Kinetis K64F Sub-Family Data Sheet

Freescale Semiconductor, Inc.
Data Sheet: Technical Data
Document number K64P144M120SF5
Rev 5, 12/2014
Kinetis K64F Sub-Family Data
Sheet
MK64FN1M0Vxx12
MK64FX512Vxx12
120 MHz ARM® Cortex®-M4-based Microcontroller with FPU
The K64 product family members are optimized for cost-sensitive
applications requiring low-power, USB/Ethernet connectivity, and
up to 256 KB of embedded SRAM. These devices share the
comprehensive enablement and scalability of the Kinetis family.
This product offers:
• Run power consumption down to 250 μA/MHz. Static
power consumption down to 5.8 μA with full state retention
and 5 μs wakeup. Lowest Static mode down to 339 nA
• USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO
Vreg, with USB device crystal-less operation
• 10/100 Mbit/s Ethernet MAC with MII and RMII interfaces
Performance
• Up to 120 MHz ARM® Cortex®-M4 core with DSP
instructions and floating point unit
Memories and memory interfaces
• Up to 1 MB program flash memory and 256 KB RAM
• Upto 128 KB FlexNVM and 4 KB FlexRAM on devices
with FlexMemory
• FlexBus external bus interface
System peripherals
• Multiple low-power modes, low-leakage wake-up unit
• Memory protection unit with multi-master protection
• 16-channel DMA controller
• External watchdog monitor and software watchdog
Security and integrity modules
• Hardware CRC module
• Hardware random-number generator
• Hardware encryption supporting DES, 3DES, AES,
MD5, SHA-1, and SHA-256 algorithms
• 128-bit unique identification (ID) number per chip
Analog modules
• Two 16-bit SAR ADCs
• Two 12-bit DACs
• Three analog comparators (CMP)
• Voltage reference
121 XFBGA
8 x 8 x 0.5 mm Pitch
0.65 mm
144 LQFP
20 x 20 x 1.6 mm Pitch
0.5 mm
144 MAPBGA
13 x 13 x 1.46 mm
Pitch 1 mm
100 QFP
14 x 14 x 1.7 mm Pitch
0.5 mm
Communication interfaces
• Ethernet controller with MII and RMII interface
• USB full-/low-speed On-the-Go controller
• Controller Area Network (CAN) module
• Three SPI modules
• Three I2C modules. Support for up to 1 Mbit/s
• Six UART modules
• Secure Digital Host Controller (SDHC)
• I2S module
Timers
• Two 8-channel Flex-Timers (PWM/Motor control)
• Two 2-channel FlexTimers (PWM/Quad decoder)
• IEEE 1588 timers
• 32-bit PITs and 16-bit low-power timers
• Real-time clock
• Programmable delay block
Clocks
• 3 to 32 MHz and 32 kHz crystal oscillator
• PLL, FLL, and multiple internal oscillators
• 48 MHz Internal Reference Clock (IRC48M)
Operating Characteristics
• Voltage range: 1.71 to 3.6 V
• Flash write voltage range: 1.71 to 3.6 V
• Temperature range (ambient): –40 to 105°C
Freescale reserves the right to change the detail specifications as may be required to
permit improvements in the design of its products. © 2014 Freescale Semiconductor,
Inc. All rights reserved.
Ordering Information 1
Part Number
Memory
Maximum number of I\O's
Flash
SRAM (KB)
MK64FX512VLL12
512 KB
256
66
MK64FN1M0VLL12
1 MB
256
66
MK64FX512VDC12
512 KB
256
83
MK64FN1M0VDC12
1 MB
256
83
MK64FX512VLQ12
512 KB
256
100
MK64FN1M0VLQ12
1 MB
256
100
MK64FX512VMD12
512 KB
256
100
MK64FN1M0VMD12
1 MB
256
100
1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number
search.
Related Resources
Type
Description
Resource
Selector
Guide
The Freescale Solution Advisor is a web-based tool that features
interactive application wizards and a dynamic product selector.
Solution Advisor
Product Brief
The Product Brief contains concise overview/summary information to
enable quick evaluation of a device for design suitability.
K60PB1
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
K64P144M120SF5RM 1
Data Sheet
The Data Sheet includes electrical characteristics and signal
connections.
K64P144M120SF51
Package
drawing
Package dimensions are provided in package drawings.
• MAPBGA 144-pin:
98ASA00222D1
• LQFP 144-pin:
98ASS23177W1
• LQFP 100-pin:
98ASS23308W1
• XFBGA 121-pin:
98ASA00595D1
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.
2
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Kinetis K64 Family
ARM ® Cortex™-M4
Core
System
Memories and Memory Interfaces
Internal
and external
watchdogs
Program
flash
RAM
Phaselocked loop
External
bus
Frequencylocked loop
Debug
interfaces
DSP
Memory
protection
FlexMemory
Interrupt
controller
Floatingpoint unit
DMA
Serial
programming
interface
Low/high
frequency
oscillators
Internal
reference
clocks
Low-leakage
wakeup
Security
Analog
Timers
CRC
16-bit ADC
x2
Timers
x2 (8ch)
x2 (2ch)
Random
number
generator
Analog
comparator
x3
Hardware
encryption
6-bit DAC
x3
and Integrity
12-bit DAC
x2
Voltage
reference
Clocks
Programmable
delay block
Periodic
interrupt
timers
Low power
timer
Independent
real-time
clock
Communication Interfaces
2
I C
x3
I S
UART
x6
Secure
Digital
SPI
x3
USB OTG
LS/FS
CAN
x1
USB LS/FS
transceiver
IEEE 1588
Ethernet
USB charger
detect
IEEE 1588
Timers
2
Human-Machine
Interface (HMI)
GPIO
USB voltage
regulator
Figure 1. K64 block diagram
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
3
Freescale Semiconductor, Inc.
Table of Contents
1 Ratings.................................................................................... 5
1.1 Thermal handling ratings................................................. 5
1.2 Moisture handling ratings................................................ 5
1.3 ESD handling ratings....................................................... 5
1.4 Voltage and current operating ratings............................. 5
2 General................................................................................... 6
2.1 AC electrical characteristics.............................................6
2.2 Nonswitching electrical specifications..............................6
2.2.1
Voltage and current operating requirements.....6
2.2.2
LVD and POR operating requirements............. 8
2.2.3
Voltage and current operating behaviors.......... 8
2.2.4
Power mode transition operating behaviors......10
2.2.5
Power consumption operating behaviors.......... 11
2.2.6
EMC radiated emissions operating behaviors...16
2.2.7
Designing with radiated emissions in mind....... 17
2.2.8
Capacitance attributes...................................... 17
2.3 Switching specifications...................................................17
2.3.1
Device clock specifications............................... 17
2.3.2
General switching specifications....................... 18
2.4 Thermal specifications..................................................... 19
2.4.1
Thermal operating requirements....................... 19
2.4.2
Thermal attributes............................................. 20
3 Peripheral operating requirements and behaviors.................. 21
3.1 Core modules.................................................................. 21
3.1.1
Debug trace timing specifications..................... 21
3.1.2
JTAG electricals................................................ 22
3.2 System modules.............................................................. 25
3.3 Clock modules................................................................. 25
3.3.1
MCG specifications........................................... 25
3.3.2
IRC48M specifications...................................... 27
3.3.3
Oscillator electrical specifications..................... 28
3.3.4
32 kHz oscillator electrical characteristics.........30
3.4 Memories and memory interfaces................................... 31
3.4.1
Flash (FTFE) electrical specifications............... 31
3.4.2
EzPort switching specifications......................... 36
3.4.3
Flexbus switching specifications....................... 36
3.5 Security and integrity modules........................................ 39
3.6 Analog............................................................................. 39
3.6.1
ADC electrical specifications.............................40
3.6.2
CMP and 6-bit DAC electrical specifications.....44
3.6.3
12-bit DAC electrical characteristics................. 46
4
Freescale Semiconductor, Inc.
