 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
POWERSO36 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Bipolar stepper motor control application using L6470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Normal mode and microstepping (128 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Automatic full-step switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Constant speed command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Positioning command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Motion command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
OSCIN and OSCOUT pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
External switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Internal 3 V linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Current distortion and compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
BEMF compensation curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Motor supply voltage compensation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Daisy chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Command with 3-byte argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Command with 3-byte response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
HTSSOP28 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
POWERSO36 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DocID16737 Rev 6
7/73
73
Block diagram
1
L6470
Block diagram
Figure 1. Block diagram
VDD
OSCIN
16MHz
Oscillator
OSCOUT ADCIN
VREG
CP
VBOOT
Charge
pump
Ext. Osc. driver
&
Clock gen.
ADC
STBY/RST
VSA
3V
Voltage Reg.
FLAG
V boot
V boot
HS A1
VSA
HS A2
Registers
OUT1A
V DD
HS A1
OUT2A
LS A1
HS A2
LS A1
LS A2
LS A2
Control
Logic
PGND
VSB
HS B1
LS B1
CS
V boot
V boot
VSB
HS B2
SPI
CK
SDO
LS B2
HS B1
HS B2
OUT1B
SDI
OUT2B
BUSY/SYNC
STCK
Temperature
sensing
Current DACs
&
Comparators
LS B1
LS B2
PGND
V DD
Current
sensing
SW
DGND
AGND
AM02377v1
8/73
DocID16737 Rev 6
L6470
Electrical data
2
Electrical data
2.1
Absolute maximum ratings
Table 2. Absolute maximum ratings
Symbol
VDD
Parameter
Test condition
Logic interface supply voltage
Motor supply voltage
VS
VGND, diff
VSA = VSB = VS
Differential voltage between AGND,
PGND and DGND
Value
Unit
5.5
V
48
V
±0.3
V
Vboot
Bootstrap peak voltage
55
V
VREG
Internal voltage regulator output pin
and logic supply voltage
3.6
V
VADCIN
Integrated ADC input voltage range
(ADCIN pin)
-0.3 to +3.6
V
VOSC
OSCIN and OSCOUT pin voltage
range
-0.3 to +3.6
V
Vout_diff
Differential voltage between VSA,
OUT1A, OUT2A, PGND and VSB,
OUT1B, OUT2B, PGND pins
48
V
VLOGIC
Logic inputs voltage range
-0.3 to +5.5
V
3
A
7
A
-40 to 150
°C
-55 to 150
°C
5
W
Iout
(1)
Iout_peak
TOP
Ts
Ptot
VSA = VSB = VS
R.m.s. output current
(1)
Pulsed output current
TPULSE < 1 ms
Operating junction temperature
Storage temperature range
Total power dissipation (TA = 25 ºC)
(2)
1. Maximum output current limit is related to metal connection and bonding characteristics. Actual limit must satisfy maximum
thermal dissipation constraints.
2. HTSSOP28 mounted on EVAL6470H.
DocID16737 Rev 6
9/73
73
Electrical data
2.2
L6470
Recommended operating conditions
Table 3. Recommended operating conditions
Symbol
VDD
VS
Test condition
Logic interface supply voltage
Value
3.3 V logic outputs
5 V logic outputs
V
5
VSA = VSB = VS
Vout_diff
Differential voltage between
VSA, OUT1A, OUT2A, PGND
and VSB, OUT1B, OUT2B,
PGND pins
VSA = VSB = VS
VREG,in
Logic supply voltage
VREG voltage imposed
by external source
Integrated ADC input voltage
(ADCIN pin)
Unit
3.3
Motor supply voltage
VADC
2.3
Parameter
8
3.2
45
V
45
V
3.3
0
V
VREG
V
Thermal data
Table 4. Thermal data
Symbol
RthJA
Parameter
Thermal resistance junction ambient
Package
Typ.
HTSSOP28(1)
(2)
POWERSO36
22
12
Unit
°C/W
1. HTSSOP28 mounted on the EVAL6470H rev 1.0 board: a four-layer FR4 PCB with a dissipating copper
surface of about 40 cm2 on each layer and 15 via holes below the IC.
2. POWERSO36 mounted on the EVAL6470PD rev 1.0 board: a four-layer FR4 PCB with a dissipating
copper surface of about 40 cm2 on each layer and 22 via holes below the IC.
10/73
DocID16737 Rev 6
L6470
3
Electrical characteristics
Electrical characteristics
VSA = VSB = 36 V; VDD = 3.3 V; internal 3 V regulator; TJ = 25 °C, unless otherwise
specified.
Table 5. Electrical characteristics
Symbol
Parameter
Test condition
Min. Typ.
Max. Unit
General
VSthOn
VS UVLO turn-on threshold
7.5
8.2
8.9
V
VSthOff
VS UVLO turn-off threshold
6.6
7.2
7.8
V
VSthHyst
VS UVLO threshold hysteresis
0.7
1
1.3
V
Iq
Quiescent motor supply current
0.5
0.65
mA
Tj(WRN)
Internal oscillator selected;
VREG = 3.3 V ext.; CP floating
Thermal warning temperature
130
°C
Thermal shutdown temperature
160
°C
Voltage swing for charge pump oscillator
10
V
fpump,min
Minimum charge pump oscillator
frequency(1)
660
kHz
fpump,max
Maximum charge pump oscillator
frequency(1)
800
kHz
Tj(SD)
Charge pump
Vpump
Iboot
Average boot current
fsw,A = fsw,B = 15.6 kHz
POW_SR = '10'
1.1
Tj = 25 °C, Iout = 3 A
0.37
1.4
mA
Output DMOS transistor
RDS(on)
RDS(on)
IDSS
tr
High-side switch on-resistance
Low-side switch on-resistance
Leakage current
Rise time
(3)
Tj = 125 °C,
(2)
Iout = 3 A
0.51
Tj = 25 °C, Iout = 3 A
0.18
Tj = 125 °C, (2) Iout = 3 A
0.23
OUT = VS
OUT = GND
3.1
-0.3
POW_SR = '00', Iout = +1 A
100
POW_SR = '00', Iout = -1 A
80
POW_SR = '11', Iout = ±1 A
100
POW_SR = '10', Ilout = ±1 A
200
POW_SR = '01', Iout = ±1 A
300
DocID16737 Rev 6

