AS5132 3 6 0 S t e p ( 8 . 5 b i t ) P r o g r a m m a b l e H ig h S p e e d M a g n e t i c R o t a r y E n c o d e r 1 General Description Two digital absolute outputs (8.5 bit): - Serial interface - PWM output The AS5132 is a contactless magnetic rotary encoder for accurate angular measurement over a full turn of 360 degrees. It is a systemon-chip, combining integrated Hall elements, analog frontend and digital signal processing in a single device. Incremental output with adjustable number of pulses BLDC Output UVW, selectable for 1,2,3,4,5,6 pole pairs To measure the angle, only a simple two-pole magnet, rotating over the center of the chip is required. Supports external PWM clock mode The absolute angle measurement provides instant indication of the magnet’s angular position with a resolution of 8.5 bit = 360 positions per revolution. This digital data is available as serial output over the interface and as a pulse width modulated (PWM) signal. User programmable zero position and sensitivity Static and dynamic pre-commutation feature High speed: up to 72,900 rpm Direct measurement of magnetic field strength allows exact determination of vertical magnet distance An additional U,V,W output can be used for a block commutation for a brushless DC motor. An incremental signal is available as an option. Incremental Outputs ABI Quadrature: 90ppr, step direction: 180ppr, fixed pulse width 360ppr In addition to the angle information, the strength of the magnetic field is also available as a 5-bit code. 9-bit multi turn counter Wide magnetic field input range: 20 – 80 mT (typical) A software programmable (OTP) zero position simplifies assembly as the zero position. The magnet does not need to be mechanically aligned. Wide temperature range: -40ºC to +150ºC Thin Small Pb-free package: SSOP 20 Fully automotive qualified to AEC-Q100, grade 0 2 Key Features 3 Applications 360º contactless angular position sensing The AS5132 is suitable for contactless rotary position sensing, rotary switches (human machine interface), AC/DC motor position control and Brushless DC motor position control. Figure 1. AS5132 Block Diagram Test(3:0) VDD5V COM/INC Step Mode AS5132 Commutation Interface Pre-Commutation DIR VDDP Tracking ADC & Angle Decoder PWM Decoder Zero Adder Angle Mag TC Hall Array & Frontend Amplifier AGC Absolute Serial Interface (SSI) Diagnostic OTP S U_A V_B W_I PWM DIO CSN CLK Diag PROG GND www.ams.com Revision 1.4 1 - 27 AS5132 Datasheet - C o n t e n t s Contents 1 General Description .................................................................................................................................................................. 1 2 Key Features............................................................................................................................................................................. 1 3 Applications............................................................................................................................................................................... 1 4 Pin Assignments ....................................................................................................................................................................... 3 4.1 Pin Descriptions.................................................................................................................................................................................... 3 5 Absolute Maximum Ratings ...................................................................................................................................................... 4 6 Electrical Characteristics........................................................................................................................................................... 5 6.1 Operating Conditions............................................................................................................................................................................ 5 6.2 System Parameters .............................................................................................................................................................................. 5 6.3 Magnet Specifications .......................................................................................................................................................................... 5 6.4 Programming Parameters .................................................................................................................................................................... 5 6.5 DC Characteristics of Digital Inputs...................................................................................................................................................... 6 6.6 DC Characteristics of Digital Outputs ................................................................................................................................................... 