EP7309 Data Sheet FEATURES High-performance, Low-power, System-on-chip with Enhanced Digital Audio Interface ARM720T Processor — ARM7TDMI CPU — 8 KB of four-way set-associative cache — MMU with 64-entry TLB — Thumb code support enabled Ultra low power — 90 mW at 74 MHz typical — 30 mW at 18 MHz typical — 10 mW in the Idle State — <1 mW in the Standby State Advanced audio decoder/decompression capability — Supports bit streams with adaptive bit rates — Allows for support of multiple audio decompression algorithms (MP3, WMA, AAC, ADPCM, Audible, etc.) OVERVIEW The Maverick™ EP7309 is designed for ultra-low-power applications such as digital music players, internet appliances, smart cellular phones or any hand-held device that features the added capability of digital audio decompression. The corelogic functionality of the device is built around an ARM720T processor with 8 KB of four-way set-associative unified cache and a write buffer. Incorporated into the ARM720T is an enhanced memory management unit (MMU) which allows for support of sophisticated operating systems like Microsoft® Windows® CE and Linux®. (cont.) (cont.) BLOCK DIAGRAM Digital Audio Interface SERIAL PORTS Clocks & Timers ICE-JTAG Power Management Interrupts, PWM & GPIO ARM720T ARM7TDMI CPU Core (2) UARTs w/ IrDA 8 KB Write Cache Buffer MMU Boot ROM Bus Bridge Keypad& Touch Screen I/F Internal Data Bus MaverickKeyTM SRAM & FLASH I/F On-chip SRAM 48 KB USER INTERFACE Serial Interface EPB Bus LCD Controller MEMORY AND STORAGE Copyright Cirrus Logic, Inc. 2011 http://www.cirrus.com (All Rights Reserved) MAR ‘11 DS507F2 EP7309 High-Performance, Low-Power System on Chip FEATURES (cont) Dynamically programmable clock speeds of 18, 36, 49, and 74 MHz 48 KB of on-chip SRAM MaverickKey™ IDs — 32-bit unique ID can be used for SDMI compliance — 128-bit random ID LCD controller — Interfaces directly to a single-scan panel monochrome STN LCD — Interfaces to a single-scan panel color STN LCD with minimal external glue logic Full JTAG boundary scan and Embedded ICE support Integrated Peripheral Interfaces — 8/32/16-bit SRAM/FLASH/ROM Interface — Digital Audio Interface providing glueless interface to low-power DACs, ADCs and CODECs — Two Synchronous Serial Interfaces (SSI1, SSI2) — CODEC Sound Interface — 88 Keypad Scanner — 27 General Purpose Input/Output pins — Dedicated LED flasher pin from the RTC Internal Peripherals — Two 16550 compatible UARTs — IrDA Interface — Two PWM Interfaces — Real-time Clock — Two general purpose 16-bit timers — Interrupt Controller — Boot ROM Package — 208-Pin LQFP — 256-Ball PBGA The fully static EP7309 is optimized for low power dissipation and is fabricated on a 0.25 micron CMOS process OVERVIEW (cont.) The EP7309 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V. The device has three basic power states: operating, idle and standby. MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. 2 The EP7309 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal‚ CS43L41/42/43 low-power audio DACs and the Crystal‚ CS53L32 low-power ADC. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions. Simply by adding desired memory and peripherals to the highly integrated EP7309 completes a low-power system solution. All necessary interface logic is integrated on-chip. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Table of Contents FEATURES ..................................................................................................................................................................2 OVERVIEW ..................................................................................................................................................................2 Processor Core - ARM720T ..................................................................................................................................6 Power Management ..............................................................................................................................................6 MaverickKey™ Unique ID .....................................................................................................................................6 Memory Interfaces .................................................................................................................................................6 Digital Audio Capability .........................................................................................................................................6 Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................6 Digital Audio Interface (DAI) ..................................................................................................................................7 CODEC Interface ..................................................................................................................................................7 SSI2 Interface ........................................................................................................................................................7 Synchronous Serial Interface ................................................................................................................................8 LCD Controller .......................................................................................................................................................8 Interrupt Controller ................................................................................................................................................8 Real-Time Clock ....................................................................................................................................................8 PLL and Clocking ..................................................................................................................................................9 DC-to-DC converter interface (PWM) ....................................................................................................................9 Timers ...................................................................................................................................................................9 General Purpose Input/Output (GPIO) ..................................................................................................................9 Hardware debug Interface .....................................................................................................................................9 Internal Boot ROM ...............................................................................................................................................10 Packaging ............................................................................................................................................................10 Pin Multiplexing ...................................................................................................................................................10 System Design .................................................................................................................................................... 11 ELECTRICAL SPECIFICATIONS ......................................................................................................12 Absolute Maximum Ratings .................................................................................................................................12 Recommended Operating Conditions .................................................................................................................12 DC Characteristics ..............................................................................................................................................12 Timings ...............................................................................................................................................14 Timing Diagram Conventions ....................................................................................................................14 Timing Conditions ......................................................................................................................................14 Static Memory ......................................................................................................................................................15 Static Memory Single Read Cycle .............................................................................................................16 