4
5
6
7
8
3.6.4
Voltage reference electrical specifications........ 49
3.7 Timers..............................................................................50
3.8 Communication interfaces............................................... 50
3.8.1
Ethernet switching specifications...................... 51
3.8.2
USB electrical specifications............................. 53
3.8.3
USB DCD electrical specifications.................... 53
3.8.4
USB VREG electrical specifications..................54
3.8.5
CAN switching specifications............................ 54
3.8.6
DSPI switching specifications (limited voltage
range)................................................................54
3.8.7
DSPI switching specifications (full voltage
range)................................................................56
3.8.8
Inter-Integrated Circuit Interface (I2C) timing....58
3.8.9
UART switching specifications.......................... 59
3.8.10 SDHC specifications......................................... 60
3.8.11 I2S switching specifications.............................. 60
Dimensions............................................................................. 66
4.1 Obtaining package dimensions....................................... 66
Pinout...................................................................................... 67
5.1 K64 Signal Multiplexing and Pin Assignments.................67
5.2 Unused analog interfaces................................................ 74
5.3 K64 Pinouts..................................................................... 74
Ordering parts......................................................................... 78
6.1 Determining valid orderable parts....................................78
Part identification.....................................................................79
7.1 Description.......................................................................79
7.2 Format............................................................................. 79
7.3 Fields............................................................................... 79
7.4 Example...........................................................................80
Terminology and guidelines.................................................... 80
8.1 Definition: Operating requirement....................................80
8.2 Definition: Operating behavior......................................... 81
8.3 Definition: Attribute.......................................................... 81
8.4 Definition: Rating............................................................. 82
8.5 Result of exceeding a rating............................................ 82
8.6 Relationship between ratings and operating
requirements....................................................................82
8.7 Guidelines for ratings and operating requirements..........83
8.8 Definition: Typical value...................................................83
8.9 Typical value conditions.................................................. 84
9 Revision History...................................................................... 85
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Ratings
1 Ratings
1.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
Solder temperature, leaded
—
245
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device
model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
1.4 Voltage and current operating ratings
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
5
Freescale Semiconductor, Inc.
General
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
185
mA
–0.3
5.5
V
–0.3
VBAT + 0.3
V
Analog1, RESET, EXTAL, and XTAL input voltage
–0.3
VDD + 0.3
V
Maximum current single pin limit (applies to all digital pins)
–25
25
mA
VDD – 0.3
VDD + 0.3
V
VDIO
Digital input voltage (except RESET, EXTAL, and XTAL)
VDRTC_WAKEU RTC Wakeup input voltage
P
VAIO
ID
VDDA
Analog supply voltage
VUSB0_DP
USB0_DP input voltage
–0.3
3.63
V
VUSB0_DM
USB0_DM input voltage
–0.3
3.63
V
USB regulator input
–0.3
6.0
V
RTC battery supply voltage
–0.3
3.8
V
VREGIN
VBAT
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
VIH
Input Signal
High
Low
80%
50%
20%
Midpoint1
Fall Time
VIL
Rise Time
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
2.2 Nonswitching electrical specifications
6
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
General
2.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
1.71
3.6
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
-5
—
mA
VBAT
VIH
VIL
RTC battery supply voltage
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICDIO
Digital pin negative DC injection current — single pin
• VIN < VSS-0.3V
IICAIO
IICcont
1
Analog2, EXTAL, and XTAL pin DC injection current
— single pin
3
mA
• VIN < VSS-0.3V (Negative current injection)
-5
—
• VIN > VDD+0.3V (Positive current injection)
—
+5
-25
—
—
+25
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Negative current injection
• Positive current injection
mA
VODPU
Open drain pullup voltage level
VDD
VDD
V
VRAM
VDD voltage required to retain RAM
1.2
—
V
VPOR_VBAT
—
V
VRFVBAT
Notes
VBAT voltage required to retain the VBAT register file
4
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode
connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN
(=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC
injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL
and XTAL are analog pins.
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or
greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is
calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VINVAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative
injection currents.
4. Open drain outputs must be pulled to VDD.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
7
Freescale Semiconductor, Inc.
General
2.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
80
—
mV
1.54
1.60
1.66
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low
range (LVDV=00)
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
Notes
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
1. Rising threshold is the sum of falling threshold and hysteresis voltage
Table 3. VBAT power operating requirements
Symbol
Description
VPOR_VBAT Falling VBAT supply POR detect voltage
Min.
Typ.
Max.
Unit
0.8
1.1
1.5
V
Notes
2.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol
VOH
Description
Min.
Max.
Unit
Notes
Output high voltage — high drive strength
Table continues on the next page...
8
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
General
Table 4. Voltage and current operating behaviors (continued)
Symbol
Description
Min.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -8mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
—
V
—
100
mA
VBAT – 0.5
—
V
VBAT – 0.5
—
V
VBAT – 0.5
—
V
VBAT – 0.5
—
V
—
100
mA
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA
—
0.5
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA
—
0.5
V
—
100
mA
—
0.5
V
—
0.5
V
—
0.5
V
—
0.5
V
—
100
mA
Notes
Output high voltage — low drive strength
IOHT
Output high current total for all ports
VOH_RTC_WA Output high voltage — high drive strength
KEUP
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA
Output high voltage — low drive strength
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA
IOH_RTC_WAK Output high current total for RTC_WAKEUP pins
EUP
VOL
Output low voltage — high drive strength
Output low voltage — low drive strength
IOLT
Output low current total for all ports
VOL_RTC_WA Output low voltage — high drive strength
KEUP
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA
Output low voltage — low drive strength
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA
IOL_RTC_WAK Output low current total for RTC_WAKEUP pins
EUP
IIN
Input leakage current (per pin) for full temperature
range
—
1
μA
1
IIN
Input leakage current (per pin) at 25°C
—
0.025
μA
1
IIN_RTC_WAK Input leakage current (per RTC_WAKEUP pin) for full
temperature range
EUP
—
1
μA
IIN_RTC_WAK Input leakage current (per RTC_WAKEUP pin) at
25°C
EUP
—
0.025
μA
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
9
Freescale Semiconductor, Inc.
General
Table 4. Voltage and current operating behaviors (continued)
Symbol
IOZ
Description
Hi-Z (off-state) leakage current (per pin)
IOZ_RTC_WAK Hi-Z (off-state) leakage current (per RTC_WAKEUP
pin)
EUP
Min.
Max.
Unit
—
0.25
μA
—
0.25
μA
Notes
RPU
Internal pullup resistors (except RTC_WAKEUP pins)
20
50
kΩ
2
RPD
Internal pulldown resistors (except RTC_WAKEUP
pins)
20
50
kΩ
3
1. Measured at VDD=3.6V
2. Measured at VDD supply voltage = VDD min and Vinput = VSS
3. Measured at VDD supply voltage = VDD min and Vinput = VDD
2.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following table
assume this clock configuration:
•
•
•
•
CPU and system clocks = 100 MHz
Bus clock = 50 MHz
FlexBus clock = 50 MHz
Flash clock = 25 MHz
Table 5. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS2 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
10
Freescale Semiconductor, Inc.
Min.
Max.