mA
ns
11/73
73
Electrical characteristics
L6470
Table 5. Electrical characteristics (continued)
Symbol
tf
SRout_r
SRout_f
Parameter
Test condition
(3)
Fall time
Output rising slew rate
Output falling slew rate
Min. Typ.
POW_SR = '00'; Iout = +1 A
90
POW_SR = '00'; Iout = -1 A
110
POW_SR = '11', Iout = ±1 A
110
POW_SR = '10', Iout = ±1 A
260
POW_SR = '01', Iload= ±1 A
375
POW_SR = '00', Iout = +1 A
285
POW_SR = '00', Iout = -1 A
360
POW_SR = '11', Iout = ±1 A
285
POW_SR = '10', Iout = ±1 A
150
POW_SR = '01', Iout = ±1 A
95
POW_SR = '00', Iout = +1 A
320
POW_SR = '00', Iout = -1 A
260
POW_SR = '11', Iout = ±1 A
260
POW_SR = '10', Iout = ±1 A
110
POW_SR = '01', Iout = ±1 A
75
POW_SR = '00'
250
POW_SR = '11', fOSC = 16 MHz
375
POW_SR = '10', fOSC = 16 MHz
625
POW_SR = '01', fOSC = 16 MHz
875
POW_SR = '00'
250
POW_SR = '11', fOSC = 16 MHz
375
POW_SR = '10', fOSC = 16 MHz
625
POW_SR = '01', fOSC = 16 MHz
875
Max. Unit
ns
V/µs
V/µs
Deadtime and blanking
tDT
tblank
Deadtime(1)
Blanking time(1)
ns
ns
Source-drain diodes
VSD,HS
High-side diode forward ON voltage
Iout = 1 A
1
1.1
V
VSD,LS
Low-side diode forward ON voltage
Iout = 1 A
1
1.1
V
trrHS
High-side diode reverse recovery time
Iout = 1 A
30
ns
trrLS
Low-side diode reverse recovery time
Iout = 1 A
100
ns
Logic inputs and outputs
VIL
Low logic level input voltage
VIH
High logic level input voltage
0.8
2
IIH
High logic level input
current(4)
VIN = 5 V
IIL
Low logic level input current(5)
VIN = 0 V
12/73
DocID16737 Rev 6
V
1
-1
V
µA
µA
L6470
Electrical characteristics
Table 5. Electrical characteristics (continued)
Symbol
Parameter
VOL
Low logic level output voltage(6)
VOH
High logic level output voltage
RPU
RPD
Ilogic
Ilogic,STBY
fSTCK
Test condition
Min. Typ.
Max. Unit
VDD = 3.3 V, IOL = 4 mA
0.3
VDD = 5 V, IOL = 4 mA
0.3
VDD = 3.3 V, IOH = 4 mA
2.4
VDD = 5 V, IOH = 4 mA
4.7
CS pull-up and STBY pull-down resistors
CS = GND;
STBY/RST = 5 V
335
Internal logic supply current
Standby mode internal logic supply
current
V
V
430
565
k
3.3 V VREG externally supplied,
internal oscillator
3.7
4.3
mA
3.3 V VREG externally supplied
2
2.5
µA
2
MHz
Step-clock input frequency
Internal oscillator and external oscillator driver
fosc,i
Internal oscillator frequency
fosc,e
Programmable external oscillator
frequency
Tj = 25 °C,
VREG = 3.3 V
-3%
16
8
+3% MHz
32
MHz
VOSCOUTH OSCOUT clock source high level voltage
Internal oscillator 3.3 V VREG
externally supplied;
IOSCOUT = 4 mA
VOSCOUTL OSCOUT clock source low level voltage
Internal oscillator 3.3 V VREG
externally supplied;
IOSCOUT = 4 mA
0.3
V
trOSCOUT
tfOSCOUT
Internal oscillator
20
ns
OSCOUT clock source rise and fall time
2.4
V
textosc
Internal to external oscillator switching
delay
3
ms
tintosc
External to internal oscillator switching
delay
1.5
µs
SPI
fCK,MAX
Maximum SPI clock frequency(7)
5
MHz
trCK
tfCK
SPI clock rise and fall time(7)
thCK
tlCK
SPI clock high and low time(7)
75
ns
tsetCS
Chip select setup time(7)
350
ns
tholCS
Chip select hold time(7)
10
ns
800
ns
25
ns
20
ns
tdisCS
tsetSDI
tholSDI
Deselect
CL = 30 pF
time(7)
(7)
Data input setup time
Data input hold
time(7)
DocID16737 Rev 6
25
ns
13/73
73
Electrical characteristics
L6470
Table 5. Electrical characteristics (continued)
Symbol
Parameter
Test condition
Min. Typ.
Max. Unit
tenSDO
Data output enable time
(7)
38
ns
tdisSDO
Data output disable time(7)
47
ns
57
ns
tvSDO
tholSDO
Data output valid time
Data output hold time
(7)
(7)
37
ns
Switch input (SW)
RPUSW
SW input pull-up resistance
SW = GND
60
85
110
fosc = 16 MHz
2.8
62.5
fosc = 32 MHz
5.6
125
k
PWM modulators
fPWM
Programmable PWM frequency(1)
NPWM
PWM resolution
kHz
8
bit
Stall detection
ISTALL,MAX
Maximum programmable stall threshold
STALL_TH = '1111111'
4
A
ISTALL,MIN
Minimum programmable stall threshold
STALL_TH = '0000000'
31.2
5
mA
ISTALL,RES
Programmable stall threshold resolution
31.2
5
mA
Overcurrent protection
IOCD,MAX
Maximum programmable overcurrent
detection threshold
OCD_TH = '1111'
6
A
IOCD,MIN
Minimum programmable overcurrent
detection threshold
OCD_TH = '0000'
0.37
5
A
IOCD,RES
Programmable overcurrent detection
threshold resolution
0.37
5
A
tOCD,Flag
OCD to flag signal delay time
dIout/dt = 350 A/µs
650
tOCD,SD
OCD to shutdown delay time
dIout/dt = 350 A/µs
POW_SR = '10'
600
VS = 8 V
26
34
VS = 36 V
30
36
1000
ns
ns
Standby
IqSTBY
tSTBY,min
tlogicwu
tcpwu
Quiescent motor supply current in
standby conditions
Minimum standby time
10
Logic power-on and wake-up time
38
Charge pump power-on and wake-up time
Power bridges disabled,
Cp = 10 nF, Cboot = 220 nF
µA
s
45
µs
s
650
Internal voltage regulator
VREG
Voltage regulator output voltage
IREG
Voltage regulator output current
14/73
2.9
DocID16737 Rev 6
3
3.2
V
40
mA
L6470
Electrical characteristics
Table 5. Electrical characteristics (continued)
Symbol
Parameter
Test condition
VREG, drop Voltage regulator output voltage drop
IREG = 40 mA
Min. Typ.
Max. Unit
50
IREG,STBY Voltage regulator standby output current
mV
10
mA
Integrated analog-to-digital converter
NADC
Analog-to-digital converter resolution
5
bit
VADC,ref
Analog-to-digital converter reference
voltage
VRE
V
fS
Analog-to-digital converter sampling
frequency
G
fPWM
kHz
1. Accuracy depends on oscillator frequency accuracy.
2. Tested at 25 °C in a restricted range and guaranteed by characterization.
3. Rise and fall time depends on motor supply voltage value. Refer to SRout values in order to evaluate the actual rise and fall
time.
4. Not valid for STBY/RST pin which has internal pull-down resistor.
5. Not valid for SW and CS pins which have internal pull-up resistors.
6. FLAG, BUSY and SYNC open drain outputs included.
7. See Figure 17 on page 38 – SPI timings diagram for details.
DocID16737 Rev 6
15/73
73
Pin connection
4
L6470
Pin connection
Figure 2. HTSSOP28 pin connection (top view)
065"
065"
74"
1(/%
45#:=345
74"
48
45$,
"%$*/
'-"(
73&(
$4
04$*/
#64:=4:/$
04$065
%(/%
"(/%
4%*
$1
$,
7#005
4%0
7%%
&1"%
74#
1(/%
065#
74#
065#
$0Y
Figure 3. POWERSO36 pin connection (top view)
1(/%
065"
065"
74"
74"
45#:345
SW
%*3
"%$*/
73&(
04$*/
04$065
"(/%
$1
7#005
74#
74#
065#
065#
16/73
&1"%
DocID16737 Rev 6
065"
065"
74"
74"
45$,
'-"(
$4
#64:=4:/$
%(/%
4%*
$,
4%0
7%%
74#
74#
065#
065#
1(/%
L6470
Pin connection
Pin list
Table 6. Pin description
No.
Name
Type
Function
HTSSOP
POWERSO
17
24
VDD
6
9
VREG
Power
7
10
OSCIN
Analog input
Oscillator pin 1. To connect an external oscillator or
clock source. If this pin is unused, it should be left
floating.
Oscillator pin 2. To connect an external oscillator.
When the internal oscillator is used this pin can
supply 2/4/8/16 MHz. If this pin is unused, it should be
left floating.
Power
Logic outputs supply voltage (pull-up reference)
Internal 3 V voltage regulator output and 3.3 V
external logic supply
8
11
OSCOUT
Analog output
10
13
CP
Output
11
14
VBOOT
Supply voltage
5
8
ADCIN
Analog input
Internal analog-to-digital converter input
2, 26
4, 5, 33, 34
VSA
Power supply
Full bridge A power supply pin. It must be connected
to VSB.
12, 16
15, 16, 22, 23
VSB
Power supply
Full bridge B power supply pin. It must be connected
to VSA.
27, 13
1, 19
PGND
Ground
1
2, 3
OUT1A
Power output
Full bridge A output 1
28
35, 36
OUT2A
Power output
Full bridge A output 2
14
17, 18
OUT1B
Power output
Full bridge B output 1
15
20, 21
OUT2B
Power output
Full bridge B output 2
9
12
AGND
Ground
4
7
SW
Logical input
21
28
DGND
Ground
Charge pump oscillator output
Bootstrap voltage needed for driving the high-side
power DMOS of both bridges (A and B)
Power ground pin
Analog ground.
External switch input pin. If not used the pin should be
connected to VDD.
Digital ground
By default, this BUSY pin is forced low when the
device is performing a command. Otherwise the pin
BUSY\SYNC Open drain output
can be configured to generate a synchronization
signal.
22
29
18
25
SDO
Logic output
Data output pin for serial interface
20
27
SDI
Logic input
Data input pin for serial interface
19
26
CK
Logic input
Serial interface clock
23
30
CS
Logic input
Chip select input pin for serial interface
DocID16737 Rev 6
17/73
73
Pin connection
L6470
Table 6. Pin description (continued)
No.
Name
HTSSOP
Type
Function
POWERSO
Status flag pin. An internal open drain transistor can
pull the pin to GND when a programmed alarm
Open drain output condition occurs (step loss, OCD, thermal prewarning or shutdown, UVLO, wrong command, nonperformable command)
24
31
FLAG
3
6
STBY\RST
Logic input
Standby and reset pin. LOW logic level resets the
logic and puts the device into Standby mode. If not
used, it should be connected to VDD.
25
32
STCK
Logic input
Step-clock input
EPAD
EPAD
Exposed pad
Ground
18/73
Internally connected to PGND, AGND and DGND
pins
DocID16737 Rev 6
L6470
5
Typical applications
Typical applications
Table 7. Typical application values
Name
Value
CVS
220 nF
CVSPOL
100 µF
CREG
100 nF
CREGPOL
47 µF
CDD
100 nF
CDDPOL
10 µF
D1
Charge pump diodes
CBOOT
220 nF
CFLY
10 nF
RPU
39 k
RSW
100 
CSW
10 nF
RA
2.7 k (VS = 36 V)
RB
62 k (VS = 36 V)
DocID16737 Rev 6
19/73
73
Typical applications
L6470
Figure 4. Bipolar stepper motor control application using L6470
20/73
DocID16737 Rev 6
L6470
Functional description
6
Functional description
6.1
Device power-up
At power-up end, the device state is the following:

Registers are set to default

Internal logic is driven by internal oscillator and a 2 MHz clock is provided by the
OSCOUT pin

Bridges are disabled (High Z)

UVLO bit in the STATUS register is forced low (fail condition)

FLAG output is forced low.
During power-up, the device is under reset (all logic IOs disabled and power bridges in high
impedance state) until the following conditions are satisfied:

VS is greater than VSthOn

VREG is greater than VREGth = 2.8 V typical

Internal oscillator is operative.
Any motion command makes the device exit from High Z state (HardStop and SoftStop
included).
6.2
Logic I/O
Pins CS, CK, SDI, STCK, SW and STBY\RST are TTL/CMOS 3.3 V - 5 V compatible logic
inputs.
Pin SDO is a TTL/CMOS compatible logic output. VDD pin voltage sets the logic output pin
voltage range; when it is connected to VREG or 3.3 V external supply voltage, the output is
3.3 V compatible. When VDD is connected to a 5 V supply voltage, SDO is 5 V compatible.
VDD is not internally connected to VREG, an external connection is always needed.
A 10 µF capacitor should be connected to the VDD pin in order to obtain a proper operation.
Pins FLAG and BUSY\SYNC are open drain outputs.
6.3
Charge pump
To ensure the correct driving of the high-side integrated MOSFETs, a voltage higher than
the motor power supply voltage needs to be applied to the VBOOT pin. The high-side gate
driver supply voltage, Vboot, is obtained through an oscillator and a few external components
realizing a charge pump (see Figure 5).
DocID16737 Rev 6
21/73
73
Functional description
L6470
Figure 5. Charge pump circuitry
969&39'
&%227
96
'
&)/<
969&39'9'
9%227
'
&3
9&3
WRKLJKVLGH
JDWHGULYHUV
9''
I3803
$0Y
6.4
Microstepping
The driver is able to divide the single step into up to 128 microsteps. Stepping mode can be
programmed by the STEP_SEL parameter in the STEP_MODE register (see Table 18 on
page 48).
Step mode can only be changed when bridges are disabled. Every time the step mode is
changed the electrical position (i.e. the point of microstepping sinewave that is generated) is
reset to zero and the absolute position counter value (see Section 6.5) becomes
meaningless.
Figure 6. Normal mode and microstepping (128 microsteps)
5HVHW
SRVLWLRQ
1RUPDOGULYLQJ
0LFURVWHSSLQJ
5HVHW
SRVLWLRQ
3+$6($FX UUHQW
3+$6(%FXUUHQW
3+$6($FX UUHQW
3+$6(%FXUUHQW
PLFURVWHSV
VWHS VWHS VWHS VWHS VWHS
VWHS VWHS VWHS VWHS VWHS
VWHSV
VWHSV
VWHSV
VWHSV
$0Y
22/73
DocID16737 Rev 6
L6470
Functional description
Automatic full-step mode
When motor speed is greater than a programmable full-step speed threshold, the L6470
device switches automatically to Full-step mode (see Figure 7); the driving mode returns to
microstepping when motor speed decreases below the full-step speed threshold. The fullstep speed threshold is set through the FS_SPD register (see Section 9.1.9 on page 44).
Figure 7. Automatic full-step switching
Ipeak
sin(π/4) x Ipeak
Phase A
Phase B
μStepping
6.5
μStepping
Full-Step
(2N+1) x π/4
(2N+1) x π/4
Absolute position counter
An internal 22-bit register (ABS_POS) records the motor motion according to the selected
step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.).
The position range is from -221to +221-1 (µ)steps (see Section 9.1.1 on page 41).
6.6
Programmable speed profiles
The user can easily program a customized speed profile defining independently
acceleration, deceleration, maximum and minimum speed values by the ACC, DEC,
MAX_SPEED and MIN_SPEED registers respectively (see Section 9.1.5 on page 42,
Section 9.1.6 on page 43, Section 9.1.7 on page 43 and Section 9.1.8 on page 43).
When a command is sent to the device, the integrated logic generates the microstep
frequency profile that performs a motor motion compliant to speed profile boundaries.
All acceleration parameters are expressed in step/tick2 and all speed parameters are
expressed in step/tick; the unit of measurement does not depend on the selected step
mode. Acceleration and deceleration parameters range from 2-40 to (212 - 2) 2-40 step/tick2
(equivalent to 14.55 to 59590 step/s2).
The minimum speed parameter ranges from 0 to (212-1) 2-24 step/tick (equivalent to 0 to
976.3 step/s).
The maximum speed parameter ranges from 2-18 to (210 - 1) 2-18 step/tick (equivalent to
15.25 to 15610 step/s).
DocID16737 Rev 6
23/73
73
Functional description
6.7
L6470
Motor control commands
The L6470 device can accept different types of commands:

constant speed commands (Run, GoUntil, ReleaseSW)

absolute positioning commands (GoTo, GoTo_DIR, GoHome, GoMark)

motion commands (Move)