Static Memory Single Write Cycle ..............................................................................................................17 Static Memory Burst Read Cycle ...............................................................................................................18 Static Memory Burst Write Cycle ...............................................................................................................19 SSI1 Interface ......................................................................................................................................................20 SSI2 Interface ......................................................................................................................................................21 LCD Interface ......................................................................................................................................................22 JTAG Interface ....................................................................................................................................................23 Packages ............................................................................................................................................24 208-Pin LQFP Package Characteristics ..............................................................................................................24 208-Pin LQFP Package Specifications ......................................................................................................24 208-Pin LQFP Pin Diagram .......................................................................................................................25 208-Pin LQFP Numeric Pin Listing ............................................................................................................26 256-Ball PBGA Package Characteristics ............................................................................................................29 256-Ball PBGA Package Specifications ....................................................................................................29 256-Ball PBGA Pinout (Top View)) ............................................................................................................30 DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 3 EP7309 High-Performance, Low-Power System on Chip 256-Ball PBGA Ball Listing ........................................................................................................................ 30 JTAG Boundary Scan Signal Ordering ............................................................................................................... 34 CONVENTIONS ................................................................................................................................. 39 Acronyms and Abbreviations .............................................................................................................................. 39 Units of Measurement ......................................................................................................................................... 39 General Conventions .......................................................................................................................................... 40 Pin Description Conventions ............................................................................................................................... 40 .................................................................................................................................................................. 40 Ordering Information ....................................................................................................................... 41 Environmental, Manufacturing, & Handling Information ............................................................. 41 Revision History .............................................................................................................................. 42 4 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip List of Figures Figure 1. A Maximum EP7309 Based System ..............................................................................................................11 Figure 2. Legend for Timing Diagrams .........................................................................................................................14 Figure 3. Static Memory Single Read Cycle Timing Measurement ...............................................................................16 Figure 4. Static Memory Single Write Cycle Timing Measurement ...............................................................................17 Figure 5. Static Memory Burst Read Cycle Timing Measurement ................................................................................18 Figure 6. Static Memory Burst Write Cycle Timing Measurement ................................................................................19 Figure 7. SSI1 Interface Timing Measurement .............................................................................................................20 Figure 8. SSI2 Interface Timing Measurement .............................................................................................................21 Figure 9. LCD Controller Timing Measurement ............................................................................................................22 Figure 10. JTAG Timing Measurement .........................................................................................................................23 Figure 11. 208-Pin LQFP Package Outline Drawing ....................................................................................................24 Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................................................25 Figure 13. 256-Ball PBGA Package ..............................................................................................................................29 List of Tables Table 1. Power Management Pin Assignments ..............................................................................................................6 Table 2. Static Memory Interface Pin Assignments ........................................................................................................6 Table 3. Universal Asynchronous Receiver/Transmitters Pin Assignments ...................................................................7 Table 4. DAI Interface Pin Assignments .........................................................................................................................7 Table 5. CODEC Interface Pin Assignments ..................................................................................................................7 Table 6. SSI2 Interface Pin Assignments .......................................................................................................................7 Table 7. Serial Interface Pin Assignments ......................................................................................................................8 Table 8. LCD Interface Pin Assignments ........................................................................................................................8 Table 9. Keypad Interface Pin Assignments ...................................................................................................................8 Table 10. Interrupt Controller Pin Assignments ..............................................................................................................8 Table 11. Real-Time Clock Pin Assignments ..................................................................................................................9 Table 12. PLL and Clocking Pin Assignments ................................................................................................................9 Table 13. DC-to-DC Converter Interface Pin Assignments .............................................................................................9 Table 14. General Purpose Input/Output Pin Assignments ............................................................................................9 Table 15. Hardware Debug Interface Pin Assignments ..................................................................................................9 Table 16. LED Flasher Pin Assignments ........................................................................................................................9 Table 17. DAI/SSI2/CODEC Pin Multiplexing ...............................................................................................................10 Table 18. Pin Multiplexing .............................................................................................................................................10 Table 19. 