6 6.7 Timing Characteristics .......................................................................................................................................................................... 6 7 Detailed Description.................................................................................................................................................................. 7 7.1 Synchronous Serial Interface (SSI) ...................................................................................................................................................... 7 7.1.1 Commands of the SSI in Normal Mode ....................................................................................................................................... 9 7.1.2 Extended Synchronous Serial Interface Mode .......................................................................................................................... 10 7.1.3 Programming Verification .......................................................................................................................................................... 13 7.2 Pulse Width Modulation (PWM) Output.............................................................................................................................................. 14 7.2.1 PWM External Clock.................................................................................................................................................................. 15 7.3 Incremental Outputs ........................................................................................................................................................................... 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7 7.3.8 7.3.9 Quadrature A/B Output .............................................................................................................................................................. Step Output Mode...................................................................................................................................................................... Pre-Commutation Function........................................................................................................................................................ Commutation Output UVW ........................................................................................................................................................ Hysteresis of the Incremental Outputs....................................................................................................................................... Multi Turn Counter ..................................................................................................................................................................... High Speed Operation ............................................................................................................................................................... Propagation Delay ..................................................................................................................................................................... Error Detection........................................................................................................................................................................... 8 Application Information ........................................................................................................................................................... 21 8.1 Physical Placement of the Magnet ..................................................................................................................................................... 9 Package Drawings and Markings ........................................................................................................................................... www.ams.com Revision 1.4 21 23 9.1 Recommended PCB Footprint............................................................................................................................................................ 10 Ordering Information............................................................................................................................................................. 