CS485xx CS485xx Family Data Sheet Differentiating from the legacy Cirrus multi-standard, multi-channel decoders, this new CS485xx family is still based on the same high-performance 32-bit fixed point Digital Signal Processor core but instead is equipped with much less memory, tailoring it for more cost-effective applications associated with multi-channel and virtual-channel sound enhancements. Target applications are: Features Cost-effective, High-performance 32-bit DSP 300,000,000 MAC/S (multiply accumulates per second) Dual MAC cycles per clock 72-bit accumulators are the most accurate in the industry 24k x 32 SRAM, 2k blocks - assignable to data or program Internal ROM contains a variety of configurable sound enhancement feature sets 8-channel internal DMA Internal watch-dog DSP lock-up prevention DSP Tool Set w/ Private Keys for Protecting Customer IP Configurable Serial Audio Inputs/Outputs Digital Televisions Multimedia Peripherals iPod® Docking Stations Automotive Head Units Automotive Outboard Amplifiers HD-DVD™ and Blu-ray Disc® DVD Receivers PC Speakers There are also a wide variety of licensable DSP codes available today as seen by the following examples: Configurable for all input/output types Maximum 32-bit @ 192 kHz Supports 32-bit audio sample I/O between DSP chips TDM input modes (multiple channels on same line) 192 kHz SPDIF transmitter Multi-channel DSD direct stream digital SACD input Supports Two Different Input Fs Sample Rates Output can be master or slave Cirrus also has developed, or is developing their own royalty-free versions of popular features sets like Cirrus Bass Manager, Cirrus Dynamic Volume Leveler, Cirrus Original Multichannel Surround, Cirrus Virtual Speaker & Cirrus 3D-Audio. Dual processing path capability Input supports dual domain slave clocking Hardware assist time sampling for sample rate conversion Integrated Clock Manager/PLL The CS485xx family is programmed using the Cirrus proprietary DSP Composer™ GUI development tool. Processing chains may be designed using a drag-and-drop interface to place/utilize functional macro audio DSP primitives. The end result is a software image that is down-loaded to the DSP via serial host or serial boot modes. Can operate from external crystal, external oscillator Input Fs Auto Detection Host & Boot via Serial Interface See Section 6 for ordering information. Configurable GPIOs and External Interrupt Input 1.8V Core and a 3.3V I/O that is tolerant to 5V input Low-power Mode “Energy Star® Ready” in low-power mode, 268 µW in standby Serial Control 1 GPIO 12 Ch. Audio In / 6 Ch. SACD In Watchdog D M A 32-bit DSP S/PDIF Debug P X TMR1 TMR2 Y 12 Ch PCM Audio Out PLL CS485xx Block Diagram http://www.cirrus.com Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS734F5 OCT '11 Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs, DSP Composer, and Cirrus Framework are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. Dolby, Dolby Digitaol, Dolby Headphone, Virtual Speaker, and Pro Logic are registered trademarks of Dolby Laboratories, Inc. Supply of an implementation of Dolby Technology does not convey a license nor imply a right under any patent, or any other industrial or Intellectual Property Right of Dolby Laboratories, to use the Implementation in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories. DTS and DTS Neo:6 are registered trademarks of Digital Theater Systems, Inc. It is hereby notified that a third-party license from DTS is necessary to distribute software of DTS in any finished end-user or ready-to-use final product. SRS, Circle Surround and Trusurround XT are registered trademarks of SRS Labs, Inc. Circle Surround II is a trademark of SRS Labs, Inc. The Circle Surround technology is incorporated under license from SRS Labs, Inc. The Circle Surround technology rights incorporated in the CS485xx are owned by SRS Labs, a U.S. Corporation and licensed to Cirrus Logic, Inc. Purchaser of CS485xx must sign a license for use of the chip and display of the SRS Labs trademarks. Any products incorporating the CS485xx must be sent to SRS Labs for review. The Circle Surround technology is protected under US and foreign patents issued and/or pending. Circle Surround, SRS and (O) symbol are trademarks of SRS Labs, Inc. in the United States and selected foreign countries. Neither the purchase of the CS485xx, nor the corresponding sale of audio enhancement equipment conveys the right to sell commercialized recordings made with any SRS technology/solution. SRS Labs requires all set makers to comply with all rules and regulations as outlined in the SRS Trademark Usage Manual. SPI is a trademark of Motorola, Inc. I²C is a trademark of Philips Semiconductor. iPod is a registered trademark of Apple Computer, Inc. HD DVD is a trademark of DVD Format/Logo Licensing Corporation. Blu-Ray Disc is a registered trademark of SONY KABUSHIKI KAISHA CORPORATION. Energy Star is a registered trademark of the Environmental Protection Agency, a federal agency of the United States government. DS734F5 2 TABLE OF CONTENTS 1 Documentation Strategy ........................................................................................................................................... 1-5 2 Overview ..................................................................................................................................................................... 2-5 2.1 Licensing ............................................................................................................................................................ 2-5 3 Code Overlays ............................................................................................................................................................ 