208-Pin LQFP Numeric Pin Listing ...............................................................................................................26 Table 20. 256-Ball PBGA Ball Listing ...........................................................................................................................30 Table 21. JTAG Boundary Scan Signal Ordering .........................................................................................................34 Table 22. Acronyms and Abbreviations ........................................................................................................................39 Table 23. Unit of Measurement .....................................................................................................................................39 Table 24. Pin Description Conventions .........................................................................................................................40 DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 5 EP7309 High-Performance, Low-Power System on Chip Processor Core - ARM720T The EP7309 incorporates an ARM 32-bit RISC microcontroller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include: • • • • ARM (32-bit) and Thumb (16-bit compressed) instruction sets Enhanced MMU for Microsoft Windows CE and other operating systems 8 KB of 4-way set-associative cache. Translation Look Aside Buffers with 64 Translated Entries Power Management The EP7309 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V allowing the device to achieve a performance level equivalent to 60 MIPS. The device has three basic power states: • Operating — This state is the full performance state. All the clocks and peripheral logic are enabled. • Idle — This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press. • Standby — This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor. Pin Mnemonic I/O Pin Description BATOK I Battery ok input nEXTPWR I External power supply sense input nPWRFL I Power fail sense input nBATCHG I Battery changed sense input MaverickKey The EP7309 is equiped with a ROM/SRAM/FLASH-style interface that has programmable wait-state timings and includes burst-mode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32-bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH memory. To further minimize system memory requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industry-leading code density. Pin Mnemonic I/O Pin Description nCS[5:0] O Chip select out A[27:0] O Address output D[31:0] I/O Data I/O nMOE O ROM expansion OP enable nMWE O ROM expansion write enable HALFWORD O Halfword access select output WORD O Word access select output WRITE O Transfer direction Digital Audio Capability Unique ID MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. 6 Memory Interfaces Table 2. Static Memory Interface Pin Assignments Table 1. Power Management Pin Assignments ™ Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7309 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7309 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances. The EP7309 uses its powerful 32-bit RISC processing engine to implement audio decompression algorithms in software. The nature of the on-board RISC processor, and the availability of efficient C-compilers and other software development tools, ensures that a wide range of audio decompression algorithms can easily be ported to and run on the EP7309 Universal Asynchronous Receiver/Transmitters (UARTs) The EP7309 includes two 16550-type UARTs for RS-232 serial communications, both of which have two 16-byte FIFOs for receiving and transmitting data. The UARTs support bit Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip rates up to 115.2 kbps. An IrDA SIR protocol encoder/decoder can be optionally switched into the RX/TX signals to/from UART 1 to enable these signals to drive an infrared communication interface directly. Pin Mnemonic I/O Pin Description TXD[1] O UART 1 transmit RXD[1] I UART 1 receive CTS I UART 1 clear to send DCD I UART 1 data carrier detect DSR I UART 1 data set ready TXD[2] O UART 2 transmit RXD[2] I UART 2 receive LEDDRV O Infrared LED drive output PHDIN I Photo diode input Digital Audio Interface (DAI) The EP7309 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal‚ CS43L41/42/43 low-power audio DACs and the Crystal‚ CS53L32 low-power ADC. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions. I/O Pin Mnemonic I/O is Pin Description PCMCLK O Serial bit clock PCMOUT O Serial data out PCMIN I Serial data in PCMSYNC O Frame sync Table 5. CODEC Interface Pin Assignments Note: See Table 17 on page 10 for information on pin multiplexes. SSI2 Interface Table 3. Universal Asynchronous Receiver/Transmitters Pin Assignments Pin Mnemonic communications systems. The CODEC interface multiplexed to the same pins as the DAI and SSI2. Pin Description An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the DAI and CODEC interfaces through a multiplexer. • • • • Synchronous clock speeds of up to 512 kHz Separate 16 entry TX and RX half-word wide FIFOs Half empty/full interrupts for FIFOs Separate RX and TX frame sync signals for asymmetric traffic Pin Mnemonic I/O Pin Description SSICLK I/O Serial bit clock SSITXDA O Serial data out Serial data in SCLK O Serial bit clock SSIRXDA I SDOUT O Serial data out SSITXFR I/O Transmit frame sync SDIN I Serial data in SSIRXFR I/O Receive frame sync LRCK O Sample clock MCLKIN I Master clock input MCLKOUT O Master clock output Table 6. SSI2 Interface Pin Assignments Note: See Table 17 on page 10 for information on pin multiplexes. Table 4. DAI Interface Pin Assignments Note: See Table 17 on page 10 for information on pin multiplexes. CODEC Interface The EP7309 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 7 EP7309 High-Performance, Low-Power System on Chip Synchronous Serial Interface • • • ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation) Selectable serial clock polarity Pin Mnemonic I/O • • Pin Description ADCLK O SSI1 ADC serial clock ADCIN I SSI1 ADC serial input ADCOUT O SSI1 ADC serial output nADCCS O SSI1 ADC chip select SMPCLK O SSI1 ADC sample clock • • Column outputs can be individually set high with the remaining bits left at high-impedance Column outputs can be driven all-low, all-high, or all-highimpedance Keyboard interrupt driven by OR'ing together all Port A bits Keyboard interrupt can be used to wake up the system 88 keyboard matrix usable with no external logic, extra keys can be added with minimal glue logic Pin Mnemonic I/O COL[7:0] Pin Description Keyboard scanner column drive O Table 7. Serial Interface Pin Assignments Table 9. Keypad Interface Pin Assignments LCD Controller Interrupt Controller A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM. When unexpected events arise during the execution of a program (i.e., interrupt or memory fault) an exception is usually generated. When these exceptions occur at the same time, a fixed priority system determines the order in which they are handled. The EP7309 interrupt controller has two interrupt types: interrupt request (IRQ) and fast interrupt request (FIQ). The interrupt controller has the ability to control interrupts from 22 different FIQ and IRQ sources. • • • • • Interfaces directly to a single-scan panel monochrome STN LCD Interfaces to a single-scan panel color STN LCD with minimal external glue logic Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments Video frame buffer size programmable up to 128 KB Bits per pixel of 1, 2, or 4 bits • • • Supports 22 interrupts from a variety of sources (such as UARTs, SSI1, and key matrix.) Routes interrupt sources to the ARM720T’s IRQ or FIQ (Fast IRQ) inputs Five dedicated off-chip interrupt lines operate as level sensitive interrupts . Pin Mnemonic I/O Pin Description Pin Mnemonic I/O Pin Description CL1 O LCD line clock nEINT[2:1] I External interrupt CL2 O LCD pixel clock out EINT[3] I External interrupt DD[3:0] O LCD serial display data bus nEXTFIQ I External Fast Interrupt input FRM O LCD frame synchronization pulse nMEDCHG/nBROM I Media change interrupt input M O LCD AC bias drive (Note) Table 10. Interrupt Controller Pin Assignments Table 8. LCD Interface Pin Assignments Note: 64-Keypad Interface Matrix keyboards and keypads can be easily read by the EP7309. A dedicated 8-bit column driver output generates strobes for each keyboard column signal. The pins of Port A, when configured as inputs, can be selectively OR'ed together to provide a keyboard interrupt that is capable of waking the system from a STANDBY or IDLE state. 