16 16 17 17 18 19 20 20 20 20 24 26 2 - 27 AS5132 Datasheet - P i n A s s i g n m e n t s 4 Pin Assignments Figure 2. Pin Assignments (Top View) VDDP 1 20 PWM S 2 19 Diag 3 18 DIR 4 17 CLK PROG 5 16 CSN VSS 6 15 DIO U_A 7 14 Test3 VDD 8 13 Test2 COM/INC 9 12 Test1 10 11 Test0 TC AS5132 W_I V_B 4.1 Pin Descriptions Table 1. Pin Descriptions Pin Number Pin Name Pin Type Description 1 VDDP Supply 2 S 3 W_I 4 V_B 5 PROG 6 VSS 7 U_A Digital output 8 VDD Supply 9 COM / INC Digital input / Schmitt-Trigger 10 TC Analog input 11 Test0 12 Test1 13 Test2 14 Test3 15 DIO 16 CSN 17 CLK 18 DIR 19 Diag Digital output / Open Drain 20 PWM Digital output 1 Supply voltage for the selected pins Step output (8mA, VDDP) Digital output Commutation output or incremental output Programming voltage input Supply Supply ground Commutation output or incremental output Positive supply voltage Selection of the output mode. This pin is also used for external clock mode (VDDP) Test pin. Set to low in application Analog input /output Test pin, selection of output format for incremental or step mode Bi-directional digital Data I/O for serial interface (VDDP) Chip select input (active low) (VDDP) Digital input / Schmitt-Trigger Clock input for serial interface (VDDP) Input signal for the pre-commutation at start-up (VDDP) Diagnostic output (open drain) PWM output (8mA, VDDP) 1. VDDP can be customized to the voltage levels of the peripheral circuitry to economize voltage level drivers. www.ams.com Revision 1.4 3 - 27 AS5132 Datasheet - A b s o l u t e M a x i m u m R a t i n g s 5 Absolute Maximum Ratings Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 5 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 2. Absolute Maximum Ratings Parameter Min Max Units Comments Electrical Parameters Supply voltage (VDD) -0.3 7 V Except during OTP programming DC supply voltage (VDDP) 0.3 7 V Cannot be higher than VDD+0.3 Input Pin Voltage (VIN) VSS-0.5 VDD V Input Current (latch up immunity), (Iscr) -100 100 mA Norm: EIA/JESD78 Class II Level A ±2 kV Norm: JESD22-A114E 150 ºC Electrostatic Discharge ESD Temperature Ranges and Storage Conditions Storage Temperature (Tstrg) -55 Body temperature (Tbody) Humidity non-condensing Moisture Sensitive Level (MSL) www.ams.com 5 260 ºC 85 % 3 The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/ JEDEC J-STD-020 “Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices”. The lead finish for Pb-free leaded packages is matte tin (100% Sn). Represents a maximum floor time of 168h Revision 1.4 4 - 27 AS5132 Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s 6 Electrical Characteristics TAMB = -40ºC to 150ºC, VDD = 4.5V to 5.5V, all voltages referenced to VSS, unless otherwise noted. 6.1 Operating Conditions Symbol Parameter VDD Positive Supply Voltage VDDP Positive Supply Voltage Periphery IDD Operating Current Conditions Min Max Units 4.5 5.5 V 3.0 5.5 V 15 22 mA Typ Max Units No load on outputs. Supply current can be reduced by using stronger magnets. Typ 6.2 System Parameters Symbol Parameter Conditions Min N Resolution TPwrUp Power Up Time ts Tracking rate INLcm Accuracy tdelay Propagation delay Internal signal processing time 22 µs TN Transition noise peak-peak 1.41 Deg Max Units 80 mT 72,900 rpm Max Units 8.5 V 100 mA 0 85 ºC 2 4 µs 8.5 Bit 1 Deg Step rate of tracking ADC; 1 step = 1º ≤ 4100 µs 5.2 µs/step Centered Magnet -2 2 Within horizontal displacement radius -3 3 Deg 6.3 Magnet Specifications Symbol Parameter Conditions Min BZ Magnetic Input Range At die surface 20 Vi Magnet rotation speed To maintain locked state Typ 1 1. Maximum rotation speed is dependent on the internal time reference. Maximum value is calculated with lowest sequence over all operating conditions. 6.4 Programming Parameters Symbol Parameter Conditions Min VPROG Programming voltage Static voltage at pin PROG 8 IPROG Programming current TambPROG Programming ambient temperature tPROG Programming time VR,prog VR,unprog www.ams.com Analog readback voltage During programming During analog readback mode at pin PROG 0.5 2 Revision 1.4 Typ 3.5 V 5 - 27 AS5132 Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s 6.5 DC Characteristics of Digital Inputs CMOS Inputs COM/INC, CSN, CLK, DIO, DIR Symbol Parameter Min VIH High level input voltage VIL Low level input voltage ILEAK Input leakage current Typ Max Units 0.7*VDDP VDDP V 0 0.3*VDDP V 1 µA Note COM/INC refer to VDD 6.6 DC Characteristics of Digital Outputs CMOS Outputs S, U_A, V_B, W_I, PWM, DIO Symbol Parameter VOH High level output voltage VOL Low level output voltage CL Capacitive load Min Typ Max Units Note V PWM and S have 8mA output load, DIO has 4mA output load. VDDP-0.5 VDDP VDD-0.5 VDD 0 VSS+0.4 V 35 pF U_A, V_B, W_I have 4mA output load. PWM and S have 8mA output load, DIO, U_A, V_B, W_I has 4mA output load. 6.7 Timing Characteristics Symbol Parameter Conditions fCLK Clock Frequency Normal operation fCLKP Clock Frequency programming During OTP programming t1 Chip select to positive edge of CLK 15 ns t2 Setup time command bit, Data valid to positive edge of CLK 30 ns t3 Hold time command bit, Data valid after positive edge of CLK 30 ns t4 Float time, Last command bit to negative edge of CLK 30 ns t5 Transfer time, Negative edge to valid data 30 ns t6 Last CLK to positive edge CSN 30 ns tCLK Clock period 167 www.ams.com Revision 1.4 Min Typ Max Units 5 6 MHz 650 kHz 200 200 ns 6 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n 7 Detailed Description Figure 3. Typical Arrangement of AS5132 and Magnet 7.1 Synchronous Serial Interface (SSI) The absolute angle data can be read out over the synchronous serial interface using the pins CSN, DIO