3-6 4 Hardware Functional Description ............................................................................................................................ 4-7 4.1 DSP Core ........................................................................................................................................................... 4-7 4.1.1 DSP Memory ............................................................................................................................................. 4-7 4.1.2 DMA Controller .......................................................................................................................................... 4-7 4.2 On-chip DSP Peripherals ................................................................................................................................... 4-7 4.2.1 Digital Audio Input Port (DAI) .................................................................................................................... 4-7 4.2.2 Digital Audio Output Port (DAO) ................................................................................................................ 4-8 4.2.3 Serial Control Port (I2C™ or SPI™) ............................................................................................................ 4-8 4.2.4 GPIO ......................................................................................................................................................... 4-8 4.2.5 PLL-based Clock Generator ...................................................................................................................... 4-8 4.2.6 Hardware Watchdog Timer ....................................................................................................................... 4-8 4.3 DSP I/O Description ........................................................................................................................................... 4-8 4.3.1 Multiplexed Pins ........................................................................................................................................ 4-8 4.3.2 Termination Requirements ........................................................................................................................ 4-8 4.3.3 Pads .......................................................................................................................................................... 4-9 4.4 Application Code Security .................................................................................................................................. 4-9 5 Characteristics and Specifications .......................................................................................................................... 5-9 5.1 Absolute Maximum Ratings ................................................................................................................................ 5-9 5.2 Recommended Operations Conditions ............................................................................................................... 5-9 5.3 Digital DC Characteristics ................................................................................................................................... 5-9 5.4 Power Supply Characteristics ........................................................................................................................... 5-10 5.5 Thermal Data (48-pin LQFP) ............................................................................................................................ 5-10 5.6 Switching Characteristics—RESET .................................................................................................................. 5-11 5.7 Switching Characteristics—XTI ........................................................................................................................ 5-11 5.8 Switching Characteristics—Internal Clock ........................................................................................................ 5-11 5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode ..................................................................... 5-12 5.10 Switching Characteristics—Serial Control Port–SPI Master Mode ................................................................. 5-13 5.11 Switching Characteristics—Serial Control Port–I2C Slave Mode ................................................................... 5-13 5.12 Switching Characteristics—Serial Control Port–I2C Master Mode ................................................................. 5-14 5.13 Switching Characteristics—Digital Audio Slave Input Port ............................................................................. 5-15 5.14 Switching Characteristics—DSD Slave Input Port .......................................................................................... 5-15 5.15 Switching Characteristics—Digital Audio Output (DAO) Port ......................................................................... 5-16 6 Ordering Information ............................................................................................................................................... 6-18 7 Environmental, Manufacturing, and Handling Information ................................................................................. 7-18 8 Device Pinout Diagrams .......................................................................................................................................... 