8 Pins are multiplexed. See Table 18 on page 10 for more information. Real-Time Clock The EP7309 contains a 32-bit Real Time Clock (RTC) that can be written to and read from in the same manner as the timer counters. It also contains a 32-bit output match register which can be programmed to generate an interrupt. • Driven byan external 32.768 kHz crystal oscillator Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Pin Mnemonic Pin Description Pin Mnemonic Real-Time Clock Oscillator Input PA[7:0] I/O GPIO port A RTCOUT Real-Time Clock Oscillator Output PB[7:0] I/O GPIO port B VDDRTC Real-Time Clock Oscillator Power PD[0]/LEDFLSH I/O GPIO port D VSSRTC Real-Time Clock Oscillator Ground PD[5:1] I/O GPIO port D (Note) I/O GPIO port D PE[1:0]/BOOTSEL[1:0] (Note) I/O GPIO port E PE[2]/CLKSEL I/O GPIO port E PD[7:6]/SDQM[1:0] PLL and Clocking • Processor and Peripheral Clocks operate from a single 3.6864 MHz crystal or external 13 MHz clock Programmable clock speeds allow the peripheral bus to run at 18 MHz when the processor is set to 18 MHz and at 36 MHz when the processor is set to 36, 49 or 74 MHz Pin Mnemonic Note: Pins are multiplexed. See Table 18 on page 10 for more information. Hardware debug Interface Full JTAG boundary scan and Embedded ICE support Main Oscillator Input MOSCOUT Main Oscillator Output VDDOSC Main Oscillator Power TCLK I JTAG clock VSSOSC Main Oscillator Ground TDI I JTAG data input TDO O JTAG data output nTRST I JTAG async reset input TMS I JTAG mode select Pin Mnemonic Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter Pin Mnemonic DRIVE[1:0] FB[1:0] I/O I/O I Pin Description PWM drive output PWM feedback input Table 13. DC-to-DC Converter Interface Pin Assignments Timers Internal (RTC) timer Two internal 16-bit programmable hardware count-down timers General Purpose Input/Output (GPIO) • • (Note) MOSCIN DC-to-DC converter interface (PWM) • • (Note) Table 14. General Purpose Input/Output Pin Assignments • Pin Description Table 12. PLL and Clocking Pin Assignments • Pin Description RTCIN Table 11. Real-Time Clock Pin Assignments • I/O Three 8-bit and one 3-bit GPIO ports Supports scanning keyboard matrix Pin Description Table 15. Hardware Debug Interface Pin Assignments LED Flasher A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA. • • • • Software adjustable flash period and duty cycle Operates from 32 kHz RTC clock Will continue to flash in IDLE and STANDBY states 4 mA drive current Pin Mnemonic PD[0]/LEDFLSH (Note) I/O O Pin Description LED flasher driver Table 16. LED Flasher Pin Assignments Note: DS507F2 I/O Pins are multiplexed. See Table 18 on page 10 for more information. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 9 EP7309 High-Performance, Low-Power System on Chip Internal Boot ROM The internal 128 byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH. Packaging The EP7309 is available in a 208-pin LQFP package, 256-ball PBGA package or a 204-ball TFBGA package. Pin Multiplexing The following table shows the pin multiplexing of the DAI, SSI2 and the CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the DAI is controlled by the DAISEL bit in SYSCON3 (see the EP7309 User’s Manual for more information). Pin Mnemonic Pin Mnemonic I/O DAI SSI2 CODEC SSITXFR I/O LRCK SSITXFR PCMSYNC SSIRXFR I MCLKIN SSIRXFR p/u BUZ O MCLKOUT Table 17. DAI/SSI2/CODEC Pin Multiplexing The following table shows the pins that have been multiplexed in the EP7309. Signal Block Signal Block RUN System Configuration CLKEN System Configuration nMEDCHG Interrupt Controller nBROM Boot ROM select I/O DAI SSI2 CODEC PD[0] GPIO LEDFLSH LED Flasher SSICLK I/O SCLK SSICLK PCMCLK PE[1:0] GPIO BOOTSEL[1:0] System Configuration SSITXDA O SDOUT SSITXDA PCMOUT PE[2] GPIO CLKSEL SSIRXDA I SDIN SSIRXDA PCMIN System Configuration Table 18. Pin Multiplexing Table 17. DAI/SSI2/CODEC Pin Multiplexing 10 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip System Design As shown in system block diagram, simply adding desired memory and peripherals to the highly integrated EP7309 CRYSTAL MOSCIN CRYSTAL RTCIN completes a low-power system solution. All necessary interface logic is integrated on-chip. DD[0-3] CL1 CL2 FRM M LCD COL[0-7] KEYBOARD PA[0-7] nCS[4] PB0 EXPCLK PB[0-7] PD[0-7] D[0-31] PC CARD CONTROLLER A[0-27] nMOE WRITE nCS[0] nCS[1] 16 FLASH 16 FLASH 16 FLASH 6 FLASH PE[0-2] EP7309 PC CARD SOCKET nPOR nPWRFL BATOK nEXTPWR nBATCHG RUN WAKEUP DRIVE[0-1] FB[0-1] SSICLK SSITXFR SSITXDA SSIRXDA SSIRXFR LEDDRV PHDIN CS[n] WORD EXTERNAL MEMORYMAPPED EXPANSION BUFFERS nCS[2] nCS[3] ADDITIONAL I/O BUFFERS AND LATCHES LEDFLSH RXD1/2 TXD1/2 DSR CTS DCD ADCCLK nADCCS ADCOUT ADCIN SMPCLK POWER SUPPLY UNIT AND COMPARATORS DC INPUT BATTERY DC-TO-DC CONVERTERS CODEC/SSI2/ DAI IR LED AND PHOTODIODE 2RS-232 TRANSCEIVERS ADC DIGITIZER Figure 1. A Maximum EP7309 Based System Note: DS507F2 A system can only use one of the following peripheral interfaces at any given time: SSI2,CODEC or DAI. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 11 EP7309 High-Performance, Low-Power System on Chip ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings DC Core, PLL, and RTC Supply Voltage 2.9 V DC I/O Supply Voltage (Pad Ring) 3.6 V DC Pad Input Current 10 mA/pin; 100 mA cumulative Storage Temperature, No Power –40C to +125C Recommended Operating Conditions DC core, PLL, and RTC Supply Voltage 2.5 V 0.2 V DC I/O Supply Voltage (Pad Ring) 2.3 V - 3.5 V DC Input / Output Voltage O–I/O supply voltage Operating Temperature Extended -20C to +70C; Commercial 0C to +70C; Industrial -40C to +85C DC Characteristics All characteristics are specified at VDDCORE = 2.5 V, VDDIO = 3.3 V and VSS = 0 V over an operating temperature of 0°C to +70°C for all frequencies of operation. The current consumption figures have test conditions specified per parameter.” Symbol Parameter Min Typ Max Unit Conditions VIH CMOS input high voltage 0.65 VDDIO - VDDIO + 0.3 V VDDIO = 2.5 V VIL CMOS input low voltage VSS 0.3 - 0.25 VDDIO V VDDIO = 2.5 V VT+ Schmitt trigger positive going threshold - - 2.1 V VT- Schmitt trigger negative going threshold 0.8 - - V Vhst Schmitt trigger hysteresis 0.1 - 0.4 V VIL to VIH VDD – 0.2 2.5 2.5 - - V V V IOH = 0.1 mA IOH = 4 mA IOH = 12 mA Output drive 2a - - 0.3 0.5 0.5 V V V IOL = –0.1 mA IOL = –4 mA IOL = –12 mA Input leakage current - - 1.0 µA VIN = VDD or GND currentb c 25 - 100 µA VOUT = VDD or GND CIN Input capacitance 8 - 10.0 pF COUT Output capacitance 8 - 10.0 pF CMOS output high voltagea VOH Output drive 1a Output drive 2a CMOS output low voltagea VOL IIN IOZ 12 Output drive 1a Bidirectional 3-state leakage Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Symbol CI/O Parameter Transceiver capacitance IDDSTANDBY @ 25 C IDDSTANDBY @ 70 C IDDSTANDBY @ 85 C IDDidle at 74 MHz Standby current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V Standby current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V Min Typ Max Unit 8 - 10.0 pF - 77 41 - - - 570 111 µA Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V µA Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V µA Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V Standby current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V Idle current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V VDDSTANDBY Standby supply voltage - - 1693 163 Conditions - 6 10 - mA Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V 2.0 - - V Minimum standby voltage for state retention, internal SRAM cache, and RTC operation only a. Refer to the strength column in the pin assignment tables for all package types. b. Assumes buffer has no pull-up or pull-down resistors. c. The leakage value given assumes that the pin is configured as an input pin but is not currently being driven. Note: DS507F2 1) Total power consumption = IDDCORE x 2.5 V + IDDIO x 3.3 V 2) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs). 2) Pull-up current = 50 µA typical at VDD = 3.3 V. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 13 EP7309 High-Performance, Low-Power System on Chip Timings Timing Diagram Conventions This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated. C lo c k H ig h t o L o w H ig h / L o w to H ig h B u s C h a n g e B u s V a lid U n d e f in e d / I n v a lid V a lid B u s t o T r is t a t e B u s / S ig n a l O m is s io n Figure 2. Legend for Timing Diagrams Timing Conditions Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at VDDIO = 3.1 - 3.5 V and VSS = 0 V over an operating temperature of -40C to +85C. Pin loadings is 50 pF. The timing values are referenced to 1/2 VDD. 14 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Static Memory Figure 3 through Figure 6 define the timings associated with all phases of the Static Memory. The following table contains the values for the timings of each of the Static Memory modes. Parameter Symbol Min Typ Max Unit EXPCLK rising edge to nCS assert delay time tCSd 2 8 20 ns EXPCLK falling edge to nCS deassert hold time tCSh 2 7 20 ns EXPCLK rising edge to A assert delay time tAd 4 9 16 ns EXPCLK falling edge to A deassert hold time tAh 3 10 19 ns EXPCLK rising edge to nMWE assert delay time tMWd 3 6 10 ns EXPCLK rising edge to nMWE deassert hold time tMWh 3 6 10 ns EXPCLK falling edge to nMOE assert delay time tMOEd 3 7 10 ns EXPCLK falling edge to nMOE deassert hold time tMOEh 2 7 10 ns EXPCLK falling edge to HALFWORD deassert delay time tHWd 2 8 20 ns EXPCLK falling edge to WORD assert delay time tWDd 2 8 16 ns EXPCLK rising edge to data valid delay time tDv 8 13 21 ns EXPCLK falling edge to data invalid delay time tDnv 6 15 30 ns Data setup to EXPCLK falling edge time tDs - - 1 ns EXPCLK falling edge to data hold time tDh - - 3 ns EXPCLK rising edge to WRITE assert delay time tWRd 5 11 23 ns EXPREADY setup to EXPCLK falling edge time tEXs - - 0 ns EXPCLK falling edge to EXPREADY hold time tEXh - - 0 ns DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 15 EP7309 High-Performance, Low-Power System on Chip Static Memory Single Read Cycle EXPCLK t CSd t CSh nCS t Ad A nM W E t M OEd t M OEh nM OE t HW d HALFW ORD t W Dd W ORD t Ds t Dh D t EXs t EXh EXPRDY t W Rd W RITE Figure 3. Static Memory Single Read Cycle Timing Measurement Note: 16 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 2. Address, Halfword, Word, and Write hold state until next cycle. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Static Memory Single Write Cycle EXPCLK t CSd t CSh nCS t Ad A tM W d tM W h nM W E nM OE t HW d HALFW ORD t W Dd W ORD t Dv D t EXs t EXh EXPRDY W RITE Figure 4. Static Memory Single Write Cycle Timing Measurement Note: DS507F2 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions. 3. Address, Data, Halfword, Word, and Write hold state until next cycle. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 17 EP7309 High-Performance, Low-Power System on Chip Static Memory Burst Read Cycle EXPCLK t CSd t CSh nCS t Ad t Ah t Ah t Ah A nM W E t M OEd t M OEh nM OE t HW d HALF W ORD t W Dd W ORD t Ds t Dh t Ds t Dh t Ds t Dh t Ds t Dh D t EXs t EXh EXPRDY t W Rd W RITE Figure 5. Static Memory Burst Read Cycle Timing Measurement Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively. 2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible. 4. Address, Halfword, Word, and Write hold state until next cycle. 18 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Static Memory Burst Write Cycle EXPCLK t CSd t CSh nCS t Ah t Ah t Ah t Ad A tM W d tM W d tM W d tM W h nM W E t MW d t MW h tM W h tM W h nM OE t HW d HALF W ORD W ORD t W Dd t Dv t Dnv t Dv t Dnv t Dv t Dnv t Dv D t EXs t EXh EXPRDY W RITE Figure 6. Static Memory Burst Write Cycle Timing Measurement Note: DS507F2 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively. 2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions. 4. Address, Data, Halfword, Word, and Write hold state until next cycle. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 19 EP7309 High-Performance, Low-Power System on Chip SSI1 Interface Parameter Symbol Min Max Unit ADCCLK falling edge to nADCCSS deassert delay time tCd 9 10 ms ADCIN data setup to ADCCLK rising edge time tINs - 15 ns ADCIN data hold from ADCCLK rising edge time tINh - 14 ns ADCCLK falling edge to data valid delay time tOvd 7 13 ns ADCCLK falling edge to data invalid delay time tOd 2 3 ns ADC CLK tCd nADC CSS tINs tINh ADCIN tOvd tOd ADC OUT Figure 7. SSI1 Interface Timing Measurement 20 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip SSI2 Interface Parameter Symbol Min Max Unit SSICLK period (slave mode) tclk_per 185 2050 ns SSICLK high time tclk_high 925 1025 ns SSICLK low time tclk_low 925 1025 ns SSICLK rise/fall time tclkrf 3 18 ns SSICLK rising edge to RX and/or TX frame sync high time tFRd - 3 ns SSICLK rising edge to RX and/or TX frame sync low time tFRa - 8 ns tFR_per 960 990 ns SSIRXDA setup to SSICLK falling edge time tRXs 3 7 ns SSIRXDA hold from SSICLK falling edge time tRXh 3 7 ns SSICLK rising edge to SSITXDA data valid delay time tTXd - 2 ns SSITXDA valid time tTXv 960 990 ns SSIRXFR and/or SSITXFR period t clk_per t clk_high t clk_low SSI CLK t clkrf t FR_per t FRd t FRa SSIRXFR/ SSITXFR t RXh t RXs SSI RXDA D7 D2 D1 D0 D7 D2 D1 D0 t TXd SSI TXDA t TXv Figure 8. SSI2 Interface Timing Measurement DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 21 EP7309 High-Performance, Low-Power System on Chip LCD Interface Parameter Symbol Min Max Unit CL[2] falling to CL[1] rising delay time tCL1d 10 25 ns CL[1] falling to CL[2] rising delay time tCL2d 80 3,475 ns CL[1] falling to FRM transition time tFRMd 300 10,425 ns CL[1] falling to M transition time tMd 10 20 ns CL[2] rising to DD (display data) transition time tDDd 10 20 ns CL[2] t CL2d t CL1d CL[1] t FRM d FRM tM d M t DDd DD [3:0] Figure 9. LCD Controller Timing Measurement 22 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip JTAG Interface Parameter Symbol Min Max Units TCK clock period tclk_per 2 - ns TCK clock high time tclk_high 1 - ns TCK clock low time tclk_low 1 - ns JTAG port setup time tJPs - 0 ns JTAG port hold time tJPh - 3 ns JTAG port clock to output tJPco - 10 ns JTAG port high impedance to valid output tJPzx - 12 ns JTAG port valid output to high impedance tJPxz - 19 ns t clk_per t clk_high t clk_low TCK t JPh t JPs TM S TDI t JPzx t JPco t JPxz TDO Figure 10. JTAG Timing Measurement DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 23 EP7309 High-Performance, Low-Power System on Chip Packages 208-Pin LQFP Package Characteristics 208-Pin LQFP Package Specifications 29.60 (1.165) 30.40 (1.197) 27.80 (1.094) 28.20 (1.110) 0.17 (0.007) 0.27 (0.011) 27.80 (1.094) 28.20 (1.110) EP7309 29.60 (1.165) 30.40 (1.197) 208-Pin LQFP 0.50 (0.0197) BSC Pin 1 Indicator Pin 208 Pin 1 1.35 (0.053) 1.45 (0.057) 0.45 (0.018) 0.75 (0.030) 1.00 (0.039) BSC 0.09 (0.004) 0.20 (0.008) 0 MIN 7 MAX 0.05 (0.002) 0.15 (0.006) 1.40 (0.055) 1.60 (0.063) Figure 11. 208-Pin LQFP Package Outline Drawing Note: 24 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter. 2) Drawing above does not reflect exact package pin count. 3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information. 4) For pin locations, please see Figure 12. For pin descriptions see the EP7309 User’s Manual. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 nURESET nMEDCHG/nBROM nPOR BATOK nEXTPWR nBATCHG D[7] VSSIO A[7] D[8] A[8] D[9] A[9] D[10] A[10] D[11] VSSIO VDDIO A[11] D[12] A[12] D[13] A[13] D[14] A[14] D[15] A[15] D[16] A[16] D[17] A[17] nTRST VSSIO VDDIO D[18] A[18 D[19] A[19] D[20] A[20] VSSIO D[21] A[21] D[22] A[22] D[23] A[23] D[24] VSSIO VDDIO A[24] HALFWORD 208-Pin LQFP Pin Diagram N/C N/C N/C N/C VDDIO VSSIO N/C N/C EP7309 208-Pin LQFP (Top View) 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 D[25] A[25] D[26] A[26] D[27] A[27] VSSIO D[28] D[29] D[30] D[31] BUZ COL[0] COL[1] TCLK VDDIO COL[2] COL[3] COL[4] COL[5] COL[6] COL[7] FB[0] VSSIO FB[1] SMPCLK ADCOUT ADCCLK DRIVE[0] DRIVE[1] VDDIO VSSIO VDDCORE VSSCORE nADCCS ADCIN SSIRXFR SSIRXDA SSITXDA SSITXFR VSSIO SSICLK PD[0]/LEDFLSH PD[1] PD[2] PD[3] TMS VDDIO PD[4] PD[5] PD[6] PD[7] nCS[5] VDDIO VSSIO EXPCLK WORD WRITE RUN/CLKEN EXPRDY TXD[2] RXD[2] TDI VSSIO PB[7] PB[6] PB[5] PB[4] PB[3] PB[2] PB[1] PB[0] VDDIO TDO PA[7] PA[6] PA[5] PA[4] PA[3] PA[2] PA[1] PA[0] LEDDRV TXD[1] VSSIO PHDIN CTS RXD[1] DCD DSR nTEST[1] nTEST[0] EINT[3] nEINT[2] nEINT[1] nEXTFIQ PE[2]/CLKSEL PE[1]BOOTSEL[1] PE[0]BOOTSEL[0] VSSRTC RTCOUT RTCIN VDDRTC N/C nMWE nMOE VSSIO nCS[0] nCS[1] nCS[2] nCS[3] nCS[4] 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 VDDOSC MOSCIN MOSCOUT VSSOSC WAKEUP nPWRFL A[6] D[6] A[5] D[5] VDDIO VSSIO A[4] D[4] A[3] D[3] A[2] VSSIO D[2] A[1] D[1] A[0] D[0] VSSCORE VDDCORE VSSIO VDDIO CL[2] CL[1] FRM M DD[3] DD[2] VSSIO DD[1] DD[0] Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram Note: DS507F2 1. N/C should not be grounded but left as no connects. 