stop commands (SoftStop, HardStop, SoftHiz, HardHiz).
For detailed command descriptions refer to Section 9.2 on page 56.
6.7.1
Constant speed commands
A constant speed command produces a motion in order to reach and maintain a userdefined target speed starting from the programmed minimum speed (set in the MIN_SPEED
register) and with the programmed acceleration/deceleration value (set in the ACC and DEC
registers). A new constant speed command can be requested anytime.
Figure 8. Constant speed command examples
6SHHG
VWHSIUHTXHQF\
63'
5XQ63'%:
63'
63'
5XQ63'):
5XQ63'):
0LQLPXP
VSHHG
0LQLPXP
VSHHG
WLPH
5XQ63'):
63'
$0Y
6.7.2
Positioning commands
An absolute positioning command produces a motion in order to reach a user-defined
position that is sent to the device together with the command. The position can be reached
performing the minimum path (minimum physical distance) or forcing a direction (see
Figure 9).
The performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or positioning commands, the deceleration phase can
start before the maximum speed is reached.
24/73
DocID16737 Rev 6
L6470
Functional description
Figure 9. Positioning command examples
)RUZDUG
GLUHFWLRQ
3UHVHQW
SRVLWLRQ
3UHVHQW
SRVLWLRQ
7DUJHW
SRVLWLRQ
7DUJHW
SRVLWLRQ
*R7RB',57DUJHWSRV):
*R7R7DUJHWSRV
6.7.3
$0Y
Motion commands
Motion commands produce a motion in order to perform a user-defined number of
microsteps in a user-defined direction that are sent to the device together with the command
(see Figure 10).
The performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or motion commands, the deceleration phase can start
before the maximum speed is reached.
Figure 10. Motion command examples
63(('
63(('
SURJUDPPHGQXPEHURIPLFURVWHSV
SURJUDPPHGQXPEHURIPLFURVWHSV
SURJUDPPHG
PD[LPXP
VSHHG
SURJUDPPHG
PD[LPXP
VSHHG
SURJUDPPHG
$&&(/(5$7,21
SURJUDPPHG
PLQLPXP
VSHHG
SURJUDPPHG
$&&(/(5$7,21
SURJUDPPHG
'(&(/(5$7,21
SURJUDPPHG
PLQLPXP
VSHHG
1RWHZLWKVRPH
$FFHOHUDWLRQ'HFHODUDWLRQSURILOHV
WKHSURJUDPPHGPD[LPXPVSHHG
LVQHYHUUHDFKHG
SURJUDPPHG
'(&(/(5$7,21
WLPH
WLPH
$0Y
6.7.4
Stop commands
A stop command forces the motor to stop. Stop commands can be sent anytime.
The SoftStop command causes the motor to decelerate with programmed deceleration
value until the MIN_SPEED value is reached and then stops the motor keeping the rotor
position (a holding torque is applied).
The HardStop command stops the motor instantly, ignoring deceleration constraints and
keeping the rotor position (a holding torque is applied).
DocID16737 Rev 6
25/73
73
Functional description
L6470
The SoftHiZ command causes the motor to decelerate with programmed deceleration value
until the MIN_SPEED value is reached and then forces the bridges in high impedance state
(no holding torque is present).
The HardHiZ command instantly forces the bridges into high impedance state (no holding
torque is present).
6.7.5
Step-clock mode
In Step-clock mode the motor motion is defined by the step-clock signal applied to the STCK
pin. At each step-clock rising edge, the motor is moved one microstep in the programmed
direction and the absolute position is consequently updated.
When the system is in Step-clock mode, the SCK_MOD flag in the STATUS register is
raised, the SPEED register is set to zero and motor status is considered stopped whatever
the STCK signal frequency (MOT_STATUS parameter in STATUS register equal to “00”).
26/73
DocID16737 Rev 6
L6470
6.7.6
Functional description
GoUntil and ReleaseSW commands
In most applications the power-up position of the stepper motor is undefined, so an
initialization algorithm driving the motor to a known position is necessary.
The GoUntil and ReleaseSW commands can be used in combination with external switch
input (see Section 6.13 on page 31) to easily initialize the motor position.
The GoUntil command makes the motor run at the constant target speed until the SW input
is forced low (falling edge). When this event occurs, one of the following actions can be
performed:

The ABS_POS register is set to zero (home position) and the motor decelerates to zero
speed (as a SoftStop command)

The ABS_POS register value is stored in the MARK register and the motor decelerates
to zero speed (as a SoftStop command).
If the SW_MODE bit of the CONFIG register is set to ‘0’, the motor does not decelerate but
it immediately stops (as a HardStop command).
The ReleaseSW command makes the motor run at the programmed minimum speed until
the SW input is forced high (rising edge). When this event occurs, one of the following
actions can be performed:

The ABS_POS register is set to zero (home position) and the motor immediately stops
(as a HardStop command)

The ABS_POS register value is stored in the MARK register and the motor immediately
stops (as a HardStop command).
If the programmed minimum speed is less than 5 step/s, the motor is driven at 5 step/s.
6.8
Internal oscillator and oscillator driver
The control logic clock can be supplied by the internal 16-MHz oscillator, an external
oscillator (crystal or ceramic resonator) or a direct clock signal.
These working modes can be selected by EXT_CLK and OSC_SEL parameters in the
CONFIG register (see Table 23 on page 50).
At power-up the device starts using the internal oscillator and provides a 2-MHz clock signal
on the OSCOUT pin.
Attention: In any case, before changing clock source configuration,
a hardware reset is mandatory. Switching to different clock
configurations during operation may cause unexpected
behavior.
DocID16737 Rev 6
27/73
73
Functional description
6.8.1
L6470
Internal oscillator
In this mode the internal oscillator is activated and OSCIN is unused. If the OSCOUT clock
source is enabled, the OSCOUT pin provides a 2, 4, 8 or 16-MHz clock signal (according to
OSC_SEL value); it is otherwise unused (see Figure 11).
6.8.2
External clock source
Two types of external clock source can be selected: crystal/ceramic resonator or direct clock
source. Four programmable clock frequencies are available for each external clock source:
8, 16, 24 and 32 MHz.
When an external crystal/resonator is selected, the OSCIN and OSCOUT pins are used to
drive the crystal/resonator (see Figure 11). The crystal/resonator and load capacitors (CL)
must be placed as close as possible to the pins. Refer to Table 8 for the choice of load
capacitor values according to the external oscillator frequency.
Table 8. CL values according to external oscillator frequency
Crystal/resonator freq. (1)
CL (2)
8 MHz
25 pF (ESRmax = 80 )
16 MHz
18 pF (ESRmax = 50 )
24 MHz
15 pF (ESRmax = 40 )
32 MHz
10 pF (ESRmax = 40 )
1. First harmonic resonance frequency.
2. Lower ESR value allows the driving of greater load capacitors.
If a direct clock source is used, it must be connected to the OSCIN pin and the OSCOUT pin
supplies the inverted OSCIN signal (see Figure 11).
28/73
DocID16737 Rev 6
L6470
Functional description
Figure 11. OSCIN and OSCOUT pin configuration
&95@$-,
&95@$-,
.)[
$-
$.)[
04$@4&-YY
04$*/
04$065
&YUFSOBMPTDJMMBUPS
DPOGJHVSBUJPO
04$*/
04$065
&YUFSOBMDMPDLTPVSDF
DPOGJHVSBUJPO
.)[
04$@4&-YY
6/64&%
6/64&%
6/64&%
04$*/
04$065
04$*/
*OUFSOBMPTDJMMBUPS
DPOGJHVSBUJPO
XJUIPVUDMPDLTPVSDF
04$065
*OUFSOBMPTDJMMBUPS
DPOGJHVSBUJPO
XJUIDMPDLHFOFSBUJPO
$0Y
Note:
When OSCIN is UNUSED, it should be left floating.
When OSCOUT is UNUSED, it should be left floating.
6.9
Overcurrent detection
When the current in any of the Power MOSFETs exceeds a programmed overcurrent
threshold, the STATUS register OCD flag is forced low until the overcurrent event has
expired and a GetStatus command is sent to the IC (see Section 9.1.22 on page 55 and
Section 9.1.17 on page 47). The overcurrent event expires when all the Power MOSFET
currents fall below the programmed overcurrent threshold.
The overcurrent threshold can be programmed through the OCD_TH register in one of 16
available values ranging from 375 mA to 6 A with steps of 375 mA (see Table 9 on page 40,
Section 9.1.17).
It is possible to set whether an overcurrent event causes or not the MOSFET turn-off
(bridges in high impedance status) acting on the OC_SD bit in the CONFIG register (see
Section 9.1.21). The OCD flag in the STATUS register is raised anyway (see Table 34 on
page 55, Section 9.1.22).
When the IC outputs are turned off by an OCD event, they cannot be turned on until the
OCD flag is released by a GetStatus command.
DocID16737 Rev 6
29/73
73
Functional description
L6470
Attention: The overcurrent shutdown is a critical protection feature. It is
not recommended to disable it.
6.10
Undervoltage lockout (UVLO)
The L6470 device provides a motor supply UVLO protection. When the motor supply
voltage falls below the VSthOff threshold voltage, the STATUS register UVLO flag is forced
low. When a GetStatus command is sent to the IC, and the undervoltage condition has
expired, the UVLO flag is released (see Section 9.1.22 on page 55 and S). The
undervoltage condition expires when the motor supply voltage goes over the VSthOn
threshold voltage. When the device is in undervoltage condition, no motion command can
be performed. The UVLO flag is forced low by logic reset (power-up included) even if no
UVLO condition is present.
6.11
Thermal warning and thermal shutdown
An internal sensor allows the L6470 to detect when the device internal temperature exceeds
a thermal warning or an overtemperature threshold.
When the thermal warning threshold (Tj(WRN)) is reached, the TH_WRN bit in the STATUS
register is forced low (see Section 9.1.22) until the temperature decreases below Tj(WRN)
and a GetStatus command is sent to the IC (see Section 9.1.22 and 9.2.20).
When the thermal shutdown threshold (Tj(OFF)) is reached, the device goes into thermal
shutdown condition: the TH_SD bit in the STATUS register is forced low, the power bridges
are disabled bridges in high impedance state and the HiZ bit in the STATUS register is
raised (see Section 9.1.22).
The thermal shutdown condition only expires when the temperature goes below the thermal
warning threshold (Tj(WRN)).
On exiting thermal shutdown condition, the bridges are still disabled (HiZ flag high); any
motion command makes the device exit from High Z state (HardStop and SoftStop
included).
6.12
Reset and standby
The device can be reset and put into Standby mode through a dedicated pin. When the
STBY\RST pin is driven low, the bridges are left open (High Z state), the internal charge
pump is stopped, the SPI interface and control logic are disabled and the internal 3 V
voltage regulator maximum output current is reduced to IREG,STBY; as a result, the L6470
heavily reduces the power consumption. At the same time the register values are reset to
default and all protection functions are disabled. STBY\RST input must be forced low at
least for tSTBY,min in order to ensure the complete switch to Standby mode.
On exiting Standby mode, as well as for IC power-up, a delay of up to tlogicwu must be given
before applying a new command to allow proper oscillator and logic startup and a delay of
up to tcpwu must be given to allow the charge pump startup.
30/73
DocID16737 Rev 6
L6470
Functional description
On exiting Standby mode, the bridges are disabled (HiZ flag high) and any motion command
makes the device exit High Z state (HardStop and SoftStop included).
Attention: It is not recommended to reset the device when outputs are
active. The device should be switched to high impedance
state before being reset.
6.13
External switch (SW pin)
The SW input is internally pulled up to VDD and detects if the pin is open or connected to
ground (see Figure 12).
The SW_F bit of the STATUS register indicates if the switch is open (‘0’) or closed (‘1’) (see
Section 9.1.22 on page 55); the bit value is refreshed at every system clock cycle (125 ns).
The SW_EVN flag of the STATUS register is raised when a switch turn-on event (SW input
falling edge) is detected (see Section 9.1.22). A GetStatus command releases the SW_EVN
flag (see Section 9.2.20 on page 66).
By default, a switch turn-on event causes a HardStop interrupt (SW_MODE bit of CONFIG
register set to ‘0’). Otherwise (SW_MODE bit of CONFIG register set to ‘1’), switch input
events do not cause interrupts and the switch status information is at the user’s disposal
(see Table 34 on page 55, Section 9.1.22).
The switch input may be used by the GoUntil and ReleaseSW commands as described in
Section 9.2.10 on page 62 and S.
If the SW input is not used, it should be connected to VDD.
Figure 12. External switch connection
7%%
&YUFSOBM
4XJUDI
48
$0Y
6.14
Programmable DMOS slew rate, deadtime and blanking time
Using the POW_SR parameter in the CONFIG register, it is possible to set the commutation
speed of the power bridges output (see Table 26 on page 51, Section 9.1.21 on page 49).
DocID16737 Rev 6
31/73
73
Functional description
6.15
L6470
Integrated analog-to-digital converter
The L6470 device integrates an NADC bit ramp-compare analog-to-digital converter with
a reference voltage equal to VREG. The analog-to-digital converter input is available
through the ADCIN pin and the conversion result is available in the ADC_OUT register
(see Section 9.1.16 on page 46).
Sampling frequency is equal to the programmed PWM frequency.
The ADC_OUT value can be used for motor supply voltage compensation or can be at the
user’s disposal.
6.16
Internal voltage regulator
The L6470 integrates a voltage regulator which generates a 3 V voltage starting from the
motor power supply (VSA and VSB). In order to make the voltage regulator stable, at least
22 µF should be connected between the VREG pin and ground (suggested value is 47 µF).
The internal voltage regulator can be used to supply the VDD pin in order to make the
device digital output range 3.3 V compatible (Figure 13). A digital output range, 5 V
compatible, may be obtained connecting the VDD pin to an external 5 V voltage source. In
both cases, a 10 µF capacitance should be connected to the VDD pin in order to obtain
a correct operation.
The internal voltage regulator is able to supply a current up to IREG,MAX, internal logic
consumption included (Ilogic). When the device is in Standby mode, the maximum current
that can be supplied is IREG, STBY, internal consumption included (Ilogic, STBY).
If an external 3.3 V regulated voltage is available, it can be applied to the VREG pin in order
to supply all the internal logic and to avoid power dissipation of the internal 3 V voltage
regulator (Figure 13). The external voltage regulator should never sink current from the
VREG pin.
Figure 13. Internal 3 V linear regulator
VBAT
Vs
Vs
3V
VDD
VREG
μC
3.3V
REG.
VDD
VSA
VSB
IC
DGND
VDD
VSA
VSB
IC
AGND
Logig supplied by
INTERNAL voltage regulator
6.17
VREG
DGND
AGND
Logig supplied by
EXTERNAL voltage regulator
BUSY\SYNC pin
This pin is an open drain output which can be used as the busy flag or synchronization
signal according to the SYNC_EN bit value (STEP_MODE register).
32/73
DocID16737 Rev 6
L6470
6.17.1
Functional description
BUSY operation mode
The pin works as busy signal when the SYNC_EN bit is set low (default condition). In this
mode the output is forced low while a constant speed, absolute positioning or motion
command is under execution. The BUSY pin is released when the command has been
executed (target speed or target position reached). The STATUS register includes a BUSY
flag that is the BUSY pin mirror (see Section 9.1.22 on page 55).
In the case of daisy chain configuration, BUSY pins of different ICs can be hard-wired to
save host controller GPIOs.
6.17.2
SYNC operation mode
The pin works as synchronization signal when the SYNC_EN bit is set high. In this mode
a step-clock signal is provided on the output according to a SYNC_SEL and STEP_SEL
parameter combination (see Section 9.1.19 on page 47).
6.18
FLAG pin
By default, an internal open drain transistor pulls the FLAG pin to ground when at least one
of the following conditions occurs:

Power-up or standby/reset exit

Stall detection on A bridge

Stall detection on B bridge

Overcurrent detection

Thermal warning

Thermal shutdown

UVLO

Switch turn-on event

Wrong command

Non-performable command.
It is possible to mask one or more alarm conditions by programming the ALARM_EN
register (see Section 9.1.20 on page 49, Table 21 on page 49). If the corresponding bit of
the ALARM_EN register is low, the alarm condition is masked and it does not cause a FLAG
pin transition; all other actions imposed by alarm conditions are performed anyway. In the
case of daisy chain configuration, FLAG pins of different ICs can be or-wired to save host
controller GPIOs.
DocID16737 Rev 6
33/73
73
Phase current control
7
L6470
Phase current control
The L6470 controls the phase current applying a sinusoidal voltage to motor windings.
Phase current amplitude is not directly controlled but depends on phase voltage amplitude,
load torque, motor electrical characteristics and rotation speed. Sinewave amplitude is
proportional to the motor supply voltage multiplied by a coefficient (KVAL). KVAL ranges from
0 to 100% and the sinewave amplitude can be obtained through the following formula:
Equation 1
V OUT = V S  K VAL
Different KVAL values can be programmed for acceleration, deceleration and constant speed
phases and when the motor is stopped (HOLD phase) through the KVAL_ACC, KVAL_DEC,
KVAL_RUN and KVAL_HOLD registers (see Section 9.1.10 on page 44). KVAL value is
calculated according to the following formula:
Equation 2
K VAL =   K VAL_X + BEMF_COMP   VSCOMP  K_THERM   microstep
where KVAL_X is the starting KVAL value programmed for present motion phase (KVAL_ACC,
KVAL_DEC, KVAL_RUN or KVAL_HOLD), BEMF_COMP is the BEMF compensation curve
value, VSCOMP and K_THERM are the motor supply voltage and winding resistance
compensation factors and microstep is the current microstep value (fraction of target peak
current).
The L6470 device offers various methods to guarantee a stable current value, allowing the
compensation of:
7.1

low speed optimization (Section 7.3)

back electromotive force value (Section 7.4)

motor supply voltage variation (Section 7.5)