8-19 8.1 CS48520, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-19 8.2 CS48540, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-20 8.3 CS48560, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-21 9 Package Mechanical Drawings ............................................................................................................................... 9-22 9.1 48-pin LQFP Package Drawing ........................................................................................................................ 9-22 10 Revision History .................................................................................................................................................. 10-23 3 DS734F5 LIST OF FIGURES Figure 5-1. RESET Timing ...................................................................................................................................... 5-11 Figure 5-2. XTI Timing............................................................................................................................................. 5-11 Figure 5-3. Serial Control Port–SPI Slave Mode Timing ......................................................................................... 5-12 Figure 5-4. Serial Control Port–SPI Master Mode Timing ....................................................................................... 5-13 Figure 5-5. Serial Control Port–I2C Slave Mode Timing.......................................................................................... 5-14 Figure 5-6. Serial Control Port–I2C Master Mode Timing........................................................................................ 5-15 Figure 5-7. Digital Audio Input (DAI) Port Timing Diagram...................................................................................... 5-15 Figure 5-8. Direct Stream Digital–Serial Audio Input Timing ................................................................................... 5-15 Figure 5-9. Digital Audio Output Port Timing, Master Mode.................................................................................... 5-17 Figure 5-10. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK) ......................................... 5-17 Figure 8-1. CS48520, 48-pin LQFP Pinout.............................................................................................................. 8-19 Figure 8-2. CS48540, 48-pin LQFP Pinout.............................................................................................................. 8-20 Figure 8-3. CS48560, 48-pin LQFP......................................................................................................................... 8-21 Figure 9-1. 48-pin LQFP Package Drawing............................................................................................................. 8-22 LIST OF TABLES Table 1-1. CS485xx Family Related Documentation................................................................................................. 1-5 Table 3-1. Device and Firmware Selection Guide ..................................................................................................... 3-6 Table 5-1. Master Mode (Output A1 Mode)............................................................................................................. 5-16 Table 5-2. Slave Mode (Output A0 Mode)............................................................................................................... 5-17 Table 6-1. Ordering Information .............................................................................................................................. 6-18 Table 7-1. Environmental, Manufacturing, and Handling Information ..................................................................... 7-18 4 DS734F5 1 Documentation Strategy 1 Documentation Strategy The CS485xx Family Data Sheet describes the CS485xx family of multichannel audio processors. This document should be used in conjunction with the following documents when evaluating or designing a system around the CS485xx family of processors. Table 1-1. CS485xx Family Related Documentation Document Name CS485xx Family Data Sheet CS485xx Family Hardware User’s Manual AN298–CS485xx Family Firmware User’s Manual DSP Composer User’s Manual Description This document Includes detailed system design information including Typical Connection Diagrams, Boot-Procedures, Pin Descriptions, etc. Includes detailed firmware design information including signal processing flow diagrams and control API information Includes detailed configuration and usage information for the GUI development tool. The scope of the CS485xx Family Data Sheet is primarily the hardware specifications of the CS485xx family of devices. This includes hardware functionality, characteristic data, pinout, and packaging information. The intended audience for the CS485xx Family Data Sheet is the system PCB designer, MCU programmer, and the quality control engineer. 2 Overview The CS485xx DSP Family is designed to provide high-performance post-processing and mixing of digital audio. The dual clock domain provided on the PCM inputs allows for the mixing of audio streams with different sampling frequencies. The low-power standby preserves battery life for applications which are always on, but not necessarily processing audio, such as automotive audio systems. There are three devices comprising the CS485xx family. The CS48520, CS48540 and CS48560 are differentiated by the number of inputs and outputs available. All DSPs support dual input clock domains and dual audio processing paths. All DSPs are available in a 48-pin QFP package. Refer to Table 3-1 for the input, output, firmware features of each device. 2.1 Licensing Licenses are required for all of the third party audio processing algorithms listed in Section 3. Contact your local Cirrus Logic Sales representative for more information. 