Unit
—
300
μs
—
156
μs
—
156
μs
—
78
μs
—
78
μs
—
4.8
μs
—
4.5
μs
—
4.5
μs
Notes
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
General
2.2.5 Power consumption operating behaviors
NOTE
The maximum values represent characterized results
equivalent to the mean plus three times the standard
deviation (mean + 3 sigma).
Table 6. Power consumption operating behaviors
Symbol
IDDA
IDD_RUN
Description
Analog supply current
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
Run mode current — all peripheral clocks
disabled, code executing from flash
• @ 1.8V
• @ 3.0V
IDD_RUN
Min.
2
—
31.1
42.2
mA
—
31
42.5
mA
Run mode current — all peripheral clocks
enabled, code executing from flash
3, 4
—
42.7
54
mA
• @ 25°C
—
42.6
41.60
mA
• @ 105°C
—
48.33
51.50
mA
• @ 1.8V
• @ 3.0V
IDD_WAIT
Wait mode high frequency current at 3.0 V —
all peripheral clocks disabled
—
17.9
—
mA
2
IDD_WAIT
Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
—
6.9
—
mA
5
IDD_VLPR
Very-low-power run mode current at 3.0 V —
all peripheral clocks disabled
—
1.0
—
mA
6
IDD_VLPR
Very-low-power run mode current at 3.0 V —
all peripheral clocks enabled
—
1.7
—
mA
7
—
0.678
—
mA
8
• @ –40 to 25°C
—
0.49
0.67
mA
• @ 70°C
—
1.18
2.11
mA
• @ 105°C
—
3.0
5.74
mA
• @ –40 to 25°C
—
57
139.31
μA
• @ 70°C
—
291
679.33
μA
• @ 105°C
—
927.3
1869.85
μA
IDD_VLPW Very-low-power wait mode current at 3.0 V —
all peripheral clocks disabled
IDD_STOP
IDD_VLPS
IDD_LLS
Stop mode current at 3.0 V
Very-low-power stop mode current at 3.0 V
Low leakage stop mode current at 3.0 V
9
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
11
Freescale Semiconductor, Inc.
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
• @ –40 to 25°C
—
5.8
10.48
μA
• @ 70°C
—
26.7
47.99
μA
• @ 105°C
—
114.9
196.49
μA
• @ –40 to 25°C
—
4.4
5.54
μA
• @ 70°C
—
21
36.46
μA
• @ 105°C
—
90.2
150.17
μA
• @ –40 to 25°C
—
2.1
2.34
μA
• @ 70°C
—
6.84
10.36
μA
• @ 105°C
—
29.4
46.74
μA
• @ –40 to 25°C
—
0.817
0.86
μA
• @ 70°C
—
3.97
5.77
μA
• @ 105°C
—
21.3
33.99
μA
—
0.520
0.60
μA
—
3.67
5.52
μA
—
21.2
33.68
μA
—
0.339
0.412
μA
—
3.36
4.2
μA
—
20.3
29.9
μA
—
0.16
0.19
μA
—
0.55
0.72
μA
—
2.5
3.68
μA
—
0.18
0.21
μA
—
0.66
0.86
μA
—
2.92
4.30
μA
Notes
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
• @ –40 to 25°C
• @ 70°C
• @ 105°C
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
• @ –40 to 25°C
• @ 70°C
• @ 105°C
IDD_VBAT
Average current with RTC and 32 kHz disabled
• @ 1.8 V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
• @ 3.0 V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
Table continues on the next page...
12
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_VBAT
Average current when CPU is not accessing
RTC registers
Typ.
Max.
Unit
Notes
10
• @ 1.8 V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
—
0.59
0.70
μA
—
1.0
1.30
μA
—
3.0
4.42
μA
—
0.71
0.84
μA
—
1.22
1.59
μA
—
3.5
5.15
μA
• @ 3.0 V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.
See each module's specification for its supply current.
2. 120 MHz core and system clock, 60 MHz bus, 30 Mhz FlexBus clock, and 20 MHz flash clock. MCG configured for
PEE mode. All peripheral clocks disabled.
3. 120 MHz core and system clock, 60 MHz bus clock, 30 MHz Flexbus clock, and 20 MHz flash clock. MCG configured
for PEE mode. All peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. 25 MHz core and system clock, 25 MHz bus clock, and 25 MHz FlexBus and flash clock. MCG configured for FEI
mode.
6. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled. Code executing from flash.
7. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks enabled but peripherals are not in active operation. Code executing from flash.
8. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled.
9. Data reflects devices with 256 KB of RAM.
10. Includes 32kHz oscillator current and RTC operation.
Table 7. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IIREFSTEN4MHz
4 MHz internal reference clock (IRC)
adder. Measured by entering STOP or
VLPS mode with 4 MHz IRC enabled.
56
56
56
56
56
56
µA
IIREFSTEN32KHz
32 kHz internal reference clock (IRC)
adder. Measured by entering STOP
mode with the 32 kHz IRC enabled.
52
52
52
52
52
52
µA
IEREFSTEN4MHz
External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS
mode with the crystal enabled.
206
228
237
245
251
258
uA
IEREFSTEN32KHz
External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN
and EREFSTEN] bits. Measured by
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
13
Freescale Semiconductor, Inc.
General
Table 7. Low power mode peripheral adders — typical value (continued)
Symbol
Description
entering all modes with the crystal
enabled.
VLLS1
VLLS3
LLS
VLPS
Temperature (°C)
Unit
-40
25
50
70
85
105
440
490
540
560
570
580
440
490
540
560
570
580
490
490
540
560
570
680
510
560
560
560
610
680
510
560
560
560
610
680
nA
STOP
I48MIRC
48 Mhz internal reference clock
350
350
350
350
350
350
µA
ICMP
CMP peripheral adder measured by
placing the device in VLLS1 mode with
CMP enabled using the 6-bit DAC and
a single external input for compare.
Includes 6-bit DAC power
consumption.
22
22
22
22
22
22
µA
IRTC
RTC peripheral adder measured by
placing the device in VLLS1 mode with
external 32 kHz crystal enabled by
means of the RTC_CR[OSCE] bit and
the RTC ALARM set for 1 minute.
Includes ERCLK32K (32 kHz external
crystal) power consumption.
432
357
388
475
532
810
nA
IUART
UART peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source
waiting for RX data at 115200 baud
rate. Includes selected clock source
power consumption.
66
66
66
66
66
66
µA
OSCERCLK (4 MHz external crystal)
214
237
246
254
260
268
IBG
Bandgap adder when BGEN bit is set
and device is placed in VLPx, LLS, or
VLLSx mode.
45
45
45
45
45
45
µA
IADC
ADC peripheral adder combining the
measured values at VDD and VDDA by
placing the device in STOP or VLPS
mode. ADC is configured for low power
mode using the internal clock and
continuous conversions.
42
42
42
42
42
42
µA
MCGIRCLK (4 MHz internal reference
clock)
2.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
14
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
General
• No GPIOs toggled
• Code execution from flash with cache enabled
• For the ALLOFF curve, all peripheral clocks are disabled except FTFE
Figure 3. Run mode supply current vs. core frequency
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
15
Freescale Semiconductor, Inc.
General
Figure 4. VLPR mode supply current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors
Table 8. EMC radiated emissions operating behaviors
Symbol
Description
Frequency
band
(MHz)
Typ.
Unit
Notes
1, 2
144 LQFP
VRE1
Radiated emissions voltage, band 1
0.15–50
16
dBμV
VRE2
Radiated emissions voltage, band 2
50–150
22
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
21
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
16
dBμV
IEC level
0.15–1000
L
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement
of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and
16
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
General
Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.
The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,
from among the measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 9. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
2.3 Switching specifications
2.3.1 Device clock specifications
Table 10. Device clock specifications
Symbol
Description
Min.