windings resistance variation (Section 7.6).
PWM sinewave generators
The two voltage sinewaves applied to the stepper motor phases are generated by two PWM
modulators.
The PWM frequency (fPWM) is proportional to the oscillator frequency (fOSC) and can be
obtained through the following formula:
Equation 3
f OSC
f PWM = ------------------  m
512  N
'N' is the integer division factor and 'm' is the multiplication factor. 'N' and 'm' values can be
programmed by the F_PWM_INT and F_PWM_DEC parameters in the CONFIG register
(see Table 28 on page 52 and Table 29 on page 52, Section 9.1.21 on page 49).
Available PWM frequencies are listed in Section 9.1.21 from Table 30 on page 53 to
Table 33 on page 54.
34/73
DocID16737 Rev 6
L6470
7.2
Phase current control
Sensorless stall detection
Depending on motor speed and load angle characteristics, the L6470 offers a motor stall
condition detection using a programmable current comparator.
When a stall event occurs, the respective flag (STEP_LOSS_A or STEP_LOSS_B) is forced
low until a GetStaus command or a system reset occurs (see Section 9.2.20 on page 66).
7.3
Low speed optimization
When the motor is driven at a very low speed using a small driving voltage, the resulting
phase current can be distorted. As a consequence, the motor position is different from the
ideal one (see Figure 14).
The L6470 device implements a low speed optimization in order to remove this effect.
Figure 14. Current distortion and compensation
:LWKRXWORZVSHHGRSWLPL]D]LRQ
,SKDVH
:LWKORZVSHHGRSWLPL]D]LRQ
,SKDVH
&XUUHQWGLVWRUWLRQLVKHDYLO\
UHGXFHG
$09
The optimization can be enabled setting high the LSPD_OPT bit in the MIN_SPEED register
(see Section 9.1.8 on page 43) and is active in a speed range from zero to MIN_SPEED.
When low speed optimization is enabled, speed profile minimum speed is forced to zero.
DocID16737 Rev 6
35/73
73
Phase current control
7.4
L6470
BEMF compensation
Using the speed information, a compensation curve is added to the amplitude of the voltage
waveform applied to the motor winding in order to compensate the BEMF variations during
acceleration and deceleration (see Figure 15).
The compensation curve is approximated by a stacked line with a starting slope (ST_SLP)
when speed is lower than a programmable threshold speed (INT_SPEED) and a fine slope
(FN_SLP_ACC and FN_SLP_DEC) when speed is greater than the threshold speed (see
Section 9.1.11 on page 45, S, S and Section 9.1.14 on page 45).
Figure 15. BEMF compensation curve
$PNQFOTBUJPO
WBMVF
'/@4-1@"$$
'/@4-1@%&$
45@4-1
*/5@41&&%
4QFFE
$0Y
To obtain different current values during acceleration and deceleration phases, two different
final slope values, and consequently two different compensation curves, can be
programmed.
The acceleration compensation curve is applied when the motor runs. No BEMF
compensation is applied when the motor is stopped.
7.5
Motor supply voltage compensation
The sinewave amplitude generated by the PWM modulators is directly proportional to the
motor supply voltage (VS). When the motor supply voltage is different from its nominal
value, the motor phases are driven with an incorrect voltage. The L6470 device can
compensate motor supply voltage variations in order to avoid this effect.
The motor supply voltage should be connected to the integrated ADC input through
a resistor divider in order to obtain VREG/2 voltage at the ADCIN pin when VS is at its
nominal value (see Figure 16).
The ADC input is sampled at fS frequency, which is equal to PWM frequency.
36/73
DocID16737 Rev 6
L6470
Phase current control
Figure 16. Motor supply voltage compensation circuit
74
73&(
3"
"%$*/
7"%$*/74Y3#3"3#
"%$
"%$@065
3#
G18.
$0Y
Motor supply voltage compensation can be enabled setting high the EN_VSCOMP bit of the
CONFIG register (see Table 22 on page 49, Section 9.1.21 on page 49). If the
EN_VSCOMP bit is low, the compensation is disabled and the internal analog-to-digital
converter is at the user’s disposal; sampling rate is always equal to PWM frequency.
7.6
Winding resistance thermal drift compensation
The higher the winding resistance, the greater the voltage to be applied in order to obtain
the same phase current.
The L6470 integrates a register (K_THERM) which can be used to compensate phase
resistance increment due to temperature rising.
The value in the K_THERM register (see Section 9.1.15 on page 46) multiplies the duty
cycle value allowing a higher phase resistance value to be faced.
The compensation algorithm and the eventual motor temperature measurement should be
implemented by microcontroller firmware.
DocID16737 Rev 6
37/73
73
Serial interface
8
L6470
Serial interface
The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous serial
communication between the host microprocessor (always master) and the L6470 (always
slave).
The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data
output (SDO) pins. When CS is high, the device is unselected and the SDO line is inactive
(high-impedance).
The communication starts when CS is forced low. The CK line is used for synchronization of
data communication.
All commands and data bytes are shifted into the device through the SDI input, most
significant bit first. The SDI is sampled on the rising edges of the CK.
All output data bytes are shifted out of the device through the SDO output, most significant
bit first. The SDO is latched on the falling edges of the CK. When a return value from the
device is not available, an all zero byte is sent.
After each byte transmission the CS input must be raised and be kept high for at least tdisCS
in order to allow the device to decode the received command and put the return value into
the SHIFT register.
All timing requirements are shown in Figure 17 (see Section 3: Electrical characteristics on
page 11 for values).
Multiple devices can be connected in daisy chain configuration, as shown in Figure 18.
Figure 17. SPI timings diagram
$4
UEJT$4
UTFU$4
US$,
UI$, UG$,
UM$,
$,
UFO4%0
UTFU4%*
UIPM$4
UIPM4%*
.4#
4%*
/
)J;
.4#
-4#
UW4%0
UIPM4%0
4%0
/
UEJT4%0
/
/
-4#
.4#
$0Y
38/73
DocID16737 Rev 6
L6470
Serial interface
Figure 18. Daisy chain configuration
%&7
$4
$4
$,
$,
)045 4%0
.
4%*.
4%*
4%0
%&7
$4
$,
)04541*TJHOBMT
4%*
4%0
$4
4%0.
#ZUF/
#ZUF/
#ZUF
#ZUF/
4%*.
#ZUF/
#ZUF/
#ZUF
#ZUF/
%&7/
$4
$,
4%*
4%0
$0Y
DocID16737 Rev 6
39/73
73
Programming manual
L6470
9
Programming manual
9.1
Registers and flags description
Table 9 is a map of the user registers available (detailed description in respective
paragraphs):
Table 9. Register map
Address
[Hex]
Register name
h01
ABS_POS
h02
EL_POS
h03
Register function
Len.
[bit]
Current position
22
Electrical position
9
MARK
Mark position
h04
SPEED
h05
Reset
Reset
Hex
value
000000 0
R, WS
0
R, WS
22
000000 0
R, WR
Current speed
20
00000
ACC
Acceleration
12
08A
125.5e-12 step/tick2 (2008
step/s2)
R, WS
h06
DEC
Deceleration
12
08A
125.5e-12 step/tick2 (2008
step/s2)
R, WS
h07
MAX_SPEED
Maximum speed
10
041
248e-6 step/tick (991.8 step/s)
R, WR
h08
MIN_SPEED
Minimum speed
13
000
0 step/tick (0 step/s)
R, WS
h15
FS_SPD
Full-step speed
10
027
150.7e-6 step/tick (602.7
step/s)
R, WR
h09
KVAL_HOLD
Holding KVAL
8
29
0.16·VS
R, WR
h0A
KVAL_RUN
Constant speed KVAL
8
29
0.16·VS
R, WR
h0B
KVAL_ACC
Acceleration starting
KVAL
8
29
0.16·VS
R, WR
h0C
KVAL_DEC
Deceleration starting
KVAL
8
29
0.16·VS
R, WR
h0D
INT_SPEED
Intersect speed
14
0408
15.4e-6 step/tick (61.5 step/s)
R, WH
h0E
ST_SLP
Start slope
8
19
0.038% s/step
R, WH
h0F
FN_SLP_ACC
Acceleration final
slope
8
29
0.063% s/step
R, WH
h10
FN_SLP_DEC
Deceleration final
slope
8
29
0.063% s/step
R, WH
h11
K_THERM
Thermal
compensation factor
4
0
1.0
R, WR
h12
ADC_OUT
ADC output
5
XX(2)
h13
OCD_TH
OCD threshold
4
8
3.38A
R, WR
h14
STALL_TH
STALL threshold
7
40
2.03A
R, WR
h16
STEP_MODE
Step mode
8
7
128 microsteps
R, WH
h17
ALARM_EN
Alarm enable
8
FF
All alarms enabled
R, WS
40/73
000
Remarks(1)
DocID16737 Rev 6
0 step/tick (0 step/s)
R
R
L6470
Programming manual
Table 9. Register map (continued)
Address
[Hex]
Register name
Register function
Len.
[bit]
Reset
Reset
Hex
value
Internal oscillator, 2 MHz
OSCOUT clock, supply voltage
compensation disabled,
overcurrent shutdown enabled,
slew rate = 290 V/µs PWM
frequency = 15.6 kHz.
h18
CONFIG
IC configuration
16
2E88
h19
STATUS
Status
16
XXXX(2)
h1A
RESERVED
Reserved address
h1B
RESERVED
Reserved address
Remarks(1)
High impedance state,
UVLO/Reset flag set.
R, WH
R
1. R: readable, WH: writable only when outputs are in high impedance, WS: writable only when motor is stopped, WR: always
writable.
2. According to startup conditions.
9.1.1
ABS_POS
The ABS_POS register contains the current motor absolute position in agreement with the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.). The value is in 2's complement format and it ranges from -221 to +221-1.
At power-on the register is initialized to “0” (HOME position).
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22 on page 55).
9.1.2
EL_POS
The EL_POS register contains the current electrical position of the motor. The two MSbits
indicate the current step and the other bits indicate the current microstep (expressed in
step/128) within the step.
Table 10. EL_POS register
Bit 8
Bit 7
STEP
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
MICROSTEP
When the EL_POS register is written by the user, the new electrical position is instantly
imposed. When the EL_POS register is written, its value must be masked in order to match
with the step mode selected in the STEP_MODE register in order to avoid a wrong
microstep value generation (see Section 9.1.19 on page 47); otherwise the resulting
microstep sequence is incorrect.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22).
DocID16737 Rev 6
41/73
73
Programming manual
9.1.3
L6470
MARK
The MARK register contains an absolute position called MARK according to the selected
step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.).
It is in 2's complement format and it ranges from -221 to +221-1.
9.1.4
SPEED
The SPEED register contains the current motor speed, expressed in step/tick (format
unsigned fixed point 0.28).
In order to convert the SPEED value in step/s, the following formula can be used:
Equation 4
– 28
SPEED  2
 step/s  = ------------------------------------tick
where SPEED is the integer number stored in the register and tick is 250 ns.
The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
Note:
The range effectively available to the user is limited by the MAX_SPEED parameter.
Any attempt to write the register causes the command to be ignored and the
NOTPERF_CMD flag to rise (see Section 9.1.22 on page 55).
9.1.5
ACC
The ACC register contains the speed profile acceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
In order to convert ACC value in step/s2, the following formula can be used:
Equation 5
– 40
2
ACC  2
 step/s  = ---------------------------2
tick
where ACC is the integer number stored in the register and tick is 250 ns.
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.
The 0xFFF value of the register is reserved and it should never be used.
Any attempt to write to the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22).
42/73
DocID16737 Rev 6
L6470
9.1.6
Programming manual
DEC
The DEC register contains the speed profile deceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
In order to convert DEC value in step/s2, the following formula can be used:
Equation 6
– 40
2
DEC  2
 step/s  = ---------------------------2
tick
where DEC is the integer number stored in the register and tick is 250 ns.
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22 on page 55).
9.1.7
MAX_SPEED
The MAX_SPEED register contains the speed profile maximum speed expressed in
step/tick (format unsigned fixed point 0.18).
In order to convert it in step/s, the following formula can be used:
Equation 7
– 18
MAX_SPEED  2
 step/s  = ----------------------------------------------------tick
where MAX_SPEED is the integer number stored in the register and tick is 250 ns.
The available range is from 15.25 to 15610 step/s with a resolution of 15.25 step/s.