5 DS734F5 3 Code Overlays 3 Code Overlays The suite of software available for the CS485xx family consists of an operating system (OS) and a library of overlays. The overlays have been divided into three main groups called Matrix-processors, Virtualizer-processors, and Post-processors. All software components are defined below: 1. OS/Kernel—Encompasses all non-audio processing tasks, including loading data from external memory, processing host messages, calling audio-processing subroutines, error concealment, etc. 2. Matrix-processor—Any Module that performs a matrix decode on PCM data to produce more output channels than input channels (2n channels). Examples are Dolby ProLogic IIx and DTS Neo:6. Generally speaking, these modules increase the number of valid channels in the audio I/O buffer. 3. Virtualizer-processor—Any module that encodes PCM data into fewer output channels than input channels (n2 channels) with the effect of providing “phantom” speakers to represent the physical audio channels that were eliminated. Examples are Dolby Headphone® and Dolby Virtual Speaker®. Generally speaking, these modules reduce the number of valid channels in the audio I/O buffer. 4. Post-processors—Any module that processes audio I/O buffer PCM data in-place after the matrix- or virtualizer-processors. Examples are bass management, audio manager, tone control, EQ, delay, customer-specific effects, etc. The bulk of each overlay is stored in ROM within the CS485xx, but a small image is required to configure the overlays and boot the DSP. This small image can either be stored in an external serial FLASH/EEPROM, or downloaded via a host controller through the SPI™/I2C™ serial port. The overlay structure reduces the time required to reconfigure the DSP when a processing change is requested. Each overlay can be reloaded independently without disturbing the other overlays. For example, when a new matrix-processor is selected, the OS, virtualizer-, and post-processors do not need to be reloaded — only the new matrix-processor (the same is true for the other overlays). Table 3-1 lists the firmware available based on device selection. Refer AN298, CS485xx Firmware User’s Manual for the latest listing of application codes and Cirrus Framework™ modules available. Table 3-1. Device and Firmware Selection Guide Device Suggested Application CS48520-CQZ Digital TV, portable audio docking station, portable DVD, DVD mini/ receiver, multimedia PC speakers CS48540-CQZ CS48520 features plus 8-channel car audio, DVD receiver CS48540-DQZ CS48560-CQZ CS48540 features plus 12-channel car audio, high-end digital TV, dual CS48560-DQZ source/dual zone SACD 6 Channel Count Input/Output Up to 4-channel in/4-channel out Package 48-pin QFP Up to 8-channel in/8-channel out 48-pin QFP Up to 12-channel in/12-channel out 48-pin QFP DS734F5 4 Hardware Functional Description 4 Hardware Functional Description 4.1 DSP Core The CS485xx family DSPs are single-core DSP with separate X and Y data and P code memory spaces. The DSP core is a high-performance, 32-bit, user-programmable, fixed-point DSP that is capable of performing two multiply-and-accumulate (MAC) operations per clock cycle. The DSP core has eight 72-bit accumulators, four X- and four Y-data registers, and 12 index registers. The DSP core is coupled to a flexible DMA engine. The DMA engine can move data between peripherals such as the serial control port (SCP), digital audio input (DAI) and digital audio output (DAO), or any DSP core memory, all without the intervention of the DSP. The DMA engine off loads data move instructions from the DSP core, leaving more MIPS available for signal processing instructions. CS485xx family functionality is controlled by application codes that are stored in on-board ROM or downloaded to the CS485xx from a host controller or external serial FLASH/EEPROM. Users can develop their applications using DSP Composer to create the processing chain and then compile the image into a series of commands that are sent to the CS485xx through the SCP. The processing application can either load modules (matrix-processors, virtualizers, post-processors) from the DSPs on-board ROM, or custom firmware can be downloaded through the SCP. The CS485xx is suitable for a variety of audio post-processing applications such as automotive head-ends, automotive amplifiers, and boom boxes. 4.1.1 DSP Memory The DSP core has its own on-chip data and program RAM and ROM and does not require external memory for post-processing applications. The Y-RAM and P-RAM share a single block of memory that can be configured to make Y and P equal in size, or more memory can be allocated for Y-RAM in 2kword blocks. 4.1.2 DMA Controller The powerful 8-channel DMA controller can move data between 8 on-chip resources. Each resource has its own arbiter: X, Y, and P RAMs/ROMs and the peripheral bus. Modulo and linear addressing modes are supported, with flexible start address and increment controls. The service intervals for each DMA channel, as well as up to 6 interrupt events, are programmable. 