Max.
Unit
System and core clock
—
120
MHz
System and core clock when Full Speed USB in
operation
20
—
MHz
Notes
Normal run mode
fSYS
fENET
System and core clock when ethernet in operation
• 10 Mbps
• 100 Mbps
fBUS
FB_CLK
fFLASH
MHz
5
—
50
—
Bus clock
—
60
MHz
FlexBus clock
—
50
MHz
Flash clock
—
25
MHz
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
17
Freescale Semiconductor, Inc.
General
Table 10. Device clock specifications (continued)
Symbol
Description
fLPTMR
LPTMR clock
VLPR
Min.
Max.
Unit
—
25
MHz
mode1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
4
MHz
FlexBus clock
—
4
MHz
fFLASH
Flash clock
—
0.8
MHz
fERCLK
External reference clock
—
16
MHz
LPTMR clock
—
25
MHz
fLPTMR_ERCLK LPTMR external reference clock
—
16
MHz
fFlexCAN_ERCLK FlexCAN external reference clock
—
8
MHz
FB_CLK
fLPTMR_pin
Notes
fI2S_MCLK
I2S master clock
—
12.5
MHz
fI2S_BCLK
I2S bit clock
—
4
MHz
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for
any other module.
2.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CAN, CMT, IEEE 1588 timer, timers, and I2C signals.
Table 11. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100
—
ns
3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
50
—
ns
3
External reset pulse width (digital glitch filter disabled)
100
—
ns
3
2
—
Bus clock
cycles
Mode select (EZP_CS) hold time after reset
deassertion
Port rise and fall time (high drive strength) - 3 V
4
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
8
ns
• 2.7 ≤ VDD ≤ 3.6V
—
6
ns
—
18
ns
• Slew enabled
Table continues on the next page...
18
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
General
Table 11. General switching specifications (continued)
Symbol
Description
• 1.71 ≤ VDD ≤ 2.7V
Min.
Max.
Unit
—
12
ns
Notes
• 2.7 ≤ VDD ≤ 3.6V
Port rise and fall time (high drive strength) - 5 V
4
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
6
ns
• 2.7 ≤ VDD ≤ 3.6V
—
4
ns
• 1.71 ≤ VDD ≤ 2.7V
—
24
ns
• 2.7 ≤ VDD ≤ 3.6V
—
14
ns
• Slew enabled
Port rise and fall time (low drive strength) - 3 V
5
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
12
ns
• 2.7 ≤ VDD ≤ 3.6V
—
6
ns
• 1.71 ≤ VDD ≤ 2.7V
—
24
ns
• 2.7 ≤ VDD ≤ 3.6V
—
16
ns
• Slew enabled
Port rise and fall time (low drive strength) - 5 V
5
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
17
ns
• 2.7 ≤ VDD ≤ 3.6V
—
10
ns
• 1.71 ≤ VDD ≤ 2.7V
—
36
ns
• 2.7 ≤ VDD ≤ 3.6V
—
20
ns
• Slew enabled
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses
may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter
pulses can be recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS,
and VLLSx modes.
4. 25 pF load
5. 15 pF load
2.4 Thermal specifications
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
19
Freescale Semiconductor, Inc.
General
2.4.1 Thermal operating requirements
Table 12. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
2.4.2 Thermal attributes
Table 13. Thermal attributes
Board type
Symbol
Descriptio
n
144 LQFP
144
MAPBGA
121
XFBGA
100 LQFP
Unit
Notes
Single-layer RθJA
(1s)
Thermal
51
resistance,
junction to
ambient
(natural
convection)
38.1
33.3
51
°C/W
1
Four-layer
(2s2p)
Thermal
43
resistance,
junction to
ambient
(natural
convection)
21.6
21.1
39
°C/W
1
Single-layer RθJMA
(1s)
Thermal
42
resistance,
junction to
ambient
(200 ft./min.
air speed)
30.8
26.2
41
°C/W
1
Four-layer
(2s2p)
RθJMA
Thermal
36
resistance,
junction to
ambient
(200 ft./min.
air speed)
18
17.8
32
°C/W
1
—
RθJB
Thermal
resistance,
junction to
board
30
16.5
16.3
24
°C/W
2
—
RθJC
Thermal
resistance,
junction to
case
11
8.9
12
11
°C/W
3
—
ΨJT
Thermal
2
characteriza
0.9
0.2
2
°C/W
4
RθJA
20
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 13. Thermal attributes
Board type
Symbol
Descriptio
n
144 LQFP
144
MAPBGA
121
XFBGA
100 LQFP
Unit
Notes
tion
parameter,
junction to
package top
outside
center
(natural
convection)
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test
Method Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors
3.1 Core modules
3.1.1 Debug trace timing specifications
Table 14. Debug trace operating behaviors
Symbol
Description
Tcyc
Clock period
Twl
Low pulse width
2
—
ns
Twh
High pulse width
2
—
ns
Tr
Clock and data rise time
—
3
ns
Tf
Clock and data fall time
—
3
ns
Ts
Data setup
1.5
—
ns
Th
Data hold
1
—
ns
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Min.
Max.
Unit
Frequency dependent
MHz
21
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TRACECLK
Tr
Tf
Twh
Twl
Tcyc
Figure 5. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
Ts
Th
Th
TRACE_D[3:0]
Figure 6. Trace data specifications
3.1.2 JTAG electricals
Table 15. JTAG limited voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
20
—
ns
• Serial Wire Debug
10
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
2.6
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
Table continues on the next page...
22
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 15. JTAG limited voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
J11
TCLK low to TDO data valid
—
17
ns
J12
TCLK low to TDO high-Z
—
17
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
Table 16. JTAG full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
• Serial Wire Debug
0
40
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
25
—
ns
• Serial Wire Debug
12.5
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
2.9
—
ns
J11
TCLK low to TDO data valid
—
22.1
ns
J12
TCLK low to TDO high-Z
—
22.1
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
J3
J3
TCLK (input)
J4
J4
Figure 7. Test clock input timing
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
23
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 8. Boundary scan (JTAG) timing
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 9. Test Access Port timing
24
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
TCLK
J14
J13
TRST
Figure 10. TRST timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
3.3.1 MCG specifications
Table 17. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
—
32.768
—
kHz
fints_t
Internal reference frequency (slow clock) —
user trimmed
31.25
—
39.0625
kHz
—
20
—
µA
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
—
± 0.3
± 0.6
%fdco
1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
—
± 0.2
± 0.5
%fdco
1
Iints
Internal reference (slow clock) current
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
± 0.5
±2
%fdco
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 0.3
±1
%fdco
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
fintf_t
Internal reference frequency (fast clock) —
user trimmed at nominal VDD and 25 °C
3
—
5
MHz
Internal reference (fast clock) current
—
25
—
µA
Iintf
1
,2
1
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
25
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 17. MCG specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
—
180
—
—
150
—
—
—
1
ms
48.0
—
120
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
Notes
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
3, 4
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS=00)
5, 6
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Jcyc_fll
FLL period jitter
• fDCO = 48 MHz
• fDCO = 98 MHz
tfll_acquire
FLL target frequency acquisition time
ps
7
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref
= 2 MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref
= 2 MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
Jacc_pll
8
8
9
• fvco = 48 MHz
—
120
—
ps
• fvco = 120 MHz
—
80
—
ps
PLL accumulated jitter over 1µs (RMS)
9
Table continues on the next page...