and CLK. It is a bidirectional interface therefore a read or write access is possible. The organization of the protocol is byte wise and starts with the command byte followed by the data information. Figure 4. Read / Write Serial Data Transmission +5V VDD VDD Micro Controller VDDP* Output CSN Output CLK I/O DIO VDD AS5132 100nF VSS VSS VSS * DIO output pin is connected internally to the VDDP voltage domain. VDD and VDDP can be separately connected too. Figure 4 shows the connection of the AS5132 to a micro controller. Depending on the command byte are different access types possible. In normal mode the number of clocks is equal the number of data bits. www.ams.com Revision 1.4 7 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 5. Data Organization of the SSI Protocol 16-Bit Data R/ W Data Command Byte MSB 7 6 5 4 3 2 LSB MSB 0 15 1 LSB 13 14 12 11 4 10 3 2 1 0 Figure 5 shows the organization of the data. The first section is used to setup the operating mode and the address. During write mode the micro controller drives the data line and generates in addition the CSN and CLK signal. Figure 6 shows this operation. Figure 6. SSI Timing in Write Mode data phase command phase CSN t CLK t6 1 CLK 2 3 CMD 6 CMD 5 9 8 7 10 11 24 23 t1 t2 t3 DIO CMD 7 CMD 0 D15 D14 D13 D1 D0 Figure 7. SSI Timing in Read Mode data phase command phase CSN t CLK CLK t6 1 2 3 7 9 8 t1 24 23 t5 t3 CMD 7 11 t4 t2 DIO 10 CMD 6 CMD 5 CMD 0 Z D15 D14 D13 D1 D0 Figure 7 shows the read mode. The first 8 command data bits are written by the microcontroller. After the command data the device takes over the DIO line and writes the data information. A high impedance phase must be considered before the device drives the output line. www.ams.com Revision 1.4 8 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n 7.1.1 Commands of the SSI in Normal Mode Table 3. Read/Write Interface Commands in Normal Mode Access MSB Mode 15 Command Name Command Data WRITE CONFIG 0001_0111 write SET MT COUNTER 0001_0100 write EN PROG 1000_0100 write RD MT COUNTER 0000_0100 read MT - COUNTER <8:0> EZ ERR RD_ANGLE 0000_0000 read ANGLE <8:0> LOCK ADC 14 13 12 11 GEN Hyst RST Dis 10 9 8 7 PRE_COM_DYN<5:0> 6 5 4 3 2 1 LSB 0 1 0 0 0 0 MTC2 MTC1 MT - COUNTER <8:0> 0 1 1 0 0 1 0 1 0 1 1 P AGC <5:1> P Note: Gray bits can be ignored by the user. GEN RST: A HI generates a reset of the AS5132. GEN RST must be set to LO after reset. Hyst_Dis: Hysteresis disable. PRE_COM_DYN <5:0>: Absolute dynamic pre-commutation value. Depending on the setup of the pole pairs, a mechanical angle offset can be adjusted. The range is 0 to 63 mechanical degrees (LSBs). MT-COUNTER <8:0>: The multiturn counter can be set or read over the interface. EN PROG: This command with this data enables the access to the OTP register in extended mode. OTP Programming mode is only possible in extended mode with special connection (see Figure 11). EZ ERR: Indicates a wrong operation of the OTP memory after programming at room temperature. ANGLE <8:0>: Absolute angle information with angular true resolution (360 steps). LOCK ADC: Indicates a locked ADC. An angle value is only valid in case of a locked ADC. During sleep mode is the LOCK ADC bit LO. AGC <5:1>: Automatic gain control value indicates the magnetic field strength. P: Parity information of the 15 data bits. Odd parity. www.ams.com Revision 1.4 9 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n 7.1.2 Extended Synchronous Serial Interface Mode The absolute angle data can be read out over the synchronous serial interface using the pins CSN, DIO and CLK. It is a bidirectional interface therefore a read or write access is possible. The organization of the protocol is byte wise and starts with the command byte followed by the data information. Figure 8. Connectivity During Programming in Extended Mode + 5V VDD VDD VDD VDDP* Micro Controller Output CSN Output CLK I/ O DIO 8. 0 – 8.5V AS5132 PROG 10 µF 100 n VSS 100nF VSS VSS *DIO output pin is connected internally to the VDDP voltage domain. VDD and VDDP can be separately connected too. Figure 9. SSI Timing in Extended Write Mode extended data phase command phase CSN t6 tCLK DCLK 1 2 3 t1 7 8 9 10 11 12 13 67 68 69 70 71 72 t2 t3 DIO www.ams.com CMD7 CMD6 CMD5 CMD0 D63 Revision 1.4 D62 D1 D0 10 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 10. Timing in Extended Read Mode extended data phase command phase CSN t6 tCLK DCLK 1 t1 2 3 t2 t4 t3 CMD7 CMD6 CMD5 DIO 9 8 7 10 11 12 13 67 68 69 70 71 72 t5 CMD0 Z D63 D62 D1 D0 In extended mode the digital interface requires four clocks per data bit. During this time the device is able to handle internal signals for special access. Table 4. Read / Write Interface Commands in Extended Mode Command Command Name Data Access Mode MSB 63 ... 