4.2 On-chip DSP Peripherals 4.2.1 Digital Audio Input Port (DAI) Each version of the CS485xx supports a different number of input channels. Refer to Table 3-1 for more details. The DAI port supports a wide variety of data input formats at sample rates (Fs) as high as 192 kHz. The port is capable of accepting PCM or DSD formats. Up to 32-bit word lengths are supported. DSD is supported and internally converted to PCM before processing. The DAI also supports a time division multiplexed (TDM) one-line data mode, that packs PCM audio on a single data line (the total number possible depends on the ratio of SCLK to LRCLK and the version of chip. For example on the CS48520 only 4 ch of PCM are supported in one line mode and on the CS48560 up to 8 channels are supported.). The port has two independent slave-only clock domains. Each data input can be independently assigned to a clock domain. The sample rate of the input clock domains can be determined automatically by the DSP, off-loading the task of monitoring the SPDIF receiver from the host. A time-stamping feature allows the input data to be sample-rate converted via software. 7 DS734F5 4.3 DSP I/O Description 4.2.2 Digital Audio Output Port (DAO) Each version of the CS485xx supports a different number of output channels. Refer to Table 3-1 for more details. DAO port supports PCM resolutions of up to 32-bits. The port supports sample rates (Fs) as high as 192 kHz. The port can be configured as an independent clock domain mastered by the DSP, or as a clock slave if an external MCLK or SCLK/ LRCLK source is available. One of the serial audio pins can be re-configured as a S/PDIF transmitter that drives a biphase encoded S/PDIF signal (data with embedded clock on a single line). The DAO also supports a time division multiplexed (TDM) one-line data mode, that packs multiple channels of PCM audio on a single data line. 4.2.3 Serial Control Port (I2C™ or SPI™) The on-chip serial control port is capable of operating as master or slave in either SPI™ or I2C™ modes. Master/ Slave operation is chosen by mode select pins when the CS485xx comes out of Reset. The serial clock pin can support frequencies as high as 25 MHz in SPI mode (SPI clock speed must always be ≤ (Fdclk/2)). The CS485xx serial control port also includes a pin for flow control of the communications interface (SCP_BSY) and a pin to indicate when the DSP has a message for the host (SCP_IRQ). 4.2.4 GPIO Many of the CS485xx peripheral pins are multiplexed with GPIO. Each GPIO can be configured as an output, an input, or an input with interrupt. Each input-pin interrupt can be configured as rising edge, falling edge, active-low, or active-high. 4.2.5 PLL-based Clock Generator The low-jitter PLL generates integer or fractional multiples of a reference frequency which are used to clock the DSP core and peripherals. Through a second PLL divider chain, a dependent clock domain can be output on the DAO port for driving audio converters. The CS485xx defaults to running from the external reference frequency and is switched to use the PLL output after overlays have been loaded and configured, either through master boot from an external FLASH or through host control. A built-in crystal oscillator circuit with a buffered output is provided. The buffered output frequency ratio is selectable between 1:1 (default) or 2:1. 4.2.6 Hardware Watchdog Timer The CS485xx has an integrated watchdog timer that acts as a “health” monitor for the DSP. The watchdog timer must be reset by the DSP before the counter expires, or the entire chip is reset. This peripheral ensures that the CS485xx will reset itself in the event of a temporary system failure. In stand-alone mode (that is, no host MCU), the DSP will reboot from external FLASH. In slave mode (that is, host MCU present) a GPIO will be used to signal the host that the watchdog has expired and the DSP should be rebooted and re-configured. 4.3 DSP I/O Description 4.3.1 Multiplexed Pins Many of the CS485xx family pins are multi-functional. For details on pin functionality, refer to the CS485xx Hardware User’s Manual. 4.3.2 Termination Requirements Open-drain pins on the CS485xx must be pulled high for proper operation. Refer to the CS485xx Hardware User’s Manual to identify which pins are open-drain and what value of pull-up resistor is required for proper operation. Mode select pins in the CS485xx family are used to select the boot mode upon the rising edge from reset. A detailed explanation of termination requirements for each communication mode select pin can be found in the CS485xx Hardware User’s Manual. 8 DS734F5 4.4 Application Code Security 4.3.3 Pads The CS485xx I/Os operate from the 3.3 V supply and are 5 V tolerant. 4.4 Application Code Security The external program code may be encrypted by the programmer to protect any intellectual property it may contain. A secret, customer-specific key is used to encrypt the program code that is to be stored external to the device. Contact your local Cirrus representative for details. 5 Characteristics and Specifications Note: All data sheet minimum and maximum timing parameters are guaranteed over the rated voltage and temperature. All data sheet typical parameters are measured under the following conditions: T = 25° C, CL = 20 pF, VDD = VDDA = 1.8 V, VDDIO = 3.3 V, GNDD = GNDIO = GNDA = 0 V. 5.1 Absolute Maximum Ratings (GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V) Parameter DC power supplies: Symbol Min Max Unit VDD –0.3 2.0 V PLL supply VDDA –0.3 3.6 V I/O supply VDDIO –0.3 3.6 V — — 0.3 V Core supply |VDDA–VDDIO| Input pin current, any pin except supplies Iin — ±10 mA Input voltage on PLL_REF_RES Vfilt –0.3 3.6 V Input voltage on I/O pins Vinio –0.3 5.0 V Storage temperature Tstg –65 150 °C WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 5.2 Recommended Operations Conditions (GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V) Parameter DC power supplies: Symbol Min Typ Max Unit Core supply VDD 1.71 1.8 1.89 V PLL supply VDDA 3.13 3.3 3.46 V I/O supply VDDIO 3.13 3.3 3.46 V — — 0 — V TA — — — °C |VDDA–VDDIO| Ambient operating temperature Note: –CQZ — 0 — +70 — –DQZ — –40 — +85 — It is recommended that the 3.3 V IO supply come up ahead of or simultaneously with the 1.8 V core supply. 