2. Pin differences between the EP7212 and the EP7309 are bolded. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 25 EP7309 High-Performance, Low-Power System on Chip 208-Pin LQFP Numeric Pin Listing Table 19. 208-Pin LQFP Numeric Pin Listing (Continued) Table 19. 208-Pin LQFP Numeric Pin Listing Pin No. Signal Type 37 DCD I 38 DSR I 39 nTEST[1] I With p/u* 40 nTEST[0] I With p/u* 41 EINT[3] I 42 nEINT[2] I 43 nEINT[1] I 44 nEXTFIQ I 45 PE[2]/CLKSEL I/O 1 Input 46 PE[1]/ BOOTSEL[1] I/O 1 Input 47 PE[0]/ BOOTSEL[0] I/O 1 Input Input 48 VSSRTC RTC Gnd 1 Input 49 RTCOUT O I/O 1 Input 50 RTCIN I PB[4] I/O 1 Input 51 VDDRTC RTC power 17 PB[3] I/O 1 Input 52 N/C 18 PB[2] I/O 1 Input 53 PD[7] I/O 1 Low 19 PB[1]/PRDY2 I/O 1 Input 54 PD[6] I/O 1 Low 20 PB[0]/PRDY1 I/O 1 Input 55 PD[5] I/O 1 Low 21 VDDIO Pad Pwr 56 PD[4] I/O 1 Low 22 TDO O 1 Three state 57 VDDIO Pad Pwr 23 PA[7] I/O 1 Input 58 TMS I with p/u* 24 PA[6] I/O 1 Input 59 PD[3] I/O 1 Low 25 PA[5] I/O 1 Input 60 PD[2] I/O 1 Low 26 PA[4] I/O 1 Input 61 PD[1] I/O 1 Low 27 PA[3] I/O 1 Input 62 PD[0]/LEDFLSH I/O 1 Low 28 PA[2] I/O 1 Input 63 SSICLK I/O 1 Input 29 PA[1] I/O 1 Input 64 VSSIO Pad Gnd 30 PA[0] I/O 1 Input 65 SSITXFR I/O 1 Low 31 LEDDRV O 1 Low 66 SSITXDA O 1 Low 32 TXD[1] O 1 High 67 SSIRXDA I 33 VSSIO Pad Gnd 1 High 68 SSIRXFR I/O 34 PHDIN I 69 ADCIN I 35 CTS I 70 nADCCS O 36 RXD[1] I 71 VSSCORE Core Gnd 72 VDDCORE Core Pwr Pin No. Signal Type Strength Reset State 1 nCS[5] O 1 High 2 VDDIO Pad Pwr 3 VSSIO Pad Gnd 4 EXPCLK I/O 1 5 WORD Out 1 Low 6 WRITE Out 1 Low 7 RUN/CLKEN O 1 Low 8 EXPRDY I 1 9 TXD[2] O 1 10 RXD[2] I 11 TDI I 12 VSSIO Pad Gnd 13 PB[7] I/O 1 14 PB[6] I/O 15 PB[5] 16 26 High with p/u* Strength Reset State Input 1 High Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Table 19. 208-Pin LQFP Numeric Pin Listing (Continued) Pin No. Signal Type Strength Reset State Pad Gnd 110 A[23] O 1 Low VDDIO Pad Pwr 111 D[23] I/O 1 Low DRIVE[1] I/O 112 A[22] O 1 Low Pin No. Signal Type 73 VSSIO 74 75 Strength Reset State 2 High / Low 113 D[22] I/O 1 Low 114 A[21] O 1 Low 115 D[21] I/O 1 Low 116 VSSIO Pad Gnd 117 A[20] O 1 Low 118 D[20] I/O 1 Low 119 A[19] O 1 Low 120 D[19] I/O 1 Low 121 A[18] O 1 Low 122 D[18] I/O 1 Low 123 VDDIO Pad Pwr 124 VSSIO Pad Gnd 125 nTRST I 126 A[17] O 1 Low 127 D[17] I/O 1 Low 128 A[16] O 1 Low 129 D[16] I/O 1 Low 130 A[15] O 1 Low 131 D[15] I/O 1 Low 132 A[14] O 1 Low 133 D[14] I/O 1 Low 134 A[13] O 1 Low 135 D[13] I/O 1 Low 136 A[12] O 1 Low 137 D[12] I/O 1 Low 138 A[11] O 1 Low 139 VDDIO Pad Pwr 140 VSSIO Pad Gnd 141 D[11] I/O 1 Low 142 A[10] O 1 Low 143 D[10] I/O 1 Low 144 A[9] O 1 Low 145 D[9] I/O 1 Low 146 A[8] O 1 Low 147 D[8] I/O 1 Low 76 DRIVE[0] I/O 2 High / Low 77 ADCCLK O 1 Low 78 ADCOUT O 1 Low 79 SMPCLK O 1 Low 80 FB[1] I 81 VSSIO Pad Gnd 82 FB[0] I 83 COL[7] O 1 High 84 COL[6] O 1 High 85 COL[5] O 1 High 86 COL[4] O 1 High 87 COL[3] O 1 High 88 COL[2] O 1 High 89 VDDIO Pad Pwr 90 TCLK I 91 COL[1] O 1 High 92 COL[0] O 1 High 93 BUZ O 1 Low 94 D[31] I/O 1 Low 95 D[30] I/O 1 Low 96 D[29] I/O 1 Low 97 D[28] I/O 1 Low 98 VSSIO Pad Gnd 99 A[27] O 2 Low 100 D[27] I/O 1 Low 101 A[26] O 2 Low 102 D[26] I/O 1 Low 103 A[25] O 2 Low 104 D[25] I/O 1 Low 105 HALFWORD O 1 Low 106 A[24] O 1 Low 107 VDDIO Pad Pwr — 108 VSSIO Pad Gnd — 109 D[24] I/O DS507F2 Table 19. 208-Pin LQFP Numeric Pin Listing (Continued) 1 Low Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 27 EP7309 High-Performance, Low-Power System on Chip Table 19. 208-Pin LQFP Numeric Pin Listing (Continued) Table 19. 208-Pin LQFP Numeric Pin Listing (Continued) Pin No. Signal Type Strength Reset State Pin No. Signal Type Strength Reset State 148 A[7] O 1 Low 186 FRM O 1 Low 149 VSSIO Pad Gnd 187 M O 1 Low 150 D[7] I/O 188 DD[3] I/O 1 Low 151 nBATCHG I 189 DD[2] I/O 1 Low 152 nEXTPWR I 190 VSSIO Pad Gnd 153 BATOK I 191 DD[1] I/O 1 Low 154 nPOR I 192 DD[0] I/O 1 Low 155 nMEDCHG/ nBROM I 193 N/C O 1 High 194 N/C O 1 High 156 nURESET I 195 N/C I/O 2 Low 157 VDDOSC Osc Pwr 196 N/C I/O 2 Low 158 MOSCIN Osc 197 VDDIO Pad Pwr 159 MOSCOUT Osc 198 VSSIO Pad Gnd 160 VSSOSC Osc Gnd 199 N/C I/O 2 Low 161 WAKEUP I 200 N/C I/O 2 Low 162 nPWRFL I 201 nMWE O 1 High 163 A[6] O 1 Low 202 nMOE O 1 High 164 D[6] I/O 1 Low 203 VSSIO Pad Gnd 165 A[5] Out 1 Low 204 nCS[0] O 1 High 166 D[5] I/O 1 Low 205 nCS[1] O 1 High 167 VDDIO Pad Pwr 206 nCS[2] O 1 High 168 VSSIO Pad Gnd 207 nCS[3] O 1 High 169 A[4] O 1 Low 208 nCS[4] O 1 High 170 D[4] I/O 1 Low 171 A[3] O 2 Low 172 D[3] I/O 1 Low 173 A[2] O 2 Low 174 VSSIO Pad Gnd 175 D[2] I/O 1 Low 176 A[1] O 2 Low 177 D[1] I/O 1 Low 178 A[0] O 2 Low 179 D[0] I/O 1 Low 180 VSS CORE Core Gnd 181 VDD CORE Core Pwr 182 VSSIO Pad Gnd 183 VDDIO Pad Pwr 184 CL[2] O 1 Low 185 CL[1] O 1 Low 28 1 Low Schmitt Schmitt Schmitt *With p/u’ means with internal pull-up on the pin. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip 256-Ball PBGA Package Characteristics 256-Ball PBGA Package Specifications 0.85 (0.034) ±0.05 (.002) 17.00 (0.669) ±0.20 (.008) Pin 1 Corner D1 0.40 (0.016) ±0.05 (.002) 15.00 (0.590) ±0.20 (.008) 30° TYP Pin 1 Indicator 17.00 (0.669) ±0.20 (.008) E1 15.00 (0.590) ±0.20 (.008) 2 Layer 0.36 (0.014) ±0.09 (0.004) TOP VIEW SIDE VIEW D 17.00 (0.669) Pin 1 Corner 1.00 (0.040) 1.00 (0.040) REF E 16 15 14 13 12 11 10 9 8 7 6 5 1.00 (0.040) REF 1 A B C D E F G H J K L M N P R T 1.00 (0.040) 0.50 R 3 Places 4 3 2 17.00 (0.669) BOTTOM VIEW JEDEC #: MO-151 Ball Diameter: 0.50 mm ± 0.10 mm 17 ¥ 17 ¥ 1.61 mm body Figure 13. 256-Ball PBGA Package Note: DS507F2 1) For pin locations see Table 20. 2) Dimensions are in millimeters (inches), and controlling dimension is millimeter 3) Before beginning any new EP7309 design, contact Cirrus Logic for the latest package information. Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 29 EP7309 High-Performance, Low-Power System on Chip 256-Ball PBGA Pinout (Top View)) 1 2 3 4 5 6 7 8 9 10 11 12 13 A VDDIO nCS[4] nCS[1] N/C N/C DD[1] M VDDIO D[0] D[2] A[3] VDDIO A[6] B nCS[5] VDDIO nCS[3] nMOE VDDIO N/C DD[2] CL[1] VDDCORE D[1] A[2] A[4] A[5] WAKEUP VDDIO nURESET B C VDDIO EXPCLK VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO nPOR nEXTPWR C D WRITE EXPRDY VSSIO VDDIO nCS[2] nMWE N/C CL[2] VSSRTC D[4] nPWRFL MOSCIN VDDIO VSSIO D[7] D[8] D E RXD[2] PB[7] TDI WORD VSSIO nCS[0] N/C FRM A[0] D[5] VSSOSC VSSIO nMEDCHG/ nBROM VDDIO D[9] D[10] E F PB[5] PB[3] VSSIO TXD[2] RUN/ CLKEN VSSIO N/C DD[3] A[1] D[6] VSSRTC BATOK nBATCHG VSSIO D[11] VDDIO F G PB[1] VDDIO TDO PB[4] PB[6] VSSRTC VSSRTC DD[0] D[3] VSSRTC A[7] A[8] A[9] VSSIO D[12] D[13] G H PA[7] PA[5] VSSIO PA[4] PA[6] PB[0] PB[2] VSSRTC VSSRTC A[10] A[11] A[12] A[13] VSSIO D[14] D[15] H J PA[3] PA[1] VSSIO PA[2] PA[0] TXD[1] CTS VSSRTC VSSRTC A[17] A[16] A[15] A[14] nTRST D[16] D[17] J PHDIN VSSIO DCD nTEST[1] EINT[3] VSSRTC ADCIN COL[4] TCLK D[20] D[19] D[18] VSSIO VDDIO VDDIO K DSR VDDIO nEINT[1] PE[2]/ CLKSEL VSSRTC COL[6] D[31] VSSRTC A[22] A[21] VSSIO A[18] A[19] L nEINT[2] VDDIO PE[0]/ BOOTSEL[0] TMS VDDIO SSITXFR DRIVE[1] FB[0] COL[0] D[27] VSSIO A[23] VDDIO A[20] D[21] M VDDIO PD[5] PD[2] SSIRXDA ADCCLK SMPCLK COL[2] D[29] D[26] HALFWORD VSSIO D[22] D[23] N K LEDDRV L RXD[1] M nTEST[0] N nEXTFIQ PE[1]/ VSSIO BOOTSEL[1] P VSSRTC R RTCIN T VDDRTC PD[0]/ VSSRTC LEDFLSH 14 15 16 MOSCOUT VDDOSC VSSIO A RTCOUT VSSIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO D[24] VDDIO P VDDIO PD[4] PD[1] SSITXDA nADCCS VDDIO ADCOUT COL[7] COL[3] COL[1] D[30] A[27] A[25] VDDIO A[24] R PD[7] PD[6] PD[3] SSICLK FB[1] COL[5] VDDIO BUZ D[28] A[26] D[25] VSSIO T SSIRXFR VDDCORE DRIVE[0] 256-Ball PBGA Ball Listing The list is ordered by ball location. Table 20. 256-Ball PBGA Ball Listing (Continued) Table 20. 256-Ball PBGA Ball Listing Ball Location Name Type A1 VDDIO Pad power 30 Ball Location Name Type Description A12 VDDIO Pad power A13 A[6] O System byte address A14 MOSCOUT O Main oscillator out A15 VDDOSC Oscillator power A16 VSSIO Description Digital I/O power, 3.3V Digital I/O power, 3.3V A2 nCS[4] O Chip select out A3 nCS[1] O Chip select out Oscillator power in, 2.5V A4 N/C O A5 N/C O A6 DD[1] O LCD serial display data B1 nCS[5] O A7 M O LCD AC bias drive B2 VDDIO Pad power A8 VDDIO Pad power Digital I/O power, 3.3V B3 nCS[3] O Chip select out A9 D[0] I/O Data I/O B4 nMOE O ROM, expansion OP enable A10 D[2] I/O Data I/O B5 VDDIO Pad power A11 A[3] O System byte address B6 N/C O Pad ground I/O ground Chip select out I/O ground Digital I/O power, 3.3V Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Table 20. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Type Description B7 DD[2] O LCD serial display data B8 CL[1] O LCD line clock B9 VDDCORE B10 D[1] I/O Data I/O Table 20. 256-Ball PBGA Ball Listing (Continued) Ball Location Core power Digital core power, 2.5V Name Type E7 N/C O E8 FRM O Description LCD frame synchronization pulse E9 A[0] O System byte address E10 D[5] I/O Data I/O E11 VSSOSC Oscillator ground E12 VSSIO B11 A[2] O System byte address B12 A[4] O System byte address B13 A[5] O System byte address B14 WAKEUP I System wake up input E13 nMEDCHG/nBROM I B15 VDDIO Pad power VDDIO Pad power B16 nURESET I C1 VDDIO C2 EXPCLK C3 VSSIO Pad ground I/O ground C4 VDDIO Pad power F3 VSSIO C5 VSSIO Pad ground I/O ground F4 TXD[2] O UART 2 transmit data output C6 VSSIO Pad ground I/O ground F5 RUN/CLKEN O Run output / clock enable output C7 VSSIO Pad ground I/O ground F6 VSSIO C8 VDDIO Pad power F7 N/C O C9 VSSIO Pad ground I/O ground F8 DD[3] O C10 VSSIO Pad ground I/O ground F9 A[1] O System byte address C11 VSSIO Pad ground I/O ground F10 D[6] I/O Data I/O C12 VDDIO Pad power F11 VSSRTC C13 VSSIO Pad ground I/O ground F12 BATOK I Battery ok input C14 VSSIO Pad ground I/O ground F13 nBATCHG I Battery changed sense input C15 nPOR I Power-on reset input F14 VSSIO C16 nEXTPWR I External power supply sense input F15 D[11] I/O D1 WRITE O Transfer direction F16 VDDIO Pad power D2 EXPRDY I Expansion port ready input D3 VSSIO Pad ground I/O ground D4 VDDIO Pad power E14 E15 D[9] I/O Data I/O Pad power Digital I/O power, 3.3V E16 D[10] I/O Data I/O I Expansion clock input F1 PB[5] I GPIO port B F2 PB[3] I GPIO port B Digital I/O power, 3.3V Digital I/O power, 3.3V Digital I/O power, 3.3V Digital I/O power, 3.3V O Chip select out D6 nMWE O ROM, expansion write enable D8 CL[2] D9 VSSRTC D10 D[4] D11 nPWRFL O O LCD pixel clock out Core ground Real time clock ground I/O I Data I/O Power fail sense input D12 MOSCIN I D13 VDDIO Pad power D14 VSSIO Pad ground I/O ground D15 D[7] I/O Main oscillator input Digital I/O power, 3.3V Data I/O D16 D[8] I/O E1 RXD[2] I UART 2 receive data input E2 PB[7] I GPIO port B E3 E4 TDI WORD E5 VSSIO E6 nCS[0] DS507F2 Media change interrupt input / internal rom boot enable Digital I/O power, 3.3V nCS[2] N/C Pad ground I/O ground User reset input D5 D7 PLL ground I O Data I/O JTAG data input Word access select output Pad ground I/O ground O Chip select out Digital I/O power, 3.3V Pad ground I/O ground Pad ground I/O ground LCD serial display data RTC ground Real time clock ground Pad ground I/O ground Data I/O Digital I/O power, 3.3V GPIO port B / CL-PS6700 interface signal G1 PB[1]/PRDY[2] I G2 VDDIO Pad power G3 TDO O G4 PB[4] I GPIO port B G5 PB[6] I GPIO port B G6 VSSRTC Core ground Real time clock ground G7 VSSRTC RTC ground Real time clock ground G8 DD[0] O LCD serial display data G9 D[3] I/O Data I/O G10 VSSRTC G11 A[7] O System byte address G12 A[8] O System byte address G13 A[9] O System byte address G14 VSSIO G15 D[12] I/O Data I/O G16 D[13] I/O Data I/O H1 PA[7] I GPIO port A H2 PA[5] I GPIO port A H3 VSSIO H4 PA[4] I GPIO port A H5 PA[6] I GPIO port A Digital I/O power, 3.3V JTAG data out RTC ground Real time clock ground Pad ground I/O ground Pad ground I/O ground Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 31 EP7309 High-Performance, Low-Power System on Chip Table 20. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Type H6 PB[0]/PRDY[1] I H7 PB[2] H8 VSSRTC H9 H10 A[10] O O System byte address System byte address O VSSIO H15 D[14] I/O Data I/O H16 D[15] I/O Data I/O J3 VSSIO J4 PA[2] J5 PA[0] I I I I UART 1 transmit data out UART 1 clear to send input J8 VSSRTC O System byte address J12 A[15] O System byte address O I D[16] I/O Data I/O D[17] I/O Data I/O PHDIN K3 VSSIO K4 DCD O I I I Test mode select input I External interrupt I COL[4] O Keyboard scanner column drive TCLK I JTAG clock K11 D[20] I/O Data I/O K12 D[19] I/O Data I/O I/O VSSIO Pad ground I/O ground K15 VDDIO Pad power Digital I/O power, 3.3V K16 VDDIO Pad power Digital I/O power, 3.3V L1 RXD[1] I UART 1 receive data input L2 DSR I UART 1 data set ready input L3 VDDIO Pad power Digital I/O power, 3.3V L4 nEINT[1] I External interrupt input PE[2]/CLKSEL A[18] O System byte address L16 A[19] O System byte address M1 nTEST[0] I Test mode select input M2 nEINT[2] I External interrupt input M3 VDDIO Pad power Digital I/O power, 3.3V M4 PE[0]/BOOTSEL[0] I M5 TMS I M6 VDDIO Pad power M7 SSITXFR I/O M8 DRIVE[1] I/O M9 FB[0] I PWM feedback input M10 COL[0] O Keyboard scanner column drive M11 D[27] I/O Data I/O M12 VSSIO M13 A[23] O M14 VDDIO Pad power M15 A[20] O System byte address M16 D[21] I/O Data I/O N1 nEXTFIQ I External fast interrupt input N2 PE[1]/BOOTSEL[1] I GPIO port E / boot mode select N3 VSSIO Pad ground I/O ground N4 VDDIO Pad power N5 PD[5] I/O GPIO port E / Boot mode select JTAG mode select Digital I/O power, 3.3V DAI/CODEC/SSI2 frame sync PWM drive output Pad ground I/O ground System byte address Digital I/O power, 3.3V Digital I/O power, 3.3V GPIO port D N6 PD[2] I/O GPIO port D N7 SSIRXDA I/O DAI/CODEC/SSI2 serial data input I N8 ADCCLK O SSI1 ADC serial clock N9 SMPCLK O SSI1 ADC sample clock N10 COL[2] O Keyboard scanner column drive N11 D[29] I/O Data I/O N12 D[26] I/O Data I/O N13 HALFWORD O Halfword access select output N14 VSSIO N15 D[22] Data I/O K14 L5 L15 Pad ground I/O ground SSI1 ADC serial input K9 D[18] VSSIO RTC ground Real time clock ground K10 K13 System byte address L14 UART 1 data carrier detect EINT[3] ADCIN System byte address O Pad ground I/O ground nTEST[1] VSSRTC O A[21] Photodiode input K6 K8 A[22] L13 IR LED drivet K5 K7 L12 RTC ground Real time clock ground JTAG async reset input J16 K2 VSSRTC System byte address J15 LEDDRV Data I/O L11 System byte address O K1 I/O RTC ground Real time clock ground A[16] nTRST Keyboard scanner column drive D[31] RTC ground Real time clock ground J11 J14 O L10 Core ground Real time clock ground GPIO port A I A[14] COL[6] GPIO port A O J13 VSSRTC L9 GPIO port D / LED blinker output Pad ground I/O ground CTS A[17] L8 I/O GPIO port A TXD[1] VSSRTC RTC ground Real time clock ground GPIO port A J7 J9 PD[0]/LEDFLSH Pad ground I/O ground J6 J10 VSSRTC L7 System byte address H14 PA[1] L6 System byte address O J2 Description RTC ground Real time clock ground A[11] PA[3] Type RTC ground Real time clock ground A[12] J1 Name GPIO port B H11 A[13] Ball Location GPIO port B / CL-PS6700 interface signal H12 H13 32 VSSRTC I Description Table 20. 256-Ball PBGA Ball Listing (Continued) Pad ground I/O ground I/O Data I/O I/O Data I/O N16 D[23] P1 VSSRTC P2 RTCOUT P3 VSSIO Pad ground I/O ground P4 VSSIO Pad ground I/O ground P5 VDDIO Pad power RTC ground Real time clock ground O Real time clock oscillator output Digital I/O power, 3.3V GPIO port E / clock input mode select Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Table 20. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Type Description P6 VSSIO Pad ground I/O ground P7 VSSIO Pad ground I/O ground P8 VDDIO Pad power P9 VSSIO Pad ground I/O ground P10 VDDIO Pad power P11 VSSIO Pad ground I/O ground P12 VSSIO Pad ground I/O ground P13 VDDIO Pad power P14 VSSIO Pad ground I/O ground P15 D[24] I/O P16 VDDIO Pad power R1 RTCIN I/O R2 VDDIO Pad power R3 PD[4] I/O GPIO port D R4 PD[1] I/O GPIO port D R5 SSITXDA O DAI/CODEC/SSI2 serial data output R6 nADCCS O SSI1 ADC chip select R7 VDDIO Pad power Digital I/O power, 3.3V R8 ADCOUT O SSI1 ADC serial data output R9 COL[7] O Keyboard scanner column drive R10 COL[3] O Keyboard scanner column drive R11 COL[1] O Keyboard scanner column drive R12 D[30] I/O Data I/O R13 A[27] O System byte address R14 A[25] O System byte address R15 VDDIO Pad power Digital I/O power, 3.3V Digital I/O power, 3.3V Digital I/O power Data I/O Digital I/O power, 3.3V Real time clock oscillator input Digital I/O power, 3.3V Digital I/O power, 3.3V R16 A[24] O T1 VDDRTC RTC power System byte address T2 PD[7] I/O GPIO port D T3 PD[6] I/O GPIO port D T4 PD[3] I/O GPIO port D T5 SSICLK I/O DAI/CODEC/SSI2 serial clock – DAI/CODEC/SSI2 frame sync Real time clock power, 2.5V T6 SSIRXFR T7 VDDCORE T8 DRIVE[0] I/O T9 FB[1] I PWM feedback input T10 COL[5] O Keyboard scanner column drive T11 