9.1.8
MIN_SPEED
The MIN_SPEED register contains the following parameters:
Table 11. MIN_SPEED register
Bit 12
LSPD_OPT
Bit 11
Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MIN_SPEED
The MIN_SPEED parameter contains the speed profile minimum speed. Its value is
expressed in step/tick and to convert it in step/s, the following formula can be used:
Equation 8
– 24
MIN_SPEED  2
 step/s  = --------------------------------------------------tick
where MIN_SPEED is the integer number stored in the register and tick is the ramp 250 ns.
The available range is from 0 to 976.3 step/s with a resolution of 0.238 step/s.
DocID16737 Rev 6
43/73
73
Programming manual
L6470
When the LSPD_OPT bit is set high, the low speed optimization feature is enabled and the
MIN_SPEED value indicates the speed threshold below which the compensation works. In
this case the minimum speed of the speed profile is set to zero.
An attempt to write the register when the motor is running causes the NOTPERF_CMD flag
to rise.
9.1.9
FS_SPD
The FS_SPD register contains the threshold speed. When the actual speed exceeds this
value, the step mode is automatically switched to full-step two-phase on. Its value is
expressed in step/tick (format unsigned fixed point 0.18) and to convert it in step/s, the
following formula can be used.
Equation 9
– 18
 FS_SPD + 0.5   2
 step/s  = ----------------------------------------------------------tick
If the FS_SPD value is set to h3FF (max.) the system always works in microstepping mode
(SPEED must go beyond the threshold to switch to Full-step mode). Setting FS_SPD to
zero does not have the same effect as setting Step mode to full-step two-phase on: the zero
FS_SPD value is equivalent to a speed threshold of about 7.63 step/s.
The available range is from 7.63 to 15625 step/s with a resolution of 15.25 step/s.
9.1.10
KVAL_HOLD, KVAL_RUN, KVAL_ACC and KVAL_DEC
The KVAL_HOLD register contains the KVAL value that is assigned to the PWM modulators
when the motor is stopped (compensation excluded).
The KVAL_RUN register contains the KVAL value that is assigned to the PWM modulators
when the motor is running at constant speed (compensation excluded).
The KVAL_ACC register contains the starting KVAL value that can be assigned to the PWM
modulators during acceleration (compensation excluded).
The KVAL_DEC register contains the starting KVAL value that can be assigned to the PWM
modulators during deceleration (compensation excluded).
The available range is from 0 to 0.996 x VS with a resolution of 0.004 x VS, as shown in
Table 12.
Table 12. Voltage amplitude regulation registers
KVAL_X [7 … 0]
44/73
Output voltage
0
0
0
0
0
0
0
1
VS x (1/256)
…
0
…
0
…
0
…
0
…
0
…
0
…
0
…
0
…
0
1
1
1
1
1
1
1
0
VS x (254/256)
1
1
1
1
1
1
1
1
VS x (255/256)
DocID16737 Rev 6
L6470
9.1.11
Programming manual
INT_SPEED
The INT_SPEED register contains the speed value at which the BEMF compensation curve
changes slope (see Section 7.4 on page 36). Its value is expressed in step/tick and to
convert it in step/s, the following formula can be used:
Equation 10
– 26
INT – SPEED  2
 step  s  = --------------------------------------------------tick
where INT_SPEED is the integer number stored in the register and tick is 250 ns.
The available range is from 0 to 976.5 step/s with a resolution of 0.0596 step/s.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22 on page 55).
9.1.12
ST_SLP
The ST_SLP register contains the BEMF compensation curve slope that is used when the
speed is lower than the intersect speed (see Section 7.4). Its value is expressed in s/step
and the available range is from 0 to 0.004 with a resolution of 0.000015.
When ST_SLP, FN_SLP_ACC and FN_SLP_DEC parameters are set to zero, no BEMF
compensation is performed.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22).
9.1.13
FN_SLP_ACC
The FN_SLP_ACC register contains the BEMF compensation curve slope that is used when
the speed is greater than the intersect speed during acceleration (see Section 7.4). Its value
is expressed in s/step and the available range is from 0 to 0.004 with a resolution of
0.000015.
When ST_SLP, FN_SLP_ACC and FN_SLP_DEC parameters are set to zero, no BEMF
compensation is performed.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22).
9.1.14
FN_SLP_DEC
The FN_SLP_DEC register contains the BEMF compensation curve slope that is used when
the speed is greater than the intersect speed during deceleration (see Section 7.4). Its value
is expressed in s/step and the available range is from 0 to 0.004 with a resolution of
0.000015.
When ST_SLP, FN_SLP_ACC and FN_SLP_DEC parameters are set to zero, no BEMF
compensation is performed.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22).
DocID16737 Rev 6
45/73
73
Programming manual
9.1.15
L6470
K_THERM
The K_THERM register contains the value used by the winding resistance thermal drift
compensation system (see Section 7.6 on page 37).
The available range is from 1 to 1.46875 with a resolution of 0.03125, as shown in Table 13.
Table 13. Winding resistance thermal drift compensation coefficient
K_THERM [3 .… 0]
9.1.16
Compensation coefficient
0
0
0
1
1.03125
…
1
…
0
…
0
…
0
…
0
1
1
1
0
1.4375
1
1
1
1
1.46875
ADC_OUT
The ADC_OUT register contains the result of the analog-to-digital conversion of the ADCIN
pin voltage; the result is available even if the supply voltage compensation is disabled.
Any attempt to write to the register causes the command to be ignored and the
NOTPERF_CMD flag to rise (see Section 9.1.22 on page 55).
Table 14. ADC_OUT value and motor supply voltage compensation feature
46/73
ADC_OUT
Compensation
coefficient
VS
VADCIN/VREG
Greater than VS,nom + 50%
> 24/32
1
1
X
X
X
0.65625
VS,nom + 50%
24/32
1
1
0
0
0
0.65625
…
1
…
…
0
…
…
0
…
…
0
…
…
0
…
…
1
…
…
16/32
…
VS,nom
…
…
[4 … 0]
VS,nom – 50%
8/32
0
1
0
0
0
1.968875
Lower than VS,nom – 50%
< 8/32
0
0
X
X
X
1.968875
DocID16737 Rev 6
L6470
9.1.17
Programming manual
OCD_TH
The OCD_TH register contains the overcurrent threshold value (see Section 6.9 on page
29). The available range is from 375 mA to 6 A, in steps of 375 mA, as shown in Table 15.
Table 15. Overcurrent detection threshold
OCD_TH [3 … 0]
9.1.18
Overcurrent detection threshold
0
0
0
0
375 mA
0
0
0
1
750 mA
…
…
…
…
…
1
1
1
0
5.625 A
1
1
1
1
6A
STALL_TH
The STALL_TH register contains the stall detection threshold value (see Section 7.2 on
page 35). The available range is from 31.25 mA to 4 A with a resolution of 31.25 mA.
Table 16. Stall detection threshold
STALL_th [6 … 0]
9.1.19
Stall detection threshold
0
0
0
0
0
0
0
31.25 mA
0
0
0
0
0
0
1
62.5 mA
…
…
…
…
…
…
…
…
1
1
1
1
1
1
0
3.969 A
1
1
1
1
1
1
1
4A
STEP_MODE
The STEP_MODE register has the following structure:
Table 17. STEP_MODE register
Bit 7
SYNC_EN
Bit 6
Bit 5
Bit 4
SYNC_SEL
Bit 3
0(1)
Bit 2
Bit 1
Bit 0
STEP_SEL
1. When the register is written, this bit should be set to 0.
DocID16737 Rev 6
47/73
73
Programming manual
L6470
The STEP_SEL parameter selects one of eight possible stepping modes:
Table 18. Step mode selection
STEP_SEL[2 .… 0]
Step mode
0
0
0
Full-step
0
0
1
Half-step
0
1
0
1/4 microstep
0
1
1
1/8 microstep
1
0
0
1/16 microstep
1
0
1
1/32 microstep
1
1
0
1/64 microstep
1
1
1
1/128 microstep
Every time the step mode is changed, the electrical position (i.e. the point of microstepping
sinewave that is generated) is reset to the first microstep.
Warning:
Every time STEP_SEL is changed, the value in the ABS_POS
register loses meaning and should be reset.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22 on page 55).
When the SYNC_EN bit is set low, BUSY/SYNC output is forced low during command
execution, otherwise, when the SYNC_EN bit is set high, BUSY/SYNC output provides
a clock signal according to the SYNC_SEL parameter.
Table 19. SYNC output frequency
SYNC_SEL
STEP_SEL (fFS is the full-step frequency)
48/73
000
001
010
011
100
101
110
111
000
fFS /2
fFS /2
fFS /2
fFS /2
fFS /2
fFS /2
fFS /2
fFS /2
001
NA
fFS
fFS
fFS
fFS
fFS
fFS
fFS
010
NA
NA
2· fFS
2· fFS
2· fFS
2· fFS
2· fFS
2· fFS
011
NA
NA
NA
4· fFS
4· fFS
4· fFS
4· fFS
4· fFS
100
NA
NA
NA
NA
8· fFS
8· fFS
8· fFS
8· fFS
101
NA
NA
NA
NA
NA
16· fFS
16· fFS
16· fFS
110
NA
NA
NA
NA
NA
NA
32· fFS
32· fFS
111
NA
NA
NA
NA
NA
NA
NA
64· fFS
DocID16737 Rev 6
L6470
Programming manual
The synchronization signal is obtained starting from electrical position information (EL_POS
register) according to Table 20:
Table 20. SYNC signal source
SYNC_SEL[2 .… 0]
9.1.20
Source
0
0
0
EL_POS[7]
0
0
1
EL_POS[6]
0
1
0
EL_POS[5]
0
1
1
EL_POS[4]
1
0
0
EL_POS[3]
1
0
1
EL_POS[2]
1
1
0
EL_POS[1]
1
1
1
EL_POS[0]
ALARM_EN
The ALARM_EN register allows the selection of which alarm signals are used to generate
the FLAG output. If the respective bit of the ALARM_EN register is set high, the alarm
condition forces the FLAG pin output down.
Table 21. ALARM_EN register
9.1.21
ALARM_EN bit
Alarm condition
0 (LSB)
Overcurrent
1
Thermal shutdown
2
Thermal warning
3
Undervoltage
4
Stall detection (Bridge A)
5
Stall detection (Bridge B)
6
Switch turn-on event
7 (MSB)
Wrong or non-performable command
CONFIG
The CONFIG register has the following structure:
Table 22. CONFIG register
Bit 15
Bit 14
Bit 13
Bit 12
F_PWM_INT
Bit 7
OC_SD
Bit 6
Bit 11
Bit 10
F_PWM_DEC
Bit 5
Bit 4
Bit 3
RESERVED EN_VSCOMP SW_MODE EXT_CLK
DocID16737 Rev 6
Bit 9
Bit 8
POW_SR
Bit 2
Bit 1
Bit 0
OSC_SEL
49/73
73
Programming manual
L6470
The OSC_SEL and EXT_CLK bits set the system clock source:
Table 23. Oscillator management
EXT_CLK
OSC_SEL[2 .… 0]
Clock source
OSCIN
OSCOUT
Internal oscillator: 16 MHz
Unused
Unused
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1
0
0
0
Internal oscillator: 16 MHz
Unused
Supplies a 2-MHz
clock
1
0
0
1
Internal oscillator: 16 MHz
Unused
Supplies a 4-MHz
clock
1
0
1
0
Internal oscillator: 16 MHz
Unused
Supplies an 8-MHz
clock
1
0
1
1
Internal oscillator: 16 MHz
Unused
Supplies a 16-MHz
clock
0
1
0
0
External crystal or resonator:
8 MHz
Crystal/resonator
driving
Crystal/resonator
driving
0
1
0
1
External crystal or resonator:
16 MHz
Crystal/resonator
driving
Crystal/resonator
driving
0
1
1
0
External crystal or resonator:
24 MHz
Crystal/resonator
driving
Crystal/resonator
driving
0
1
1
1
External crystal or resonator:
32 MHz
Crystal/resonator
driving
Crystal/resonator
driving
1
1
0
0
Ext clock source: 8 MHz
(Crystal/resonator driver
disabled)
Clock source
Supplies inverted
OSCIN signal
1
1
0
1
Ext clock source: 16 MHz
(Crystal/resonator driver
disabled)
Clock source
Supplies inverted
OSCIN signal
1
1
1
0
Ext clock source: 24 MHz
(Crystal/resonator driver
disabled)
Clock source
Supplies inverted
OSCIN signal
1
1
1
1
Ext clock source: 32 MHz
(Crystal/resonator driver
disabled)
Clock source
Supplies inverted
OSCIN signal
50/73
DocID16737 Rev 6
L6470
Programming manual
The SW_MODE bit sets the external switch to act as HardStop interrupt or not:
Table 24. External switch hard stop interrupt mode
SW_MODE
Switch mode
0
HardStop interrupt
1
User disposal
The OC_SD bit sets whether an overcurrent event causes or not the bridges to turn off; the
OCD flag in the STATUS register is forced low anyway:
Table 25. Overcurrent event
OC_SD
Overcurrent event
1
Bridges shut down
0
Bridges do not shut down
The POW_SR bits set the slew rate value of power bridge output:
Table 26. Programmable power bridge output slew rate values
POW_SR
Output slew rate(1)
[1 .… 0]
[V/µs]
0
0
320
0
1
75
1
0
110
1
1
260
1. See SRout_r and SRout_f parameters in Table 5 on page 11 for details.
The EN_VSCOMP bit sets whether the motor supply voltage compensation is enabled or
not.
Table 27. Motor supply voltage compensation enable
EN_VSCOMP
Motor supply voltage compensation
0
Disabled
1
Enabled
DocID16737 Rev 6
51/73
73
Programming manual
L6470
The F_PWM_INT bits set the integer division factor of PWM frequency generation.
Table 28. PWM frequency: integer division factor
F_PWM_INT
[2 .… 0]
Integer division factor
0
0
0
1
0
0
1
2
0
1
0
3
0
1
1
4
1
0
0
5
1
0
1
6
1
1
0
7
1
1
1
The F_PWM_DEC bits set the multiplication factor of PWM frequency generation.