5.3 Digital DC Characteristics (Measurements performed under static conditions.) 9 DS734F5 5.4 Power Supply Characteristics Parameter Symbol Min Typ Max Unit VIH 2.0 — — V VIL — — 0.8 V VILXTI — — 0.6 V High-level input voltage Low-level input voltage, except XTI Low-level input voltage, XTI Input hysteresis Vhys — 0.4 — V High-level output voltage (IO = –2 mA), except XTI VOH VDDIO*0.9 — — V Low-level output voltage (IO = 2 mA), except XTI VOL — — VDDIO*0.1 V Input leakage XTI ILXTI — — 5 µA Input leakage current (all digital pins with internal pull-up resistors enabled) ILEAK — — 70 µA Min Typ Max Unit VDD: Core and I/O operating1 — 203 — mA VDDA: PLL operating — 8 — mA VDDIO: With most ports operating — 27 — mA Total Operational Power Dissipation: — 480 — mW VDD: Core and I/O not clocked — 100 — µA VDDA: PLL halted — 1 — µA VDDIO: All connected I/O pins 3-stated by other ICs in system — 50 — µA Total Standby Power Dissipation — 348 — µW 5.4 Power Supply Characteristics (Measurements performed under operating conditions) Parameter Operational Power Supply Current: Standby Power Supply Current: 1.Dependent on application firmware and DSP clock speed. 5.5 Thermal Data (48-pin LQFP) Parameter Junction Temperature Symbol Min Typ Max Unit Tj — — 125 °C θja — 63.5 — °C/Watt — 54 — — 0.70 — — 0.64 — Thermal Resistance (Junction to Ambient) Two-layer board1 Four-layer board2 Thermal Resistance (Junction to Top of Package) Two-layer board3 Four-layer board4 ψ jt °C/Watt 1.Two-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1 oz. copper covering 20% of the top and bottom layers. 2.Four-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1 oz. copper covering 20% of the top and bottom layers and 0.5 oz. copper covering 90 % of the internal power plane and ground plane layers. 3.To calculate the die temperature for a given power dissipation Tj = Ambient Temperature + [(Power Dissipation in Watts)*θja] 4.To calculate the case temperature for a given power dissipation Tc = Tj – [(Power Dissipation in Watts)*ψ jt] 10 DS734F5 5.6 Switching Characteristics—RESET 5.6 Switching Characteristics—RESET Parameter Symbol RESET# minimum pulse width low Min Max Unit Trstl 1 — ms Trst2z — 100 ns Configuration pins setup before RESET# high Trstsu 50 — ns Configuration pins hold after RESET# high Trsthld 20 — ns All bidirectional pins high-Z after RESET# low RESET# HS[3:0] All Bidirectional Pins Trstsu Trsthld Trst2z Trstl Figure 5-1. RESET Timing 5.7 Switching Characteristics—XTI Parameter External Crystal operating frequency1 Symbol Min Max Unit Fxtal 11.2896 27 MHz XTI period Tclki 33.3 100 ns XTI high time Tclkih 13.3 — ns XTI low time Tclkil 13.3 — ns CL 10 18 pF ESR — 50 Ω External Crystal Load Capacitance (parallel resonant)2 External Crystal Equivalent Series Resistance 1.Part characterized with the following crystal frequency values: 11.2896, 12.288, 18.432, 24.576, & 27 MH.z 2.CL refers to the total load capacitance as specified by the crystal manufacturer. Crystals that require a CL outside this range should be avoided. The crystal oscillator circuit design should follow the crystal manufacturer’s recommendation for load capacitor selection. XTI t clkih t clkil Tclki Figure 5-2. XTI Timing 5.8 Switching Characteristics—Internal Clock Parameter Internal DCLK Symbol frequency1 Fdclk CS4852x-CQZ CS4854x-CQZ CS4856x-CQZ CS4854x-DQZ CS4856x-DQZ 11 Min Max Unit — — MHz Fxtal Fxtal Fxtal Fxtal Fxtal 150 150 150 150 150 DS734F5 5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode Parameter Internal DCLK period1 Symbol Min Max Unit DCLKP — — ns 6.7 6.7 6.7 6.7 6.7 1/Fxtal 1/Fxtal 1/Fxtal 1/Fxtal 1/Fxtal CS4852x-CQZ CS4854x-CQZ CS4856x-CQZ CS4854x-DQZ CS4856x-DQZ 1.After initial power-on reset, Fdclk = Fxtal. After initial kick-start commands, the PLL is locked to max Fdclk and remains locked until the next power-on reset. 5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode Parameter Symbol Min Typical Max Units SCP_CLK frequency1 fspisck — — 25 MHz SCP_CS# falling to SCP_CLK rising tspicss 24 — — ns SCP_CLK low time tspickl 20 — — ns SCP_CLK high time tspickh 20 — — ns Setup time SCP_MOSI input tspidsu 5 — — ns Hold time SCP_MOSI input tspidh 5 — — ns SCP_CLK low to SCP_MISO output valid tspidov — — 11 ns SCP_CLK falling to SCP_IRQ# rising tspiirqh — — 20 ns SCP_CS# rising to SCP_IRQ# falling tspiirql 0 — — ns SCP_CLK low to SCP_CS# rising tspicsh 24 — — ns SCP_CS# rising to SCP_MISO output high-Z tspicsdz — 20 — ns SCP_CLK rising to SCP_BSY# falling tspicbsyl — 3*DCLKP+20 — ns 1.The specification fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port may be limited by the firmware application. Flow control using the SCP_BSY# pin should be implemented to prevent overflow of the input data buffer. At boot the maximum speed is Fxtal/3. tspicss SCP_CS# tspickl 0 1 2 6 7 0 A0 R/W MSB 5 6 7 tspicsh SCP_CLK fspisck SCP_MOSI tspickh A6 A5 LSB tspidsu tspidh SCP_MISO tspidov tspicsdz MSB LSB tspiirqh tspiirql SCP_IRQ# tspibsyl SCP_BSY# Figure 5-3. Serial Control Port–SPI Slave Mode Timing 12 DS734F5 5.10 Switching Characteristics—Serial Control Port–SPI Master Mode 5.10 Switching Characteristics—Serial Control Port–SPI Master Mode Parameter Symbol Min Typical Max Units SCP_CLK frequency1 fspisck — — Fxtal/22 MHz SCP_CS# falling to SCP_CLK rising3 tspicss — 11*DCLKP + (SCP_CLK PERIOD)/2 — ns SCP_CLK low time tspickl 20 — — ns SCP_CLK high time tspickh 20 — — ns Setup time SCP_MISO input tspidsu 13 — — ns Hold time SCP_MISO input tspidh 5 — — ns SCP_CLK low to SCP_MOSI output valid tspidov — — 8 ns ns SCP_CLK low to SCP_CS# falling tspicsl 7 — — SCP_CLK low to SCP_CS# rising tspicsh — 11*DCLKP + (SCP_CLK PERIOD)/2 — ns Bus free time between active SCP_CS# tspicsx — 3*DCLKP — ns SCP_CLK falling to SCP_MOSI output high-Z tspidz — — 20 ns 1.The specification fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port may be limited by the firmware application. 