26
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 17. MCG specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
• fvco = 48 MHz
—
1350
—
ps
• fvco = 120 MHz
—
600
—
ps
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
—
10-6
—
150 ×
+ 1075(1/
fpll_ref)
Notes
s
10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. 2 V <= VDD <= 3.6 V.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature should be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics
of each PCB and results will vary.
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this
specification assumes it is already running.
3.3.2 IRC48M specifications
Table 18. IRC48M specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDD48M
Supply current
—
400
500
μA
firc48m
Internal reference frequency
—
48
—
MHz
—
± 0.5
± 1.5
%firc48m
—
± 0.5
± 2.0
—
± 0.5
± 1.5
%firc48m
—
—
± 0.1
%fhost
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at
low voltage (VDD=1.71V-1.89V) over temperature
• Regulator disable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)
• Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over temperature
• Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)
Δfirc48m_cl
Closed loop total deviation of IRC48M frequency
over voltage and temperature
Notes
1
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
27
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 18. IRC48M specifications (continued)
Symbol
Jcyc_irc48m
tirc48mst
Description
Min.
Typ.
Max.
Unit
Period Jitter (RMS)
—
35
150
ps
Startup time
—
2
3
μs
Notes
2
1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It
is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).
2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the
clock by setting USB_CLK_RECOVER_IRC_EN[IRC_EN]=1.
3.3.3 Oscillator electrical specifications
3.3.3.1
Oscillator DC electrical specifications
Table 19. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high-gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
2, 4
Table continues on the next page...
28
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 19. Oscillator DC electrical specifications (continued)
Symbol
RS
Description
Min.
Typ.
Max.
Unit
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain
mode (HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Notes
Series resistor — high-frequency, high-gain
mode (HGO=1)
5
Vpp
1.
2.
3.
4.
5.
VDD=3.3 V, Temperature =25 °C
See crystal or resonator manufacturer's recommendation
Cx and Cy can be provided by using either integrated capacitors or external components.
When low-power mode is selected, RF is integrated and must not be attached externally.
The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other device.
3.3.3.2
Symbol
Oscillator frequency specifications
Table 20. Oscillator frequency specifications
Min.
Typ.
Max.
Unit
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency —
high-frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency —
high frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fosc_lo
Description
Notes
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
29
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 20. Oscillator frequency specifications (continued)
Symbol
Description
fec_extal
tdc_extal
tcst
Min.
Typ.
Max.
Unit
Notes
Input clock frequency (external clock mode)
—
—
50
MHz
1, 2
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
NOTE
The 32 kHz oscillator works in low power mode by default
and cannot be moved into high power/gain mode.
3.3.4 32 kHz oscillator electrical characteristics
3.3.4.1
32 kHz oscillator DC electrical specifications
Table 21. 32kHz oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VBAT
Supply voltage
1.71
—
3.6
V
Internal feedback resistor
—
100
—
MΩ
Cpara
Parasitical capacitance of EXTAL32 and
XTAL32
—
5
7
pF
Vpp1
Peak-to-peak amplitude of oscillation
—
0.6
—
V
RF
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
30
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
3.3.4.2
Symbol
fosc_lo
tstart
32 kHz oscillator frequency specifications
Table 22. 32 kHz oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
Oscillator crystal
—
32.768
—
kHz
Crystal start-up time
Notes
—
1000
—
ms
1
fec_extal32 Externally provided input clock frequency
—
32.768
—
kHz
2
vec_extal32 Externally provided input clock amplitude
700
—
VBAT
mV
2, 3
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.
The oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the
applied clock must be within the range of VSS to VBAT.
3.4 Memories and memory interfaces
3.4.1 Flash (FTFE) electrical specifications
This section describes the electrical characteristics of the FTFE module.
3.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps
are active and do not include command overhead.
Table 23. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm8
thversscr
Notes
Program Phrase high-voltage time
—
7.5
18
μs
Erase Flash Sector high-voltage time
—
13
113
ms
1
thversblk128k Erase Flash Block high-voltage time for 128 KB
—
104
904
ms
1
thversblk512k Erase Flash Block high-voltage time for 512 KB
—
416
3616
ms
1
Notes
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2
Symbol
Flash timing specifications — commands
Table 24. Flash command timing specifications
Description
Min.
Typ.
Max.
Unit
—
—
0.5
ms
Read 1s Block execution time
trd1blk128k
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
31
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 24. Flash command timing specifications (continued)
Symbol
trd1blk512k
Description
• 128 KB data flash
Min.
Typ.
Max.
Unit
—
—
1.8
ms
Notes
• 512 KB program flash
trd1sec4k
Read 1s Section execution time (4 KB flash)
—
—
100
μs
1
tpgmchk
Program Check execution time
—
—
95
μs
1
trdrsrc
Read Resource execution time
—
—
40
μs
1
tpgm8
Program Phrase execution time
—
90
150
μs
Erase Flash Block execution time
2
tersblk128k
• 128 KB data flash
—
110
925
ms
tersblk512k
• 512 KB program flash
—
435
3700
ms
Erase Flash Sector execution time
—
15
115
ms
Program Section execution time (1KB flash)
—
5
—
ms
tersscr
tpgmsec1k
2
Read 1s All Blocks execution time
trd1allx
• FlexNVM devices
—
—
2.2
ms
trd1alln
• Program flash only devices
—
—
3.4
ms
Read Once execution time
—
—
30
μs
trdonce
tpgmonce
1
Program Once execution time
—
70
—
μs
tersall
Erase All Blocks execution time
—
870
7400
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
Swap Control execution time
tswapx01
• control code 0x01
—
200
—
μs
tswapx02
• control code 0x02
—
70
150
μs
tswapx04
• control code 0x04
—
70
150
μs
tswapx08
• control code 0x08
—
—
30
μs
Program Partition for EEPROM execution time
tpgmpart32k
• 32 KB FlexNVM
—
70
—
ms
tpgmpart128k
• 128 KB FlexNVM
—
75
—
ms
• Control Code 0xFF
—
70
—
μs
tsetram32k
• 32 KB EEPROM backup
—
0.8
1.2
ms
tsetram64k
• 64 KB EEPROM backup
—
1.3
1.9
ms
tsetram128k
• 128 KB EEPROM backup
—
2.4
3.1
ms
—
175
275
μs
—
385
1700
μs
Set FlexRAM Function execution time:
tsetramff
teewr8bers
Byte-write to erased FlexRAM location
execution time
3
Byte-write to FlexRAM execution time:
teewr8b32k
• 32 KB EEPROM backup
Table continues on the next page...
32
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 24. Flash command timing specifications (continued)
Min.
Typ.
Max.
Unit
teewr8b64k
Symbol
Description
• 64 KB EEPROM backup
—
475
2000
μs
teewr8b128k
• 128 KB EEPROM backup
—
650
2350
μs
—
175
275
μs
teewr16bers 16-bit write to erased FlexRAM location
execution time
Notes
16-bit write to FlexRAM execution time:
teewr16b32k
• 32 KB EEPROM backup
—
385
1700
μs
teewr16b64k
• 64 KB EEPROM backup
—
475
2000
μs
teewr16b128k
• 128 KB EEPROM backup
—
650
2350
μs
—
360
550
μs
teewr32bers 32-bit write to erased FlexRAM location
execution time
32-bit write to FlexRAM execution time:
teewr32b32k
• 32 KB EEPROM backup
—
630
2000
μs
teewr32b64k
• 64 KB EEPROM backup
—
810
2250
μs
teewr32b128k
• 128 KB EEPROM backup
—
1200
2650
μs
1. Assumes 25MHz or greater flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
3.4.1.3
Flash high voltage current behaviors
Table 25. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
3.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current
adder during high
voltage flash
programming
operation
—
3.5
7.5
mA
Average current
adder during high
voltage flash erase
operation
—
1.5
4.0
mA
Reliability specifications
Table 26. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
50
—
years
Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles
5
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
33
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 26. NVM reliability specifications (continued)
Symbol
Description
tnvmretp1k
Data retention after up to 1 K cycles
nnvmcycp
Cycling endurance
Min.