17 16 15 14 13 12 11 10 9 8 ... LSB 0 WRITE OTP 0001_1111 ext. write TST<46:0> SENSITIVITY ext. CLK EN PRE_COM_STAT <1:0> <1:0> UVW <2:0> ZERO ANGLE <8:0> PROG OTP 0001_1001 ext. write TST<46:0> SENSITIVITY ext. CLK EN PRE_COM_STAT <1:0> <1:0> UVW <2:0> ZERO ANGLE <8:0> READ OTP 0000_1111 ext. write TST<46:0> SENSITIVITY ext. CLK EN PRE_COM_STAT <1:0> <1:0> UVW <2:0> ZERO ANGLE <8:0> READ ANA 0000_1001 ext. read TST<46:0> SENSITIVITY ext. CLK EN PRE_COM_STAT <1:0> <1:0> UVW <2:0> ZERO ANGLE <8:0> Note: TST is pre-programed by ams and used for test purpose. www.ams.com Revision 1.4 11 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n Programming Parameters. ZERO ANGLE <8:0>: Zero position value. This value is permanent added to the internal absolute position. Use range 0 to 359. UVW <2:0>: Setup of the number of pole pairs. In the step mode configuration, the bit UVW<2> is used to invert the step mode output signal. Configuration of the Number of Pole Pairs UVW <2:0> Number of Pole Pairs 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 6 1 1 1 6 Setup of the Sensitivity SENSITIVITY <1:0> Sensitivity Setting Min Typ Max 0 0 1.6 1.65 1.75 0 1 1.79 1.88 1.98 1 0 2.01 2.11 2.22 1 1 2.23 2.35 2.47 Setup Parameters for the Static Pre-Commutation PRE_COM_STAT <1:0> Static Pre-commutation Value in Mechanical Degrees 0 0 0 0 1 2 1 0 4 1 1 8 Ext. CLK EN: Enables the external CLK mode for the PWM output. The external CLK mode is only possible in commutation mode. The state of the pin COM/INC is not considered in this case for mode selection. www.ams.com Revision 1.4 12 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 11. OTP Programming Connection Special Case Standard Case Maximum parasitic cable inductance VSUPPLY L<50nH Vzapp C1 100nF VSUPPLY L<50nH VDD Vprog C2 Vzapp PROG GND C1 VDD Vprog C2 PROG GND PROM Cell 10µF 100nF PROM Cell 10µF Remove for normal operation Note: The maximum capacitive load at PROG in normal operation should be less than 20pF. However, during programming the capacitors C1+C2 are needed to buffer the programming voltage during current spikes, but they must be removed for normal operation. To overcome this contradiction, the recommendation is to add a diode (4148 or similar) between PROG and VDD as shown in Figure 11 (special case setup), if the capacitors can not be removed at final assembly. Due to D1, the capacitors C1+C2 are loaded with VDD-0.7V at startup, hence not influencing the readout of the internal OTP registers. During programming the OTP, the diode ensures that no current is flowing from PROG (8V to 8.5V) to VDD (5V). In the standard case (see Figure 11), the verification of a correct OTP readout must be done by analog readback. The special case setup provides the analog readback of the OTP as well. As long as the PROG pin is accessible it is recommended to use standard setup. In case the PROG pin is not accessible at final assembly, the special setup is recommended. 7.1.3 Programming Verification After programming, the programmed OTP bits must be verified using the following methods: Digital Read Out (Mandatory): After sending a READ OTP command, the readback information must be the same as programmed information. Otherwise, it indicates that the programming was not performed correctly. Note: Either “Digital Verification” or “Analog Verification” must be carried out in addition to the “Digital Read Out”. Digital Verification: Checking the EZ ERR bit (0 = OK, 1 = error) i) At room temperature ii) Right after the programming Analog Verification: By switching into Extended Mode and sending a READ ANA command, the pin PROG becomes an output sending an analog voltage with each clock representing a sequence of the bits in the OTP register (starting with D61). A voltage of <500mV indicates a correctly programmed bit (“1”) while a voltage level between 2V and 3.5V indicates a correctly unprogrammed bit (“0”). Any voltage level in between indicates incorrect programming. www.ams.com Revision 1.4 13 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 12. Analog OTP Verification +5V VDD VDDP Output CSN Output CLK I/O DIO * VDD AS5132 Micro Controller VDD 100nF PROG VSS VSS V VSS 7.2 Pulse Width Modulation (PWM) Output The AS5132 provides a pulse width modulated output (PWM), whose duty cycle is proportional to the absolute angle position. Figure 15 shows the output format. In case of an internal error the high pulse contains 12 steps. An error can be easily identified by the external microcontroller. The zero degree angle position is build with 16 steps (12 + 4) high and 359 steps low followed by 8 exit steps. Figure 13. PWM Output +5V VDD VDD VDDP VDD AS5132 Micro Controller Input * 100nF PWM VSS VSS VSS * PWM output pin is connected internally to the VDDP voltage domain. VDD and VDDP can be separately connected. www.ams.com Revision 1.4 14 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n 7.2.1 PWM External Clock The PWM period depends on the setting of the OTP bit Ext. CLK EN. By default the internal clock source is used as a reference. An external clock can be connected to the pin COM/INC. In case Ext. CLK EN is set, the output-mode which is determined by the states of {COM/INC, Test3, Test2, Test1, Test0} (see