Table 29. PWM frequency: multiplication factor
F_PWM_DEC [2 .… 0]
52/73
Multiplication factor
0
0
0
0.625
0
0
1
0.75
0
1
0
0.875
0
1
1
1
1
0
0
1.25
1
0
1
1.5
1
1
0
1.75
1
1
1
2
DocID16737 Rev 6
L6470
Programming manual
In the following tables all available PWM frequencies are listed according to oscillator
frequency, F_PWM_INT and F_PWM_DEC values (CONFIG register OSC_SEL parameter
must be correctly programmed).
Table 30. Available PWM frequencies [kHz]: 8-MHz oscillator frequency
F_PWM_DEC
F_PWM_INT
000
001
010
011
100
101
110
111
000
9.8
11.7
13.7
15.6
19.5
23.4
27.3
31.3
001
4.9
5.9
6.8
7.8
9.8
11.7
13.7
15.6
010
3.3
3.9
4.6
5.2
6.5
7.8
9.1
10.4
011
2.4
2.9
3.4
3.9
4.9
5.9
6.8
7.8
100
2.0
2.3
2.7
3.1
3.9
4.7
5.5
6.3
101
1.6
2.0
2.3
2.6
3.3
3.9
4.6
5.2
110
1.4
1.7
2.0
2.2
2.8
3.3
3.9
4.5
Table 31. Available PWM frequencies [kHz]: 16-MHz oscillator frequency
F_PWM_DEC
F_PWM_INT
000
001
010
011
100
101
110
111
000
19.5
23.4
27.3
31.3
39.1
46.9
54.7
62.5
001
9.8
11.7
13.7
15.6
19.5
23.4
27.3
31.3
010
6.5
7.8
9.1
10.4
13.0
15.6
18.2
20.8
011
4.9
5.9
6.8
7.8
9.8
11.7
13.7
15.6
100
3.9
4.7
5.5
6.3
7.8
9.4
10.9
12.5
101
3.3
3.9
4.6
5.2
6.5
7.8
9.1
10.4
110
2.8
3.3
3.9
4.5
5.6
6.7
7.8
8.9
DocID16737 Rev 6
53/73
73
Programming manual
L6470
Table 32. Available PWM frequencies [kHz]: 24-MHz oscillator frequency
F_PWM_DEC
F_PWM_INT
000
001
010
011
100
101
110
111
000
29.3
35.2
41.0
46.9
58.6
70.3
82.0
93.8
001
14.6
17.6
20.5
23.4
29.3
35.2
41.0
46.9
010
9.8
11.7
13.7
15.6
19.5
23.4
27.3
31.3
011
7.3
8.8
10.3
11.7
14.6
17.6
20.5
23.4
100
5.9
7.0
8.2
9.4
11.7
14.1
16.4
18.8
101
4.9
5.9
6.8
7.8
9.8
11.7
13.7
15.6
110
4.2
5.0
5.9
6.7
8.4
10.0
11.7
13.4
Table 33. Available PWM frequencies [kHz]: 32-MHz oscillator frequency
F_PWM_DEC
F_PWM_INT
000
001
010
011
100
101
110
111
000
39.1
46.9
54.7
62.5
78.1
93.8
109.4
125.0
001
19.5
23.4
27.3
31.3
39.1
46.9
54.7
62.5
010
13.0
15.6
18.2
20.8
26.0
31.3
36.5
41.7
011
9.8
11.7
13.7
15.6
19.5
23.4
27.3
31.3
100
7.8
9.4
10.9
12.5
15.6
18.8
21.9
25.0
101
6.5
7.8
9.1
10.4
13.0
15.6
18.2
20.8
110
5.6
6.7
7.8
8.9
11.2
13.4
15.6
17.9
Any attempt to write the CONFIG register when the motor is running causes the command
to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22).
54/73
DocID16737 Rev 6
L6470
Programming manual
9.1.22
STATUS
Table 34. STATUS register
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
SCK_MOD
STEP_LOSS_B
STEP_LOSS_A
OCD
TH_SD
TH_WRN
UVLO
WRONG_CMD
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
DIR
SW_EVN
SW_F
BUSY
HiZ
NOTPERF_CMD
MOT_STATUS
When the HiZ flag is high, it indicates that the bridges are in high impedance state. Any
motion command makes the device exit from High Z state (HardStop and SoftStop
included), unless error flags forcing a High Z state are active.
The UVLO flag is active low and is set by an undervoltage lockout or reset events (power-up
included).
The TH_WRN, TH_SD, OCD flags are active low and indicate, respectively, thermal
warning, thermal shutdown and overcurrent detection events.
STEP_LOSS_A and STEP_LOSS_B flags are forced low when a stall is detected on bridge
A or bridge B respectively.
The NOTPERF_CMD and WRONG_CMD flags are active high and indicate, respectively,
that the command received by SPI cannot be performed or does not exist at all.
The SW_F flag reports the SW input status (low for open and high for closed).
The SW_EVN flag is active high and indicates a switch turn-on event (SW input falling
edge).
The UVLO, TH_WRN, TH_SD, OCD, STEP_LOSS_A, STEP_LOSS_B, NOTPERF_CMD,
WRONG_CMD and SW_EVN flags are latched: when the respective conditions make them
active (low or high), they remain in that state until a GetStatus command is sent to the IC.
The BUSY bit reflects the BUSY pin status. The BUSY flag is low when a constant speed,
positioning or motion command is under execution and is released (high) after the
command has been completed.
The SCK_MOD bit is an active high flag indicating that the device is working in Step-clock
mode. In this case the step-clock signal should be provided through the STCK input pin. The
DIR bit indicates the current motor direction:
Table 35. STATUS register DIR bit
DIR
Motor direction
1
Forward
0
Reverse
DocID16737 Rev 6
55/73
73
Programming manual
L6470
MOT_STATUS indicates the current motor status:
Table 36. STATUS register MOT_STATUS bits
MOT_STATUS
Motor status
0
0
Stopped
0
1
Acceleration
1
0
Deceleration
1
1
Constant speed
Any attempt to write to the register causes the command to be ignored and the
NOTPERF_CMD flag to rise.
9.2
Application commands
The command summary is given in Table 37.
Table 37. Application commands
Command binary code
Command mnemonic
Action
[7 .… 5] [4]
[2 .… 1]
[0]
0
00
0
NOP
000
SetParam(PARAM,VALUE)
000
[PARAM]
Writes VALUE in PARAM register
GetParam(PARAM)
001
[PARAM]
Returns the stored value in PARAM register
Run(DIR,SPD)
010
1
0
00
DIR Sets the target speed and the motor direction
StepClock(DIR)
010
1
1
00
DIR
Puts the device into Step-clock mode and
imposes DIR direction
Move(DIR,N_STEP)
010
0
0
00
DIR
Makes N_STEP (micro)steps in DIR direction
(Not performable when motor is running)
GoTo(ABS_POS)
011
0
0
00
0
Brings motor into ABS_POS position (minimum
path)
GoTo_DIR(DIR,ABS_POS)
011
0
1
00
DIR
Brings motor into ABS_POS position forcing DIR
direction
GoUntil(ACT,DIR,SPD)
100
0 ACT
01
Performs a motion in DIR direction with speed
DIR SPD until SW is closed, the ACT action is
executed then a SoftStop takes place.
ReleseSW(ACT, DIR)
100
1 ACT
01
Performs a motion in DIR direction at minimum
DIR speed until the SW is released (open), the ACT
action is executed then a HardStop takes place.
GoHome
011
1
0
00
0
Brings the motor into HOME position
GoMark
011
1
1
00
0
Brings the motor into MARK position
ResetPos
110
1
1
00
0
Resets the ABS_POS register (set HOME
position)
56/73
0
[3]
Nothing
DocID16737 Rev 6
L6470
Programming manual
Table 37. Application commands (continued)
Command binary code
Command mnemonic
Action
[7 .… 5] [4]
[3]
[2 .… 1]
[0]
ResetDevice
110
0
0
00
0
Device is reset to power-up conditions.
SoftStop
101
1
0
00
0
Stops motor with a deceleration phase
HardStop
101
1
1
00
0
Stops motor immediately
SoftHiZ
101
0
0
00
0
Puts the bridges into high impedance status
after a deceleration phase
HardHiZ
101
0
1
00
0
Puts the bridges into high impedance status
immediately
GetStatus
110
1
0
00
0
Returns the STATUS register value
RESERVED
111
0
1
01
1
RESERVED COMMAND
RESERVED
111
1
1
00
0
RESERVED COMMAND
DocID16737 Rev 6
57/73
73
Programming manual
9.2.1
L6470
Command management
The host microcontroller can control motor motion and configure the L6470 device through
a complete set of commands.
All commands are composed by a single byte. After the command byte, some bytes of
arguments should be needed (see Figure 19). Argument length can vary from 1 to 3 bytes.
Figure 19. Command with 3-byte argument
6',
IURPKRVW
&RPPDQGE\WH
$UJXPHQWE\WH
06%
$UJXPHQWE\WH
$UJXPHQWE\WH
/6%
[
[
[
[
6'2
WRKRVW
By default, the device returns an all zero response for any received byte, the only
exceptions are the GetParam and GetStatus commands. When one of these commands is
received, the following response bytes represent the related register value (see Figure 20).
Response length can vary from 1 to 3 bytes.
Figure 20. Command with 3-byte response
6',
IURPKRVW
&RPPDQGE\WH
123
123
123
[
5HVSRQVHE\WH
06%
5HVSRQVHE\WH
5HVSRQVHE\WH
/6%
6'2
WRKRVW
During response transmission, new commands can be sent. If a command requiring
a response is sent before the previous response is completed, the response transmission is
aborted and the new response is loaded into the output communication buffer (see
Figure 21).
Figure 21. Command response aborted
6',
IURPKRVW
6'2
WRKRVW
&RPPDQG
E\WHUHVSH[SHFWHG
&RPPDQG
QRUHVSH[SHFWHG
&RPPDQG
E\WHUHVSH[SHFWHG
&RPPDQG
QRUHVSH[SHFWHG
&RPPDQG
QRUHVSH[SHFWHG
[
5HVSRQVHE\WH
06%
5HVSRQVHE\WH
5HVSRQVHE\WH
06%
5HVSRQVHE\WH
/6%
&RPPDQGUHVSRQVH
LVDERUWHG
When a byte that does not correspond to a command is sent to the IC, it is ignored and the
WRONG_CMD flag in the STATUS register is raised (see Section 9.1.22).
9.2.2
Nop
Table 38. Nop command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Nothing is performed.
58/73
DocID16737 Rev 6
From host
L6470
9.2.3
Programming manual
SetParam (PARAM, VALUE)
Table 39. SetParam command structure
Bit 7
Bit 6
Bit 5
0
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PARAM
VALUE Byte 2 (if needed)
From host
VALUE Byte 1 (if needed)
VALUE Byte 0
The SetParam command sets the PARAM register value equal to VALUE; PARAM is the
respective register address listed in Table 12 on page 44.
The command should be followed by the new register VALUE (most significant byte first).
The number of bytes making up the VALUE argument depends on the length of the target
register (see Table 12).
Some registers cannot be written (see Table 12); any attempt to write one of those registers
causes the command to be ignored and the WRONG_CMD flag to rise at the end of the
command byte as if an unknown command code were sent (see Section 9.1.22 on page
55).
Some registers can only be written in particular conditions (see Table 12); any attempt to
write one of those registers when the conditions are not satisfied causes the command to be
ignored and the NOTPERF_CMD flag to rise at the end of the last argument byte (see
Section 9.1.22).
Any attempt to set an inexistent register (wrong address value) causes the command to be
ignored and the WRONG_CMD flag to rise at the end of the command byte as if an
unknown command code were sent.
9.2.4
GetParam (PARAM)
Table 40. GetParam command structure
Bit 7
Bit 6
Bit 5
0
0
1
Bit 4
Bit 3
Bit 2
PARAM
Bit 1
Bit 0
From host
ANS Byte 2 (if needed)
To host
ANS Byte 1 (if needed)
To host
ANS Byte 0
To host
This command reads the current PARAM register value; PARAM is the respective register
address listed in Table 12.
The command response is the current value of the register (most significant byte first). The
number of bytes making up the command response depends on the length of the target
register (see Table 12).
The returned value is the register one at the moment of GetParam command decoding. If
register values change after this moment, the response is not accordingly updated.
All registers can be read anytime.
DocID16737 Rev 6
59/73
73
Programming manual
L6470
Any attempt to read an inexistent register (wrong address value) causes the command to be
ignored and the WRONG_CMD flag to rise at the end of the command byte as if an
unknown command code were sent.
9.2.5
Run (DIR, SPD)
Table 41. Run command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
0
1
0
0
0
DIR
X
X
X
X
SPD (Byte 2)
From host
From host
SPD (Byte 1)
From host
SPD (Byte 0)
From host
The Run command produces a motion at SPD speed; the direction is selected by the DIR
bit: '1' forward or '0' reverse. The SPD value is expressed in step/tick (format unsigned fixed
point 0.28) that is the same format as the SPEED register (see Section 9.1.4 on page 42).
Note:
The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED
otherwise the Run command is executed at MAX_SPEED or MIN_SPEED respectively.
This command keeps the BUSY flag low until the target speed is reached.
This command can be given anytime and is immediately executed.
9.2.6
StepClock (DIR)
Table 42. Stepclock command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
0
1
1
0
0
DIR
From host
The StepClock command switches the device in Step-clock mode (see Section 6.7.5 on
page 26) and imposes the forward (DIR = '1') or reverse (DIR = '0') direction.
When the device is in Step-clock mode, the SCK_MOD flag in the STATUS register is raised
and the motor is always considered stopped (see Section 6.7.5 and Section 9.1.22 on page
55).
The device exits from Step-clock mode when a constant speed, absolute positioning or
motion command is sent through SPI. Motion direction is imposed by the respective
StepClock command argument and can by changed by a new StepClock command without
exiting Step-clock mode.