Typ.1
Max.
Unit
20
100
—
years
10 K
50 K
—
cycles
Notes
2
Data Flash
tnvmretd10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretd1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycd
Cycling endurance
10 K
50 K
—
cycles
2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance
5
50
—
years
tnvmretee10 Data retention up to 10% of write endurance
20
100
—
years
20 K
50 K
—
cycles
nnvmcycee Cycling endurance for EEPROM backup
Write endurance
2
3
nnvmwree16
• EEPROM backup to FlexRAM ratio = 16
70 K
175 K
—
writes
nnvmwree128
• EEPROM backup to FlexRAM ratio = 128
630 K
1.6 M
—
writes
nnvmwree512
• EEPROM backup to FlexRAM ratio = 512
2.5 M
6.4 M
—
writes
nnvmwree2k
• EEPROM backup to FlexRAM ratio = 2,048
10 M
25 M
—
writes
nnvmwree4k
• EEPROM backup to FlexRAM ratio = 4,096
20 M
50 M
—
writes
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the
cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem.
Minimum and typical values assume all byte-writes to FlexRAM.
3.4.1.5
Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set
size can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that
can be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout
the entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
34
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Writes_subsystem =
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE
× Write_efficiency × n nvmcycee
where
• Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on
DEPART; entered with the Program Partition command
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program
Partition command
• Write_efficiency —
• 0.25 for 8-bit writes to FlexRAM
• 0.50 for 16-bit or 32-bit writes to FlexRAM
• nnvmcycee — EEPROM-backup cycling endurance
Figure 11. EEPROM backup writes to FlexRAM
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
35
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.4.2 EzPort switching specifications
Table 27. EzPort switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
EP1
EZP_CK frequency of operation (all commands except
READ)
—
fSYS/2
MHz
EP1a
EZP_CK frequency of operation (READ command)
—
fSYS/8
MHz
EP2
EZP_CS negation to next EZP_CS assertion
2 x tEZP_CK
—
ns
EP3
EZP_CS input valid to EZP_CK high (setup)
5
—
ns
EP4
EZP_CK high to EZP_CS input invalid (hold)
5
—
ns
EP5
EZP_D input valid to EZP_CK high (setup)
2
—
ns
EP6
EZP_CK high to EZP_D input invalid (hold)
5
—
ns
EP7
EZP_CK low to EZP_Q output valid
—
18
ns
EP8
EZP_CK low to EZP_Q output invalid (hold)
0
—
ns
EP9
EZP_CS negation to EZP_Q tri-state
—
12
ns
EZP_CK
EP3
EP2
EP4
EZP_CS
EP9
EP7
EP8
EZP_Q (output)
EP5
EP6
EZP_D (input)
Figure 12. EzPort Timing Diagram
36
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
3.4.3 Flexbus switching specifications
All processor bus timings are synchronous; input setup/hold and output delay are
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK
frequency may be the same as the internal system bus frequency or an integer divider
of that frequency.
The following timing numbers indicate when data is latched or driven onto the
external bus, relative to the Flexbus output clock (FB_CLK). All other timing
relationships can be derived from these values.
Table 28. Flexbus limited voltage range switching specifications
Num
Description
Min.
Max.
Unit
Notes
Operating voltage
2.7
3.6
V
Frequency of operation
—
FB_CLK
MHz
FB1
Clock period
20
—
ns
FB2
Address, data, and control output valid
—
11.5
ns
1
FB3
Address, data, and control output hold
0.5
—
ns
1
FB4
Data and FB_TA input setup
8.5
—
ns
2
FB5
Data and FB_TA input hold
0.5
—
ns
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 29. Flexbus full voltage range switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
—
FB_CLK
MHz
1/FB_CLK
—
ns
Frequency of operation
Notes
FB1
Clock period
FB2
Address, data, and control output valid
—
13.5
ns
1
FB3
Address, data, and control output hold
0
—
ns
1
FB4
Data and FB_TA input setup
15.5
—
ns
2
FB5
Data and FB_TA input hold
0.5
—
ns
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
37
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB3
FB5
FB_A[Y]
Address
FB4
FB2
FB_D[X]
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB4
FB_BEn
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 13. FlexBus read timing diagram
38
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB2
FB3
FB_A[Y]
FB_D[X]
Address
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB4
FB_BEn
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 14. FlexBus write timing diagram
3.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
3.6 Analog
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
39
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 30 and Table 31 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
3.6.1.1
16-bit ADC operating conditions
Table 30. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
Notes
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
—
ΔVDDA
Supply voltage
Delta to VDD (VDD – VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS – VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
ADC reference
voltage low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
VREFL
—
VREFH
V
—
CADIN
Input
capacitance
• 16-bit mode
—
8
10
pF
—
• 8-bit / 10-bit / 12-bit
modes
—
4
5
—
2
5
kΩ
—
RADIN
RAS
Input series
resistance
Analog source
resistance
(external)
13-bit / 12-bit modes
fADCK < 4 MHz
—
—
5
kΩ
fADCK
ADC conversion
clock frequency
≤ 13-bit mode
1.0
—
18.0
MHz
4
fADCK
ADC conversion
clock frequency
16-bit mode
2.0
—
12.0
MHz
4
Crate
ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
3
5
20.000
—
818.330
Ksps
Continuous conversions
enabled, subsequent
conversion time
Crate
ADC conversion
rate
16-bit mode
No ADC hardware averaging
5
37.037
—
461.467
Ksps
Continuous conversions
enabled, subsequent
conversion time
40
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
ADC SAR
ENGINE
RADIN
VADIN
CAS
VAS
RADIN
INPUT PIN
RADIN
INPUT PIN
RADIN
INPUT PIN
CADIN
Figure 15. ADC input impedance equivalency diagram
3.6.1.2
16-bit ADC electrical characteristics
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC = 1, ADHSC = 0
1.2
2.4
3.9
MHz
• ADLPC = 1, ADHSC = 1
2.4
4.0
6.1
MHz
tADACK =
1/fADACK
• ADLPC = 0, ADHSC = 0
3.0
5.2
7.3
MHz
• ADLPC = 0, ADHSC = 1
4.4
6.2
9.5
MHz
IDDA_ADC Supply current
fADACK
ADC
asynchronous
clock source
Sample Time
See Reference Manual chapter for sample times
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
41
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
TUE
DNL
INL
EFS
EQ
ENOB
Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
LSB4
5
LSB4
5
LSB4
5
LSB4
VADIN =
VDDA5
Total
unadjusted
error
• 12-bit modes
—
±4
±6.8
• <12-bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12-bit modes
—
±0.7
–1.1 to
+1.9
• <12-bit modes
—
±0.2
• 12-bit modes
—
±1.0
• <12-bit modes
—
±0.5
• 12-bit modes
—
–4
–5.4
• <12-bit modes
—
–1.4
–1.8
• 16-bit modes
—
–1 to 0
—
• ≤13-bit modes
—
—
±0.5
Integral nonlinearity
Full-scale error
Quantization
error
Effective
number of bits
–0.3 to
0.5
–2.7 to
+1.9
–0.7 to
+0.5
16-bit differential mode
bits
• Avg = 32
12.8
14.5
• Avg = 4
11.9
13.8
• Avg = 4
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16-bit differential mode
—
bits
bits
12.2
13.9
—
11.4
13.1
—
6.02 × ENOB + 1.76
• Avg = 32
6
bits
—
16-bit single-ended mode
• Avg = 32
LSB4
dB
dB
—
-94
7
—
dB
16-bit single-ended mode
• Avg = 32
SFDR
Spurious free
dynamic range
—
-85
82
95
16-bit differential mode
• Avg = 32
16-bit single-ended mode
78
—
—
dB
—
dB
7
90
• Avg = 32
EIL
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
Table continues on the next page...