Table 6) during start-up is overwritten and U,V,W commutation mode signals are activated. After internal power on reset (POR_en), the OTP is read out. When the Ext. CLK EN is programmed successfully, the COM/INC pin is used as external clock for the PWM block. After 4 clock cycles of Ext. CLK EN, the reset of TADC (TADC_rst) and the PWM block is released. Figure 14. Start-up Procedure POR_en system_state OTP_readout RUN Ext. CLK EN TADC_rst 258*Tclk_sys 4*Tclk_sys The reset for the PWM block is synchronized to the external PWM clock. This ensures a save reset also in case the external clock on COM/INC is already running during start-up. Figure 15. PWM Output Signal T-high T-low Init (Error) Angle Position 359 clocks Zero degree 16 clocks exit 8 clocks Table 5. PWM Timing with Internal and External CLK Source Symbol Parameter Min Typ Max Unit Note TPWMint PWM Period internal 600 750 900 µs Internal clock source TPWMext PWM Period external µs External clock provided over COM / INC pin CLKPWM Clock external mode www.ams.com 383 / CLKPWM 0 766 Revision 1.4 kHz 15 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n 7.3 Incremental Outputs Two different incremental output modes are possible. Quadrature A/B mode and selectable Step Mode can be selected by the pins TEST0, TEST1, TEST2, TEST3 and COM / INC. Table 6. Configuration of the Incremental Output Modes COM / INC 1 TEST3 0 1 0 1 0 1 0 1 0 0 0 TEST2 0 0 0 0 1 0 TEST1 0 0 1 1 0 0 TEST0 Output Mode Pin Assignment Quadrature A/B/I Mode 90 pulses per channel A → U_A B → V_B I → W_I ‘0’ → S Stepmode 24 pulses and Index width 2 ‘0’ → U_A ‘0’ → V_B ‘0’ → W_I S_24_2 → S Stepmode 60 pulses and Index width 2 ‘0’ → U_A ‘0’ → V_B ‘0’ → W_I S_60_2 → S Stepmode 90 pulses and Index width 2 ‘0’ → U_A ‘0’ → V_B ‘0’ → W_I S_90_2 → S 0 Stepmode 180 pulses and Index width 2 ‘0’ → U_A ‘0’ → V_B ‘0’ → W_I S_180_2 → S 0 U,V,W Commutation Mode (OTP setting) U → U_A V → V_B W → W_I ‘0’ → S 0 1 0 1 Note: The pin setting COM / INC has priority. In case of a low state the device is exclusively in the commutation mode. Not specified states of TEST3, TEST2, TEST1 and TEST0 in incremental mode will enable the quadrature A/B/I mode. This configuration is only read once at startup. It is not recommended to change the state during operation. 7.3.1 Quadrature A/B Output Absolute position 356 357 358 359 0 1 2 3 Figure 16. Incremental Output of the AS5132 A B I Figure 16 shows the two-channel quadrature output. The index position is mapped to the absolute mechanical zero position. The phase shift between channel A and B indicates the direction of the magnet movement. Channel A leads channel B at a clockwise rotation of the magnet (top view) by 90 electrical degrees. Channel B leads channel A at a counter-clockwise rotation. www.ams.com Revision 1.4 16 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n 7.3.2 Step Output Mode Step Output mode provides a specific combination of the A incremental signal and the index signal I. The number of pulse can be configured with the input pattern of the test input pins. 356 357 358 359 0 1 2 3 Figure 17. Step Mode of the AS5132 with Different Number of Pulses Absolute position S_180_2 175 176 177 178 179 180 STEP 2 1 2 3 S_90_2 87 STEP 88 89 90 1 S_60_2 STEP 58 6 1 2 2 3 4 5 6 7 59 60 1 1 2 2 3 4 5 352 353 354 355 356 357 358 359 0 1 2 3 4 5 6 7 8 9 10 11 Absolute position S_24_2 7.3.3 5 356 357 358 359 0 1 2 3 Absolute position STEP 4 356 357 358 359 0 1 2 3 Absolute position 1 24 1 1 2 2 3 Pre-Commutation Function This feature can be used to optimize the torque characteristic at a certain speed of the BLDC motor. The output signals U, V and W can be shifted by a specific number of degrees back and forward. The AS5132 distinguish between the static and dynamic pre commutation value. The static value is similar to an additional zero programming and can be programmed only once. The dynamic value is stored in the interface register and can be changed during operation. The pin DIR defines if the value of pre-commutation is added or subtracted. The dynamic commutation register will be set to zero after a rotation change indicated by the external pin DIR. Due to internal synchronization, the outputs U,V,W will change 3 internal clock cycles after the change of DIR input signal. Table 7. Definition of the Pre-Commutation Direction DIR Rotation Consequence 0 Clock wise PRE_COM values added to absolute angle 1 Counter clock wise PRE_COM values subtracted from absolute angle www.ams.com Revision 1.4 17 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 18. Block Diagram of the Pre-Commutation Function DIR Tracking ADC ANGLE<8:0> Zero Angle Adder OTP value PRE_COM_STAT<2:0> OTP value zero_ang<8:0> PC Adder stat. PC Adder dyn. Dir Dir +/- +/- UVW ENC U, V, W SSI value PRE_COM_DYN<6:0> SSI Read Angle PWM PWM ENC A, B, Index ABI ENC Note: The dynamic pre-commutation is set to zero always if the direction is changed over the pin DIR. A new value PRE_COM_DYN must be written again. The static pre-commutation is always enabled and will shift the output. 