2.See Section 5.7. 3.SCP_CLK PERIOD refers to the period of SCP_CLK as being used in a given application. It does not refer to a tested parameter. tspicsx tspicss EE_CS# tspickl tspicsl 1 0 2 6 7 0 A0 R/W MSB 5 7 6 tspicsh SCP_CLK fspisck SCP_MISO tspickh A6 A5 LSB tspidsu tspidh tspidov SCP_MOSI tspidz MSB LSB Figure 5-4. Serial Control Port–SPI Master Mode Timing 5.11 Switching Characteristics—Serial Control Port–I2C Slave Mode Parameter SCP_CLK frequency1 SCP_CLK low time SCP_CLK high time Symbol Min Typical Max Units fiicck — — 400 kHz tiicckl 1.25 — — µs tiicckh 1.25 — — µs tiicckcmd 1.25 — — µs START condition to SCP_CLK falling tiicstscl 1.25 — — µs SCP_SCK rising to SCP_SDA rising or falling for START or STOP condition SCP_CLK falling to STOP condition tiicstp 2.5 — — µs Bus free time between STOP and START conditions tiicbft 3 — — µs Setup time SCP_SDA input valid to SCP_CLK rising tiicsu 100 — — ns Hold time SCP_SDA input after SCP_CLK falling tiich 20 — — ns 13 DS734F5 5.12 Switching Characteristics—Serial Control Port–I2C Master Mode Parameter Symbol Min Typical Max Units — 18 ns — — 3*DCLKP + 40 ns — 3*DCLKP + 20 — ns — 3*DCLKP + 20 — ns SCP_CLK low to SCP_SDA out valid tiicdov — SCP_CLK falling to SCP_IRQ# rising tiicirqh NAK condition to SCP_IRQ# low tiicirql SCP_CLK rising to SCB_BSY# low tiicbsyl 1.The specification fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port may be limited by the firmware application. Flow control using the SCP_BSY# pin should be implemented to prevent overflow of the input data buffer. tiicckcmd tiicckl 0 1 tiicr 6 tiicf 7 8 tiicckcmd 0 1 6 7 8 SCP_CLK tiicstscl SCP_SDA tiicckh A6 tiicdov A0 R/W tiicstp fiicck ACK MSB ACK LSB tiicirqh tiicsu tiicbft tiicirql tiich SCP_IRQ# tiiccbsyl SCP_BSY# Figure 5-5. Serial Control Port–I2C Slave Mode Timing 5.12 Switching Characteristics—Serial Control Port–I2C Master Mode Parameter SCP_CLK frequency1 Symbol Min Max Units fiicck — 400 kHz SCP_CLK low time tiicckl 1.25 — µs SCP_CLK high time tiicckh 1.25 — µs SCP_SCK rising to SCP_SDA rising or falling for START or STOP condition tiicckcmd 1.25 — µs START condition to SCP_CLK falling tiicstscl 1.25 — µs SCP_CLK falling to STOP condition tiicstp 2.5 — µs Bus free time between STOP and START conditions tiicbft 3 — µs Setup time SCP_SDA input valid to SCP_CLK rising tiicsu 100 — ns tiich 20 — ns tiicdov — 18 ns Hold time SCP_SDA input after SCP_CLK falling SCP_CLK low to SCP_SDA out valid 1.The specification fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port may be limited by the firmware application. 14 DS734F5 5.13 Switching Characteristics—Digital Audio Slave Input Port tiicckcmd tiicckl 0 1 tiicr 6 tiicf 7 tiicckcmd 8 0 1 6 7 8 SCP_CLK tiicstscl tiicckh A6 SCP_SDA tiicsu tiicdov A0 R/W tiicstp fiicck ACK MSB tiicbft ACK LSB tiich Figure 5-6. Serial Control Port–I2C Master Mode Timing 5.13 Switching Characteristics—Digital Audio Slave Input Port Parameter Symbol Min Tdaiclkp — Setup time DAI_DATAn Hold time DAI_DATAn DAI_SCLK period DAI_SCLK duty cycle Max Unit 40 — ns 45 55 % tdaidsu 10 — ns tdaidh 5 — ns DAI_SCLK tdaidsu tdaidh DAI_DATAn Figure 5-7. Digital Audio Input (DAI) Port Timing Diagram 5.14 Switching Characteristics—DSD Slave Input Port Symbol Min Typ Max Unit DSD_SCLK Pulse Width Low Parameter tsclkl 78 — — ns DSD_SCLK Pulse Width High tsclkh 78 — — ns — 1.024 — 3.2 MHz DSD_A/B valid to DSD_SCLK rising setup time tsdlrs 20 — — ns DSD_SCLK rising to DSD_A or DSD_B hold time tsdh 20 — — ns DSD_SCLK Frequency (64x Oversampled) Figure 5-8. Direct Stream Digital–Serial Audio Input Timing 15 DS734F5 5.15 Switching Characteristics—Digital Audio Output (DAO) Port 5.15 Switching Characteristics—Digital Audio Output (DAO) Port Parameter Symbol DAO_MCLK period DAO_MCLK duty cycle DAO_SCLK period for Master or Slave mode1 DAO_SCLK duty cycle for Master or Slave mode1 Min Max Unit Tdaomclk 40 — ns — 45 55 % Tdaosclk 40 — ns — 40 60 % 1.Master mode timing specifications are characterized, not production tested. Table 5-1. Master Mode (Output A1 Mode)1,2 Parameter DAO_SCLK delay from DAO_MCLK rising edge, DAO_MCLK as an input DAO_LRCLK delay from DAO_SCLK transition, respectively3 DAO_SCLK delay from DAO_LRCLK transition, respectively3 DAO1_DATA[3:0], DAO2_DATA[1:0] delay from DAO_SCLK transition3 Symbol tdaomsck tdaomstlr tdaomlrts tdaomdv Min — — — — Max 19 8 8 10 Unit ns ns ns ns 1.Master mode timing specifications are characterized, not production tested. 2.Master mode is defined as the CS48xx driving both DAO_SCLK, DAO_LRCLK. When MCLK is an input, it is divided to produce DAO_SCLK, DAO_ LRCLK. 3.This timing parameter is defined from the non-active edge of DAO_SCLK. The active edge of DAO_SCLK is the point at which the data is valid. tdaomclk DAO_MCLK tdaomsck DAO_SCLK DAOn_DATAn tdaomstlr DAO_LRCLK Note: In these diagrams, Falling edge is the inactive edge of DAO_SCLK. Figure 5-9. Digital Audio Output Port Timing, Master Mode 16 DS734F5 5.15 Switching Characteristics—Digital Audio Output (DAO) Port Table 5-2. Slave Mode (Output A0 Mode)1 Parameter DAO_SCLK active edge to DAO_LRCLK transition DAO_LRCLK transition to DAO_SCLK active edge DAO_Dx delay from DAO_SCLK inactive edge Symbol tdaosstlr tdaoslrts tdaosdv Min 10 10 — Max — — 11 Unit ns ns ns 1.Slave mode is defined as DAO_SCLK, DAO_LRCLK driven by an external source. tdaosclk t daosstlr DAO_LRCLK DAO_LRCLK DAO_SCLK DAO_SCLK t daosclk tdaoslrts DAOn_DATAn t daosdv Note: In these diagrams, Falling edge is the inactive edge of DAO_SCLK. Figure 5-10. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK) 17 DS734F5 6 Ordering Information 6 Ordering Information The CS485xx family part number is CS485NI-XYZR where: • N–Product Number Variant • I–ROM ID Number • X–Product Grade • Y–Package Type • Z–Lead (Pb) Free • R–Tape and Reel Packaging Table 6-1. Ordering Information Part No. CS48520-CQZ CS48540-CQZ CS48540-DQZ CS48560-CQZ CS48560-DQZ Note: Grade Commercial Commercial Automotive Commercial Automotive Temp. Range 0 to +70° C 0 to +70° C –40 to +85° C 0 to +70° C –40 to +85° C Package 48-pin LQFP Contact the factory for availability of the automotive grade package. 7 Environmental, Manufacturing, and Handling Information Table 7-1. Environmental, Manufacturing, and Handling Information Model Number Peak Reflow Temp CS48520-CQZ CS48540-CQZ CS48540-DQZ CS48560-CQZ CS48560-DQZ 260° C MSL Rating1 3 Max Floor Life 7 days 1.MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020. 18 DS734F5 8 Device Pinout Diagrams 8 Device Pinout Diagrams GPIO4, HS2 GPIO18, DAO_MCLK 26 25 GNDIO3 30 GPIO3, HS1 GPIO6, DAO2 _DATA0, HS3 31 27 GPIO7, HS4 32 VDD2 GND4 33 28 GPIO9, SCP_MOSI 34 GPIO5, XMTA GPIO10, SCP__MISO / SDA 35 29 GPIO11, SCP_CLK 36 8.1 CS48520, 48-pin LQFP Pinout Diagram VDDIO3 37 24 VDDIO2 GPIO8, SCP_CS# 38 23 DAO_SCLK GPOI12, SCP_IRQ# 39 22 GNDIO4 40 21 DAO_LRCLK GPIO13, SCP_BSY#, EE_CS# 41 20 DAO1_DATA0, HS0 VDD3 42 XTAL_OUT CS48520 19 48-Pin LQFP 43 GND3 GNDIO2 18 GPIO15, DAI2_SCLK 11 12 VDDIO1 GND2 GPIO0 GPIO1 10 13 GPIO16, DAI1_DATA0 48 9 VDDA (3.3V) 8 GPIO2 DAI1_SCLK 14 7 47 GNDIO1 PLL_REF_RES 6 GPIO17, DAI2_DATA0 DAI1_LRCLK 15 5 46 DBCK GNDA 4 VDD1 GND1 16 3 45 DBDA XTO 2 GPIO14, DAI2_LRCLK RESET# 17 1 44 TEST XTI Figure 8-1. CS48520, 48-pin LQFP Pinout 19 DS734F5 8.2 CS48540, 48-pin LQFP Pinout Diagram GPIO18, DAO_MCLK GPIO5, XMTA 29 25 GNDIO3 30 GPIO4, DAO1_ DATA2, HS2 GPIO6, DAO2_DATA0, HS3 31 26 GPIO7, HS4 32 GPIO3, DAO1_ DATA1, HS1 GND4 33 27 GPIO9, SCP_MOSI 34 VDD2 GPIO10, SCP__MISO / SDA 35 28 GPIO11, SCP_CLK 36 8.2 CS48540, 48-pin LQFP Pinout Diagram VDDIO3 37 24 VDDIO2 GPIO8, SCP_CS# 38 23 DAO_SCLK GPOI12, SCP_IRQ# 39 22 GNDIO4 40 21 DAO_LRCLK GPIO13, SCP_BSY#, EE_CS# 41 20 DAO1_DATA0, HS0 VDD3 42 XTAL_OUT CS48540 19 48-Pin LQFP 43 GND3 GNDIO2 18 GPIO15, DAI2_SCLK 11 12 VDDIO1 GND2 GPIO0, DAI1_DATA1 GPIO1, DAI1_DATA2 10 13 GPIO16, DAI1_DATA0 48 9 VDDA (3.3V) 8 GPIO2 DAI1_SCLK 14 7 47 GNDIO1 PLL_REF_RES 6 GPIO17, DAI2_DATA0 DAI1_LRCLK 15 5 46 DBCK GNDA 4 VDD1 GND1 16 3 45 DBDA XTO 2 GPIO14, DAI2_LRCLK RESET# 17 1 44 TEST XTI Figure 8-2. CS48540, 48-pin LQFP Pinout 20 DS734F5 8.3 CS48560, 48-pin LQFP Pinout Diagram GPIO4, DAO1_ DATA2, HS2 GPIO18, DAO_MCLK 26 25 GNDIO3 30 GPIO3, DAO1_ DATA1, HS1 GPIO6, DAO2 _DATA0, HS3 31 27 GPIO7, DAO2_D ATA1, HS4 32 VDD2 GND4 33 28 GPIO9, SCP_MOSI 34 GPIO5, DAO1_DATA3, X MTA GPIO10, SCP__MISO / SDA 35 29 GPIO11, SCP_CLK 36 8.3 CS48560, 48-pin LQFP Pinout Diagram VDDIO3 37 24 VDDIO2 GPIO8, SCP_CS# 38 23 DAO_SCLK GPOI12, SCP_IRQ# 39 22 GNDIO4 40 21 DAO_LRCLK GPIO13, SCP_BSY#, EE_CS# 41 20 DAO1_DATA0, HS0 VDD3 42 XTAL_OUT CS48560 19 48-Pin LQFP 43 GND3 GNDIO2 18 GPIO15, DAI2_SCLK 11 12 VDDIO1 GND2 GPIO0, DAI1_DATA1, TM1, DSD1 GPIO1, DAI1_DATA2, TM2, DSD2 10 13 GPIO16, DAI1_DATA0, TM0, DSD0 48 9 VDDA (3.3V) 8 GPIO2, DAI1_DATA3, TM3, DSD3 DAI1_SCLK, DSD-CLK 14 7 47 GNDIO1 PLL_REF_RES 6 GPIO17, DAI2_DATA0, DSD4 DAI1_LRCLK, DAI1_DATA4, DSD5 15 5 46 DBCK GNDA 4 VDD1 GND1 16 3 45 DBDA XTO 2 GPIO14, DAI2_LRCLK RESET# 17 1 44 TEST XTI Figure 8-3. CS48560, 48-pin LQFP 21 DS734F5 9 Package Mechanical Drawings 9 Package Mechanical Drawings 9.1 48-pin LQFP Package Drawing 48 LD LQFP (7 x 7 x 1.4 mm body) A A1 A2 b D D1 e E E1 theta L L1 Number of Leads 48 MIN NOM MAX 1.60 0.05 0.15 1.35 1.40 1.45 0.17 0.22 0.27 9.00 BSC 7.00 BSC 0.50 BSC 9.00 BSC 7.00 BSC 0 7 0.45 0.60 0.75 1.00 REF NOTES: 1) Reference document: JEDEC MS-026 2) All dimensions are in millimeters and controlling dimension is in millimeters. 3) D1 and E1 do not include mold flash which is 0.25 mm max. per side.A1 4) Dimension b does not include a total allowable dambar protrusion of 0.08 mm max. Figure 9-1. 48-pin LQFP Package Drawing 22 DS734F5 10 Revision History 10 Revision History Revision Changes A1 July, 2006 Advance release. A2 July, 2006 Updated pinout definition for pins 26 and 27. Updated typical power numbers. A3 December 5, 2006 PP1 March 12, 2007 PP2 23 Date Updated sections 2.0, 4.21, 5.8, Table 3, Table 4, to show new device numbering scheme. Updated sections 8.1, 8.2, 8.3. Preliminary Release December 18, 2007 Changed title of data sheet from CS48500 Data Sheet to CS485xx Family Data Sheet to cover all CS485xx family products. Updated Standby Power specification in Section 5.4. Updated DAO timing specifications and timing diagrams in Section 5.15. F1 April 21, 2007 Removed DSD Phase Modulation Mode from Section 5.14. Removed reference to MCLK in Section 5.14. Redefined Master mode clock speed for SCP_CLK in Section 5.10. Redefined DC leakage characterization data in Section 5.3. Added typical crystal frequency values in Table Footnote 1 under Section 5.7. Modified Footnote 1 under Section 5.9. Modified power supply characteristics in Section 5.4, F2 July 14, 2008 Added reference to support for time division multiplexed (TDM) one-line data mode for DAO port in Section 4.2.2. F3 February 16, 2009 F4 June 29, 2011 Updated Section 5.10; changed Tspidsu value to 13 ns. F5 October, 2011 Updated Section 5.15 DAO output slave mode specifications. Updated Section 5.5, adding Junction Temperature specification. DS734F5