Events that cause bridges to be forced into high impedance state (overtemperature,
overcurrent, etc.) do not cause the device to leave Step-clock mode.
The StepClock command does not force the BUSY flag low. This command can only be
given when the motor is stopped. If a motion is in progress, the motor should be stopped
and it is then possible to send a StepClock command.
Any attempt to perform a StepClock command when the motor is running causes the
command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22).
60/73
DocID16737 Rev 6
L6470
9.2.7
Programming manual
Move (DIR, N_STEP)
Table 43. Move command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
0
0
0
0
0
DIR
X
X
N_STEP (Byte 2)
From host
From host
N_STEP (Byte 1)
From host
N_STEP (Byte 0)
From host
The Move command produces a motion of N_STEP microsteps; the direction is selected by
the DIR bit ('1' forward or '0' reverse).
The N_STEP value is always in agreement with the selected step mode; the parameter
value unit is equal to the selected step mode (full, half, quarter, etc.).
This command keeps the BUSY flag low until the target number of steps is performed. This
command can only be performed when the motor is stopped. If a motion is in progress, the
motor must be stopped and it is then possible to perform a Move command.
Any attempt to perform a Move command when the motor is running causes the command
to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.22 on page 55).
9.2.8
GoTo (ABS_POS)
Table 44. GoTo command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
0
0
0
0
0
X
X
ABS_POS (Byte 2)
From host
From host
ABS_POS (Byte 1)
From host
ABS_POS (Byte 0)
From host
The GoTo command produces a motion to ABS_POS absolute position through the shortest
path. The ABS_POS value is always in agreement with the selected step mode; the
parameter value unit is equal to the selected step mode (full, half, quarter, etc.).
The GoTo command keeps the BUSY flag low until the target position is reached.
This command can be given only when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoTo command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (see
Section 9.1.22).
DocID16737 Rev 6
61/73
73
Programming manual
9.2.9
L6470
GoTo_DIR (DIR, ABS_POS)
Table 45. GoTo_DIR command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
0
1
0
0
DIR
X
X
ABS_POS (Byte 2)
From host
From host
ABS_POS (Byte 1)
From host
ABS_POS (Byte 0)
From host
The GoTo_DIR command produces a motion to ABS_POS absolute position imposing
a forward (DIR = '1') or a reverse (DIR = '0') rotation. The ABS_POS value is always in
agreement with the selected step mode; the parameter value unit is equal to the selected
step mode (full, half, quarter, etc.).
The GoTo_DIR command keeps the BUSY flag low until the target speed is reached. This
command can be given only when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoTo_DIR command when a previous command is under
execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to
rise (see Section 9.1.22 on page 55).
9.2.10
GoUntil (ACT, DIR, SPD)
Table 46. GoUntil command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
0
0
ACT
0
1
DIR
X
X
X
X
SPD (Byte 2)
From host
From host
SPD (Byte 1)
From host
SPD (Byte 0)
From host
The GoUntil command produces a motion at SPD speed imposing a forward (DIR = '1') or
a reverse (DIR = '0') direction. When an external switch turn-on event occurs (see
Section 6.13 on page 31), the ABS_POS register is reset (if ACT = '0') or the ABS_POS
register value is copied into the MARK register (if ACT = '1'); then the system performs a
SoftStop command.
The SPD value is expressed in step/tick (format unsigned fixed point 0.28) that is the same
format as the SPEED register (see Section 9.1.4 on page 42).
The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED,
otherwise the target speed is imposed at MAX_SPEED or MIN_SPEED respectively.
If the SW_MODE bit of the CONFIG register is set low, the external switch turn-on event
causes a HardStop interrupt instead of the SoftStop one (see Section 6.13 and
Section 9.1.21 on page 49).
This command keeps the BUSY flag low until the switch turn-on event occurs and the motor
is stopped. This command can be given anytime and is immediately executed.
62/73
DocID16737 Rev 6
L6470
9.2.11
Programming manual
ReleaseSW (ACT, DIR)
Table 47. ReleaseSW command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
0
1
ACT
0
1
DIR
From host
The ReleaseSW command produces a motion at minimum speed imposing a forward
(DIR = '1') or reverse (DIR = '0') rotation. When SW is released (opened), the ABS_POS
register is reset (ACT = '0') or the ABS_POS register value is copied into the MARK register
(ACT = '1'); the system then performs a HardStop command.
Note that resetting the ABS_POS register is equivalent to setting the HOME position.
If the minimum speed value is less than 5 step/s or low speed optimization is enabled, the
motion is performed at 5 step/s.
The ReleaseSW command keeps the BUSY flag low until the switch input is released and
the motor is stopped.
9.2.12
GoHome
Table 48. GoHome command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
1
0
0
0
0
From host
The GoHome command produces a motion to the HOME position (zero position) via the
shortest path.
Note that this command is equivalent to the “GoTo(0…0)” command. If a motor direction is
mandatory, the GoTo_DIR command must be used (see Section 9.2.9).
The GoHome command keeps the BUSY flag low until the home position is reached. This
command can be given only when the previous motion command has been completed. Any
attempt to perform a GoHome command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD to rise (see
Section 9.1.22 on page 55).
9.2.13
GoMark
Table 49. GoMark command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
1
1
0
0
0
From host
The GoMark command produces a motion to the MARK position performing the minimum
path.
Note that this command is equivalent to the “GoTo (MARK)” command. If a motor direction
is mandatory, the GoTo_DIR command must be used.
DocID16737 Rev 6
63/73
73
Programming manual
L6470
The GoMark command keeps the BUSY flag low until the MARK position is reached. This
command can be given only when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoMark command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (see
Section 9.1.22 on page 55).
9.2.14
ResetPos
Table 50. ResetPos command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
0
1
1
0
0
0
From host
The ResetPos command resets the ABS_POS register to zero. The zero position is also
defined as HOME position (see Section 6.5 on page 23).
9.2.15
ResetDevice
Table 51. ResetDevice command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
0
0
0
0
0
0
From host
The ResetDevice command resets the device to power-up conditions (see Section 6.1 on
page 21).
Note:
At power-up the power bridges are disabled.
9.2.16
SoftStop
Table 52. SoftStop command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
1
0
0
0
0
From host
The SoftStop command causes an immediate deceleration to zero speed and a consequent
motor stop; the deceleration value used is the one stored in the DEC register (see
Section 9.1.6 on page 43).
When the motor is in high impedance state, a SoftStop command forces the bridges to exit
from high impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
64/73
DocID16737 Rev 6
L6470
9.2.17
Programming manual
HardStop
Table 53. HardStop command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
1
1
0
0
0
From host
The HardStop command causes an immediate motor stop with infinite deceleration.
When the motor is in high impedance state, a HardStop command forces the bridges to exit
from high impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
9.2.18
SoftHiZ
Table 54. SoftHiZ command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
0
0
0
0
0
From host
The SoftHiZ command disables the power bridges (high impedance state) after a
deceleration to zero; the deceleration value used is the one stored in the DEC register
(see Section 9.1.6 on page 43). When bridges are disabled, the HiZ flag is raised.
When the motor is stopped, a SoftHiZ command forces the bridges to enter into high
impedance state.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
9.2.19
HardHiZ
Table 55. HardHiZ command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
0
1
0
0
0
From host
The HardHiZ command immediately disables the power bridges (high impedance state) and
raises the HiZ flag.
When the motor is stopped, a HardHiZ command forces the bridges to enter into high
impedance state.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
DocID16737 Rev 6
65/73
73
Programming manual
9.2.20
L6470
GetStatus
Table 56. GetStatus command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
0
1
0
0
0
0
From host
STATUS MSByte
To host
STATUS LSByte
To host
The GetStatus command returns the STATUS register value.
The GetStatus command resets the STATUS register warning flags. The command forces
the system to exit from any error state. The GetStatus command DOES NOT reset the HiZ
flag.
66/73
DocID16737 Rev 6
L6470
10
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
DocID16737 Rev 6
67/73
73
Package information
L6470
Figure 22. HTSSOP28 package outline
$0Y
68/73
DocID16737 Rev 6
L6470
Package information
Table 57. HTSSOP28 package mechanical data
Dimensions (mm)
Symbol
Min.
Typ.
Max.
A
1.2
A1
0.15
A2
0.8
b
0.19
0.3
c
0.09
0.2
(1)
D
9.6
D1
E
(2)
E1
1.0
9.7
6.2
6.4
6.6
4.3
4.4
4.5
2.8
e
0.65
0.45
L1
K
9.8
5.5
E2
L
1.05
0.6
0.75
1.0
0°
aaa
8°
0.1
1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
must not exceed 0.15 mm per side.
2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions must not
exceed 0.25 mm per side.
DocID16737 Rev 6
69/73
73
Package information
L6470
Figure 23. POWERSO36 package outline
1
1
D
H
$
'(7$,/$
$
F
D
'(7$,/%
(
H
+
'(7$,/$
OHDG
'
VOXJ
D
%277209,(:
(
%
(
(
'
'(7$,/%
*DJH3ODQH
&
6
K[Û
E
/
6($7,1*3/$1(
*
0
$%
3620(&
&
&23/$1$5,7<
70/73
DocID16737 Rev 6
L6470
Package information
Table 58. POWERSO36 package mechanical data
Dimensions (mm)
Symbol
Min.
Typ.
A
a1
Max.
3.60
0.10
0.30
a2
3.30
a3
0
0.10
b
0.22
0.38
c
0.23
0.32
D(1)
15.80
16.00
D1
9.40
9.80
E
13.90
14.50
10.90
11.10
(1)
E1
E2
E3
2.90
5.8
6.2
e
0.65
e3
11.05
G
0
0.10
H
15.50
15.90
h
L
1.10
0.80
N
S
1.10
10°
0°
8°
1. Dimension “D/E1” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate
burrs must not exceed 0.15 mm per side.
DocID16737 Rev 6
71/73
73
Revision history
11
L6470
Revision history
Table 59. Revision history
Date
Revision
06-Nov-2009
1
Initial release
05-Nov-2010
2
Document status promoted from preliminary data to datasheet
18-May-2011
3
Updated: Table 4, Table 5
Added: Section 6.7.6, Section
4
Added device in POWERSO36 and Figure 3
Updated: Table 2, Table 3, Table 4, Table 5, Table 6, Table 9 and
Section 9.1.11.
Minor text changes.
5
Changed the title.
Changed TOP value in Table 2
Removed Tj value in Table 3.
Updated HTSSOP28 mechanical data.
6
Updated Figure 3 on page 16 (replaced “DIR” pin by “SW” pin).
Updated Section 6.4 on page 22 (replaced “the first microstep” by
“zero”).
Removed Section “Infinite acceleration/deceleration mode” from
page 23.
Updated Section 9.1.5 on page 42 (replaced “When the ACC value is
set to 0xFFF, the device works in infinite acceleration mode.” by “The
0xFFF value of the register is reserved and it should never be
used.”).
Updated Section 9.1.6 on page 43 (removed “When the device is
working in infinite acceleration mode, this value is ignored.”).
Updated title of Table 36 on page 56 (replaced “MOT_STATE” by
“MOT_STATUS”).
Updated Section 10: Package information on page 67 (updated
titles, reversed order of Figure 22 and Table 57, Figure 23 and
Table 58, added note 1 below Table 58).
Updated cross-references throughout document.
Minor modifications throughout document.
19-Jun-2012
20-Dec-2012
19-May-2014
72/73
Changes
DocID16737 Rev 6
L6470
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
DocID16737 Rev 6
73/73
73