7.3.4 Commutation Output UVW The pre-commutation function is used only at the U,V,W output. Figure 19 shows the transition on the outputs U,V,W in case of a two pole pair configuration. The static pre-commutation value was set to 12 degrees. Figure 19. UVW Output Transitions with Pre-Commutation Counter Clockwise rotation 12° static pre-commutation 90° mech. 78° mech. 180° electr. 180° electr. 60° mech. 120° electr. 48° mech. 120° electr. -12° 198° mech. 60° electr. 210° mech. 60° electr. 120° electr. 258° mech.270° mech. 180° electr.180° electr. www.ams.com 150° mech. 300° electr. 162° mech. 300° electr. 0° mech. 0° electr. -12° mech. 0° electr. 330° mech. 300° electr. 318° mech. 300° electr. 300° mech. 240° electr. 288° mech. 240° electr. 180° mech. 0° electr. 72° mech. 120° electr. 60° mech. 120° electr. 42° mech. 60° electr. 30° mech. 60° electr. 12° mech. 0° electr. +12° 0° mech. 0° electr. 192° mech. 0° electr. 210° mech. 60° electr. 222° mech. 60° electr. 240° mech. 120° electr. 252° mech. 120° electr. Revision 1.4 rotation 180° mech. 0° electr. 90° mech. 102° mech. 180° electr. 180° electr. 240° electr. 30° mech. 60° electr. 18° mech. 60° electr. 168° mech. 0° electr. 228° mech. 120° electr. 240° mech. 120° mech. 240° electr. 132° mech. rotation 108° mech. 240° electr. 120° mech. 240° electr. 138° mech. 300° electr. 150° mech. 300° electr. Clockwise rotation 12° static pre-commutation 342° mech. 300° electr. 330° mech. 300° electr. 312° mech. 240° electr. 300° mech. 282° mech. 240° electr. 270° mech. 180° electr. 180° electr. 18 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 20. Dynamic and Static Pre-Commutation 2 pole pairs, Counter Clockwise rotation Static pre-commutation 0x00...0x06 Dynamic pre-commutation 0x00 … 0x3F U V W 0 60 120 180 240 300 0 60 120 180 0 30 60 90 120 150 180 210 240 270 electrical angle mechanical angle 2 pole pairs, Clockwise rotation Static pre-commutation 0x00… 0x06 Dynamic pre-commutation 0x00 … 0x3F U V W 7.3.5 0 60 120 180 240 300 0 60 120 180 0 30 60 90 120 150 180 210 240 270 electrical angle mechanical angle Hysteresis of the Incremental Outputs A hysteresis is implemented to get a stable output value at the SSI command and to reduce jitter at the PWM and UVW outputs. At start up the hysteresis counter is at 0, the range is ±1 LSB. The hysteresis can be deactivated by setting OTP bit Hyst_dis. Figure 21. Hysteresis of the Outputs Hysteresis counter startup value Effect of Hysteresis aN -1 5 0 1 4 Angle Output Counter Range: 3 LSB 3 2 CW rotation 1 CCW rotation 0 0 1 2 3 4 5 6 aN Magnet Position www.ams.com Revision 1.4 19 - 27 AS5132 Datasheet - D e t a i l e d D e s c r i p t i o n 7.3.6 Multi Turn Counter A 9-bit register is used for counting the magnet’s revolutions. With each zero transition in any direction, the output of a special counter is incremented or decremented. The initial value after reset is 0 LSB. Clockwise rotation gives increasing angle values and positive turn count. Counter clockwise rotation exhibits decreasing angle values and a negative turn count respectively. The counter output can be reset by using command 20 – SET MT Counter. It is immediately reset by the rising clock edge of this bit. Any zero crossing between the clock edge and the next counter readout changes the counter value. 7.3.7 High Speed Operation The AS5132 is using a fast tracking ADC (TADC) to determine the angle of the magnet. The TADC is tracking the angle of the magnet with cycle time of 2μs (typ. 1.4). Once the TADC is synchronized with the angle, it sets the LOCK bit in the status register. Once it is locked, it requires only one cycle [2μs (typ. 1.4)] to track the moving magnet. The AS5132 can operate in locked mode at rotational speeds up to max.72,900 rpm. 7.3.8 Propagation Delay The propagation delay is the time required from reading the magnetic field by the Hall sensors to calculating the angle and making it available on the serial or PWM interface. While the propagation delay is usually negligible on low speeds, it is an important parameter at high speeds. The longer the propagation delay, the larger becomes the angle error for a rotating magnet as the magnet is moving while the angle is calculated. The position error increases linearly with speed. 