42
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
Conditions1
Description
Typ.2
Min.
Max.
Unit
Notes
and
current
operating
ratings)
VTEMP25
Temp sensor
slope
Across the full temperature range
of the device
1.55
1.62
1.69
mV/°C
8
Temp sensor
voltage
25 °C
706
716
726
mV
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with
1 MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
15.00
14.70
14.40
14.10
ENOB
13.80
13.50
13.20
12.90
12.60
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
12.30
12.00
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 16. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
43
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
14.00
13.75
13.50
13.25
13.00
ENOB
12.75
12.50
12.25
12.00
11.75
11.50
11.25
11.00
Averaging of 4 samples
Averaging of 32 samples
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 17. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
3.6.2 CMP and 6-bit DAC electrical specifications
Table 32. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1, PMODE=1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
VAIN
Analog input voltage
VSS – 0.3
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1, PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1, PMODE=0)
80
250
600
ns
—
—
40
μs
—
7
—
μA
Analog comparator initialization
IDAC6b
delay2
6-bit DAC current adder (enabled)
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
44
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
0.08
0.07
CMP Hystereris (V)
0.06
HYSTCTR
Setting
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vin level (V)
Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
45
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP Hysteresis (V)
0.12
HYSTCTR
Setting
0.1
00
01
10
11
0.08
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 19. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.6.3 12-bit DAC electrical characteristics
3.6.3.1
Symbol
12-bit DAC operating requirements
Table 33. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
Notes
1.13
3.6
V
1
CL
Output load capacitance
—
100
pF
2
IL
Output load current
—
1
mA
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
46
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
3.6.3.2
Symbol
12-bit DAC operating behaviors
Table 34. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
150
μA
—
—
700
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
—
0.7
1
μs
1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and highspeed mode
Vdacoutl
DAC output voltage range low — highspeed mode, no load, DAC set to 0x000
—
—
100
mV
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
—
±0.4
±0.8
%FSR
5
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA ≥ 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
AC
Offset aging coefficient
—
—
100
μV/yr
Rop
Output resistance (load = 3 kΩ)
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
VOFFSET Offset error
EG
PSRR
1.
2.
3.
4.
5.
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
—
—
-80
CT
Channel to channel cross talk
BW
3dB bandwidth
6
dB
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
47
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set
to 0x800, temperature range is across the full range of the device
8
6
4
DAC12 INL (LSB)
2
0
-2
-4
-6
-8
0
500
1000
1500
2000
2500
3000
3500
4000
Digital Code
Figure 20. Typical INL error vs. digital code
48
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
1.499
DAC12 Mid Level Code Voltage
1.4985
1.498
1.4975
1.497
1.4965
1.496
55
25
-40
85
105
125
Temperature °C
Figure 21. Offset at half scale vs. temperature
3.6.4 Voltage reference electrical specifications
Table 35. VREF full-range operating requirements
Symbol
Description
Min.
Max.
Unit
Notes
VDDA
Supply voltage
1.71
3.6
V
—
Operating temperature
range of the device
°C
—
100
nF
1, 2
TA
Temperature
CL
Output load capacitance
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature
range of the device.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
49
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 36. VREF full-range operating behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Vout
Voltage reference output with factory trim at
nominal VDDA and temperature= 25 °C
1.192
1.195
1.198
V
1
Vout
Voltage reference output with user trim at
nominal VDDA and temperature= 25 °C
1.1945
1.195
1.1955
V
1
Vstep
Voltage reference trim step
—
0.5
—
mV
1
Vtdrift
Temperature drift (Vmax -Vmin across the full
temperature range)
—
2
15
mV
1
Ibg
Bandgap only current
—
60
80
µA
1
Ilp
Low-power buffer current
—
180
360
uA
1
Ihp
High-power buffer current
—
480
960
mA
1
µV
1, 2
—
ΔVLOAD
Load regulation
• current = ± 1.0 mA
Tstup
Buffer startup time
—
200
—
—
—
100
µs
35
ms
2
mV
Tchop_osc_st Internal bandgap start-up delay with chop
oscillator enabled
up
Vvdrift
Voltage drift (Vmax -Vmin across the full voltage
range)
—
0.5
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 37. VREF limited-range operating requirements
Symbol
Description
Min.
Max.
Unit
Notes
TA
Temperature
0
50
°C
—
Table 38. VREF limited-range operating behaviors
Symbol
Vout
Description
Voltage reference output with factory trim
Min.
Max.
Unit
Notes
1.173
1.225
V
—
3.7 Timers
See General switching specifications.
3.8 Communication interfaces
50
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
3.8.1 Ethernet switching specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
3.8.1.1
MII signal switching specifications
The following timing specs meet the requirements for MII style interfaces for a range
of transceiver devices.
Table 39. MII signal switching specifications
Symbol
—
MII1
Description
RXCLK frequency
RXCLK pulse width high
Min.
Max.
Unit
—
25
MHz
35%
65%
RXCLK
period
MII2
RXCLK pulse width low
35%
65%
RXCLK
period
MII3
RXD[3:0], RXDV, RXER to RXCLK setup
5
—
ns
MII4
RXCLK to RXD[3:0], RXDV, RXER hold
5
—
ns
TXCLK frequency
—
25
MHz
35%
65%
TXCLK
—
MII5
TXCLK pulse width high
period
MII6
TXCLK pulse width low
35%
65%
TXCLK
period
MII7
TXCLK to TXD[3:0], TXEN, TXER invalid
2
—
ns
MII8
TXCLK to TXD[3:0], TXEN, TXER valid
—
25
ns
MII6
MII5
TXCLK (input)
MII8
MII7
TXD[n:0]
Valid data
TXEN
Valid data
TXER
Valid data
Figure 22. RMII/MII transmit signal timing diagram
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
51
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
MII2
MII1
MII3
MII4
RXCLK (input)
RXD[n:0]
Valid data
RXDV
Valid data
RXER
Valid data
Figure 23. RMII/MII receive signal timing diagram
3.8.1.2
RMII signal switching specifications
The following timing specs meet the requirements for RMII style interfaces for a range
of transceiver devices.
Table 40. RMII signal switching specifications
Num
—
Description
EXTAL frequency (RMII input clock RMII_CLK)
Min.
Max.
Unit
—
50
MHz
RMII1
RMII_CLK pulse width high
35%
65%
RMII_CLK
period
RMII2
RMII_CLK pulse width low
35%
65%
RMII_CLK
period
RMII3
RXD[1:0], CRS_DV, RXER to RMII_CLK setup
4
—
ns
RMII4
RMII_CLK to RXD[1:0], CRS_DV, RXER hold
2
—
ns
RMII7
RMII_CLK to TXD[1:0], TXEN invalid
4
—
ns
RMII8
RMII_CLK to TXD[1:0], TXEN valid
—
15
ns
3.8.1.3
MDIO serial management timing specifications
Table 41. MDIO serial management channel signal timing
Num
Characteristic
Symbol
Min
Max
Unit
E10
MDC cycle time
tMDC
400
—
ns
E11
MDC pulse width
40
60
% tMDC
E12
MDC to MDIO output valid
—
375
ns
E13
MDC to MDIO output invalid
25
—
ns
E14
MDIO input to MDC setup
10
—
ns
E15
MDIO input to MDC hold
0
—
ns
52
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
E10
E11
MDC (Output)
E11
E12
E13
MDIO (Output)
Valid Data
E14
MDIO (Input)
E15
Valid Data
Figure 24. MDIO serial management channel timing diagram
3.8.2 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-todate standards, visit usb.org.