VDDIO Pad power Core power Core power, 2.5V PWM drive output Digital I/O power, 3.3V T12 BUZ O Buzzer drive output T13 D[28] I/O Data I/O T14 A[26] O System byte address T15 D[25] I/O Data I/O T16 VSSIO DS507F2 Pad ground I/O ground Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 33 EP7309 High-Performance, Low-Power System on Chip JTAG Boundary Scan Signal Ordering Table 21. JTAG Boundary Scan Signal Ordering 34 LQFP Pin No. PBGA Ball Signal Type Position 1 B1 nCS[5] O 1 4 C2 EXPCLK I/O 3 5 E4 WORD O 6 6 D1 WRITE O 8 7 F5 RUN/CLKEN O 10 8 D2 EXPRDY I 13 9 F4 TXD2 O 14 10 E1 RXD2 I 16 13 E2 PB[7] I/O 17 14 G5 PB[6] I/O 20 15 F1 PB[5] I/O 23 16 G4 PB[4] I/O 26 17 F2 PB[3] I/O 29 18 H7 PB[2] I/O 32 19 G1 PB[1]/PRDY2 I/O 35 20 H6 PB[0]/PRDY1 I/O 38 23 H1 PA[7] I/O 41 24 H5 PA[6] I/O 44 25 H2 PA[5] I/O 47 26 H4 PA[4] I/O 50 27 J1 PA[3] I/O 53 28 J4 PA[2] I/O 56 29 J2 PA[1] I/O 59 30 J5 PA[0] I/O 62 31 K1 LEDDRV O 65 32 J6 TXD1 O 67 34 K2 PHDIN I 69 35 J7 CTS I 70 36 L1 RXD1 I 71 37 K4 DCD I 72 38 L2 DSR I 73 39 K5 nTEST1 I 74 40 M1 nTEST0 I 75 41 K6 EINT3 I 76 42 M2 nEINT2 I 77 43 L4 nEINT1 I 78 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Table 21. JTAG Boundary Scan Signal Ordering (Continued) DS507F2 LQFP Pin No. PBGA Ball Signal Type Position 44 N1 nEXTFIQ I 79 45 L5 PE[2]/CLKSEL I/O 80 46 N2 PE[1]/BOOTSEL1 I/O 83 47 M4 PE[0]/BOOTSEL0 I/O 86 53 T2 PD[7] I/O 89 54 T3 PD[6] I/O 92 55 N5 PD[5] I/O 95 56 R3 PD[4] I/O 98 59 T4 PD[3] I/O 101 60 N6 PD[2] I/O 104 61 R4 PD[1] I/O 107 62 L7 PD[0]/LEDFLSH O 110 68 T6 SSIRXFR I/O 122 69 K8 ADCIN I 125 70 R6 nADCCS O 126 75 M8 DRIVE1 I/O 128 76 T8 DRIVE0 I/O 131 77 N8 ADCCLK O 134 78 R8 ADCOUT O 136 79 N9 SMPCLK O 138 80 T9 FB1 I 140 82 M9 FB0 I 141 83 R9 COL7 O 142 84 L9 COL6 O 144 85 T10 COL5 O 146 86 K9 COL4 O 148 87 R10 COL3 O 150 88 N10 COL2 O 152 91 R11 COL1 O 154 92 M10 COL0 O 156 93 T12 BUZ O 158 94 L10 D[31] I/O 160 95 R12 D[30] I/O 163 96 N11 D[29] I/O 166 97 T13 D[28] I/O 169 99 R13 A[27] Out 172 100 M11 D[27] I/O 174 101 T14 A[26] O 177 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 35 EP7309 High-Performance, Low-Power System on Chip Table 21. JTAG Boundary Scan Signal Ordering (Continued) 36 LQFP Pin No. PBGA Ball Signal Type Position 102 N12 D[26] I/O 179 103 R14 A[25] O 182 104 T15 D[25] I/O 184 105 N13 HALFWORD O 187 106 R16 A[24] O 189 109 P15 D[24] I/O 191 110 M13 A[23] O 194 111 N16 D[23] I/O 196 112 L12 A[22] O 199 113 N15 D[22] I/O 201 114 L13 A[21] O 204 115 M16 D[21] I/O 206 117 M15 A[20] O 209 118 K11 D[20] I/O 211 119 L16 A[19] O 214 120 K12 D[19] I/O 216 121 L15 A[18] O 219 122 K13 D[18] I/O 221 126 J10 A[17] O 224 127 J16 D[17] I/O 226 128 J11 A[16] O 229 129 J15 D[16] I/O 231 130 J12 A[15] O 234 131 H16 D[15] I/O 236 132 J13 A[14] O 239 133 H15 D[14] I/O 241 134 H13 A[13] O 244 135 G16 D[13] I/O 246 136 H12 A[12] O 249 137 G15 D[12] I/O 251 138 H11 A[11] O 254 141 F15 D[11] I/O 256 142 H10 A[10] O 259 143 E16 D[10] I/O 261 144 G13 A[9] O 264 145 E15 D[9] I/O 266 146 G12 A[8] O 269 147 D16 D[8] I/O 271 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Table 21. JTAG Boundary Scan Signal Ordering (Continued) DS507F2 LQFP Pin No. PBGA Ball Signal Type Position 148 G11 A[7] O 274 150 D15 D[7] I/O 276 151 F13 nBATCHG I 279 152 C16 nEXTPWR I 280 153 F12 BATOK I 281 154 C15 nPOR I 282 155 E13 nMEDCHG/nBROM I 283 156 B16 nURESET I 284 161 B14 WAKEUP I 285 162 D11 nPWRFL I 286 163 A13 A[6] O 287 164 F10 D[6] I/O 289 165 B13 A[5] O 292 166 E10 D[5] I/O 294 169 B12 A[4] O 297 170 D10 D[4] I/O 299 171 A11 A[3] O 302 172 G9 D[3] I/O 304 173 B11 A[2] O 307 175 A10 D[2] I/O 309 176 F9 A[1] O 312 177 B10 D[1] I/O 314 178 E9 A[0] O 317 179 A9 D[0] I/O 319 184 D8 CL2 O 322 185 B8 CL1 O 324 186 E8 FRM O 326 187 A7 M O 328 188 F8 DD[3] I/O 330 189 B7 DD[2] I/O 333 191 A6 DD[1] I/O 336 192 G8 DD[0] I/O 339 193 B6 N/C O 342 194 D7 N/C O 344 195 A5 N/C I/O 346 196 E7 N/C I/O 349 199 F7 N/C I/O 352 200 A4 N/C I/O 355 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 37 EP7309 High-Performance, Low-Power System on Chip Table 21. JTAG Boundary Scan Signal Ordering (Continued) LQFP Pin No. PBGA Ball Signal Type Position 201 D6 nMWE O 358 202 B4 nMOE O 360 204 E6 nCS[0] O 362 205 A3 nCS[1] O 364 206 D5 nCS[2] O 366 207 B3 nCS[3] O 368 208 A2 nCS[4] O 370 1) See EP7309 Users’ Manual for pin naming / functionality. 2) For each pad, the JTAG connection ordering is input, output, then enable as applicable. 38 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip CONVENTIONS Table 22. Acronyms and Abbreviations (Continued) Acronym/ Abbreviation This section presents acronyms, abbreviations, units of measurement, and conventions used in this data sheet. Acronyms and Abbreviations Table 22 lists abbreviations and acronyms used in this data sheet. Table 22. Acronyms and Abbreviations Acronym/ Abbreviation Definition TAP test access port TLB translation lookaside buffer UART universal asynchronous receiver Units of Measurement Table 23. Unit of Measurement Definition Symbol Unit of Measure A/D analog-to-digital ADC analog-to-digital converter C degree Celsius CODEC coder / decoder fs sample frequency D/A digital-to-analog Hz hertz (cycle per second) DMA direct-memory access kbps kilobits per second EPB embedded peripheral bus KB kilobyte (1,024 bytes) FCS frame check sequence kHz kilohertz FIFO first in / first out k kilohm FIQ fast interrupt request Mbps megabits (1,048,576 bits) per second GPIO general purpose I/O MB megabyte (1,048,576 bytes) ICT in circuit test MBps megabytes per second IR infrared MHz megahertz (1,000 kilohertz) IRQ standard interrupt request A microampere IrDA Infrared Data Association F microfarad JTAG Joint Test Action Group W microwatt LCD liquid crystal display s microsecond (1,000 nanoseconds) LED light-emitting diode mA milliampere LQFP low profile quad flat pack mW milliwatt LSB least significant bit ms millisecond (1,000 microseconds) MIPS millions of instructions per second ns nanosecond MMU memory management unit V volt MSB most significant bit W watt PBGA plastic ball grid array PCB printed circuit board PDA personal digital assistant PLL phase locked loop p/u pull-up resistor RISC reduced instruction set computer RTC Real-Time Clock SIR slow (9600–115.2 kbps) infrared SRAM static random access memory SSI synchronous serial interface DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 39 EP7309 High-Performance, Low-Power System on Chip General Conventions Pin Description Conventions Hexadecimal numbers are presented with all letters in uppercase and a lowercase “h” appended or with a 0x at the beginning. For example, 0x14 and 03CAh are hexadecimal numbers. Binary numbers are enclosed in single quotation marks when in text (for example, ‘11’ designates a binary number). Numbers not indicated by an “h”, 0x or quotation marks are decimal. Abbreviations used for signal directions are listed in Table 24. Registers are referred to by acronym, with bits listed in brackets separated by a colon (:) (for example, CODR[7:0]), and are described in the EP7309 User’s Manual. The use of “TBD” indicates values that are “to be determined,” “n/a” designates “not available,” and “n/c” indicates a pin that is a “no connect.” 40 Table 24. Pin Description Conventions Abbreviation Direction I Input O Output I/O Input or Output Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2 EP7309 High-Performance, Low-Power System on Chip Ordering Information Model Temperature EP7309-CBZ 0 to +70 °C EP7309-IBZ -40 to +85 °C EP7309-CVZ 0 to +70 °C EP7309-IVZ -40 to +85 °C Package 256-pin PBGA, 17mm X 17mm 208-pin LQFP. Environmental, Manufacturing, & Handling Information Model Number Peak Reflow Temp MSL Rating* Max Floor Life 260 °C 3 7 Days EP7309-CBZ EP7309-IBZ EP7309-CVZ EP7309-IVZ * MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020. All devices are now lead (Pb) free. DS507F2 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) 41 EP7309 High-Performance, Low-Power System on Chip Revision History Revision Date Changes PP1 NOV 2003 First preliminary release. F1 AUG 2005 Updated ordering information. Added MSL data. F2 MAR 2011 Removed lead-containing device ordering information. Removed 204-pin BGA option. Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. SPI is a trademark of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation. LINUX is a registered trademark of Linus Torvalds. Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation. 42 Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) DS507F2