7.3.9 Error Detection The following errors are detected by the system: Lock bit the TADC has not yet found a valid angular position AGC alarm the AGC value is 63, magnetic field is too weak By default, Lock bit error should activate the error condition at the outputs. The AGC alarm is permanently available at the DIAG pin. Error condition at commutation and incremental outputs: U, V and W outputs all ‘0’ A, B and I outputs all ‘1’ www.ams.com Revision 1.4 20 - 27 AS5132 Datasheet - A p p l i c a t i o n I n f o r m a t i o n 8 Application Information The benefits of AS5132 are as follows: Complete system-on-chip, no angle calibration required Flexible system solution provides absolute serial, PWM and incremental output formats Ideal for applications in harsh environments due to magnetic sensing principle High reliability due to non-contact sensing Robust system, tolerant to horizontal misalignment, airgap variations, temperature variations and external magnetic fields External clock mode for PWM output 8.1 Physical Placement of the Magnet The best linearity can be achieved by placing the center of the magnet exactly over the defined center of the IC package as shown in Figure 22. Figure 22. Defined IC Center and Magnet Displacement Radius Y Z X PIN 1 Identification 4.1 ± 0. 235 The centre of the Hall sensor array is shifted by a constant value in x axis indicated by the blue circle. In the application it is important to refer to this point. www.ams.com Revision 1.4 21 - 27 AS5132 Datasheet - A p p l i c a t i o n I n f o r m a t i o n Figure 23. Vertical Cross Section of SSOP-20 Notes: 1. All dimensions in mm. 2. Die is slightly off centered. www.ams.com Revision 1.4 22 - 27 AS5132 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s 9 Package Drawings and Markings The device is available in a 20-Lead Shrink Small Outline package. Figure 24. Package Drawings and Dimensions AS5132 @ YYWWMZZ Symbol A A1 A2 b c D E E1 e L L1 L2 R Θ N Min 1.73 0.05 1.68 0.22 0.09 6.90 7.40 5.00 0.55 0.09 0º Nom 1.86 0.13 1.73 0.30 0.17 7.20 7.80 5.30 0.65 BSC 0.75 1.25 REF 0.25 BSC 4º 20 Max 1.99 0.21 1.78 0.38 0.25 7.50 8.20 5.60 0.95 8º Notes: 1. Dimensions and tolerancing conform to ASME Y14.5M-1994. 2. All dimensions are in millimeters. Angles are in degrees. Marking: @YYWWMZZ. @ YY Sublot identifier Last two digits of the manufacturing year www.ams.com WW M ZZ Manufacturing week Plant identifier Assembly traceability code Revision 1.4 23 - 27 AS5132 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s 9.1 Recommended PCB Footprint Figure 25. PCB Footprint Recommended Footprint Data Symbol mm inch A 9.02 0.355 B 6.16 0.242 C 0.46 0.018 D 0.65 0.025 E 6.31 0.248 www.ams.com Revision 1.4 24 - 27 AS5132 Datasheet - R e v i s i o n H i s t o r y Revision History Revision Date Owner Description 0.11 Initial draft 0.18 16 Dec, 2010 Updates across datasheet according to 0.18 specification document. 0.19 17 Dec, 2010 Updated System Parameters, Ext. CLK EN under Programming Parameters, Pre-Commutation Function. 0.20 22 Mar, 2011 Added OTP Programming Connection, Programming Verification, Analog OTP Verification. Updated Package Drawings and Markings and Ordering Information. 0.21 06 Apr, 2011 0.22 07 Apr, 2011 Added PWM External Clock, updated Ordering Information. 27 Jul, 2011 Updated Absolute Maximum Ratings. 04 Aug, 2011 Updated Key Features, DC Characteristics of Digital Inputs, Package Drawings and Markings. 0.24 25 Nov, 2011 Updated Vertical Cross Section of SSOP-20 (page 22) and Marking info. Added Figure 9, Figure 10. 1.0 30 Mar, 2012 1.1 06 Sep, 2012 1.2 26 Mar, 2013 1.3 12 Apr, 2013 Package Marking change, added note in Section 6.6 for VOL and VDDP pin added in Figure 8 and Figure 12. 1.4 28 Jun, 2013 Clarification of the Revision History (page 25) in versions 1.2 & 1.3. 0.23 mub ekno Updated Programming Verification. Datasheet release Text corrections; updated Table 4 VDDP pin added in Figure 4 and Figure 13, IDD max corrected in Section 6.1, addded Load condition VOL/VOH in Section 6.6 and sentences corrected from 8 steps to 16 steps in Section 7.2. mub Note: Typos may not be explicitly mentioned under revision history. www.ams.com Revision 1.4 25 - 27 AS5132 Datasheet - O r d e r i n g I n f o r m a t i o n 10 Ordering Information The devices are available as the standard products shown in Table 8. Table 8. Ordering Information Ordering Code Description Delivery Form Package AS5132-HSST 360 Step Programmable High Speed Magnetic Rotary Encoder Tape & Reel 20-pin SSOP AS5132-HSSM 360 Step Programmable High Speed Magnetic Rotary Encoder Tape & Reel 20-pin SSOP Note: All products are RoHS compliant and ams green. Buy our products or get free samples online at www.ams.com/ICdirect Technical Support is available at www.ams.com/Technical-Support For further information and requests, email us at [email protected] (or) find your local distributor at www.ams.com/distributor www.ams.com Revision 1.4 26 - 27 AS5132 Datasheet - C o p y r i g h t s Copyrights Copyright © 1997-2013, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. All products and companies mentioned are trademarks or registered trademarks of their respective companies. Disclaimer Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location. The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services. Contact Information Headquarters ams AG Tobelbaderstrasse 30 A-8141 Unterpremstaetten, Austria Tel Fax : +43 (0) 3136 500 0 : +43 (0) 3136 525 01 For Sales Offices, Distributors and Representatives, please visit: http://www.ams.com/contact www.ams.com Revision 1.4 27 - 27