NOTE
The MCGPLLCLK meets the USB jitter specifications for
certification with the use of an external clock/crystal for
both Device and Host modes.
The MCGFLLCLK does not meet the USB jitter
specifications for certification.
The IRC48M meets the USB jitter specifications for
certification in Device mode when the USB clock recovery
mode is enabled. It does not meet the USB jitter
specifications for certification in Host mode operation.
3.8.3 USB DCD electrical specifications
Table 42. USB0 DCD electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDP_SRC
USB_DP source voltage (up to 250 μA)
0.5
—
0.7
V
Threshold voltage for logic high
0.8
—
2.0
V
VLGC
IDP_SRC
USB_DP source current
7
10
13
μA
IDM_SINK
USB_DM sink current
50
100
150
μA
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
53
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 42. USB0 DCD electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
RDM_DWN
D- pulldown resistance for data pin contact detect
14.25
—
24.8
kΩ
VDAT_REF
Data detect voltage
0.25
0.33
0.4
V
3.8.4 USB VREG electrical specifications
Table 43. USB VREG electrical specifications
Symbol
Description
Min.
Typ.1
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
—
125
186
μA
IDDstby
Quiescent current — Standby mode, load
current equal zero
—
1.1
10
μA
IDDoff
Quiescent current — Shutdown mode
—
650
—
nA
—
—
4
μA
• VREGIN = 5.0 V and temperature=25 °C
• Across operating voltage and temperature
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
1
mA
VReg33out
Regulator output voltage — Input supply
(VREGIN) > 3.6 V
3
3.3
3.6
V
• Run mode
• Standby mode
2.1
2.8
3.6
V
Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1
—
3.6
V
COUT
External output capacitor
1.76
2.2
8.16
μF
ESR
External output capacitor equivalent series
resistance
1
—
100
mΩ
ILIM
Short circuit current
—
290
—
mA
VReg33out
Notes
2
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
3.8.5 CAN switching specifications
See General switching specifications.
54
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
3.8.6 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 44. Master mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
30
MHz
2 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2 (tSCK/2) + 2
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
−2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
15
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DSPI_SCK
(CPOL=0)
DS7
DSPI_SIN
DS4
DS8
First data
DSPI_SOUT
DS1
DS2
Data
Last data
DS5
First data
DS6
Data
Last data
Figure 25. DSPI classic SPI timing — master mode
Table 45. Slave mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
2.7
3.6
V
15
MHz
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
55
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 45. Slave mode DSPI timing (limited voltage range) (continued)
Num
Description
Min.
Max.
Unit
4 x tBUS
—
ns
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
14
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
14
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Last data
Data
DS14
First data
Data
Last data
Figure 26. DSPI classic SPI timing — slave mode
3.8.7 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 46. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
15
MHz
4 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
Table continues on the next page...
56
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 46. Master mode DSPI timing (full voltage range) (continued)
Num
Description
Min.
Max.
Unit
Notes
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
4
—
ns
3
DS5
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-4.5
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
21
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DSPI_SCK
(CPOL=0)
DS7
DSPI_SIN
DS1
DS2
DS4
DS8
First data
DSPI_SOUT
Data
Last data
DS5
First data
DS6
Data
Last data
Figure 27. DSPI classic SPI timing — master mode
Table 47. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
7.5
MHz
8 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
23.5
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
4
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
21
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
19
ns
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
57
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Last data
Data
DS14
First data
Data
Last data
Figure 28. DSPI classic SPI timing — slave mode
3.8.8 Inter-Integrated Circuit Interface (I2C) timing
Table 48. I 2C timing
Characteristic
Symbol
Standard Mode
Fast Mode
Minimum
Maximum
Minimum
Maximum
Unit
SCL Clock Frequency
fSCL
0
100
0
400
kHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA
4
—
0.6
—
µs
LOW period of the SCL clock
tLOW
4.7
—
1.3
—
µs
HIGH period of the SCL clock
tHIGH
4
—
0.6
—
µs
Set-up time for a repeated START
condition
tSU; STA
4.7
—
0.6
—
µs
Data hold time for I2C bus devices
tHD; DAT
01
3.452
03
0.91
µs
tSU; DAT
2504
—
10025
Data set-up time
Rise time of SDA and SCL signals
tr
—
1000
—
ns
6
300
ns
5
20 +0.1Cb
Fall time of SDA and SCL signals
tf
—
300
20 +0.1Cb
300
ns
Set-up time for STOP condition
tSU; STO
4
—
0.6
—
µs
Bus free time between STOP and
START condition
tBUF
4.7
—
1.3
—
µs
Pulse width of spikes that must be
suppressed by the input filter
tSP
N/A
N/A
0
50
ns
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
3. Input signal Slew = 10 ns and Output Load = 50 pF
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such
58
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;
2
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification) before the SCL line is released.
6. Cb = total capacitance of the one bus line in pF.
Table 49. I 2C 1MHz timing
Characteristic
Symbol
Minimum
Maximum
Unit
SCL Clock Frequency
fSCL
0
1
MHz
Hold time (repeated) START condition. After this
period, the first clock pulse is generated.
tHD; STA
0.26
—
µs
LOW period of the SCL clock
tLOW
0.5
—
HIGH period of the SCL clock
tHIGH
0.26
—
µs
 µs
Set-up time for a repeated START condition
tSU; STA
0.26
—
Data hold time for I2C bus devices
tHD; DAT
0
—
Data set-up time
tSU; DAT
50

µs
µs
—
ns
1
Rise time of SDA and SCL signals
tr
20 +0.1Cb
120
ns
Fall time of SDA and SCL signals
tf
20 +0.1Cb2
120
ns
Set-up time for STOP condition
tSU; STO
0.26
—
µs
Bus free time between STOP and START
condition
tBUF
0.5
—
µs
Pulse width of spikes that must be suppressed by
the input filter
tSP
0
50
ns
1. Cb = total capacitance of the one bus line in pF.
2. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is
released.
SDA
tf
tLOW
tSU; DAT
tr
tf
tHD; STA
tSP
tr
tBUF
SCL
S
HD; STA
tHD; DAT
tHIGH
tSU; STA
SR
tSU; STO
P
S
Figure 29. Timing definition for fast and standard mode devices on the I2C bus
3.8.9 UART switching specifications
See General switching specifications.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
59
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.8.10 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 50. SDHC switching specifications
Num
Symbol
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
Card input clock
SD1
fpp
Clock frequency (low speed)
0
400
kHz
fpp
Clock frequency (SD\SDIO full speed\high speed)
0
25\50
MHz
fpp
Clock frequency (MMC full speed\high speed)
0
20\50
MHz
fOD
Clock frequency (identification mode)
0
400
kHz
SD2
tWL
Clock low time
7
—
ns
SD3
tWH
Clock high time
7
—
ns
SD4
tTLH
Clock rise time
—
3
ns
SD5
tTHL
Clock fall time
—
3
ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6
tOD
SDHC output delay (output valid)
-5
8.3
ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7
tISU
SDHC input setup time
5.5
—
ns
SD8
tIH
SDHC input hold time
0
—
ns
SD3
SD2
SD1
SDHC_CLK
SD6
Output SDHC_CMD
Output SDHC_DAT[3:0]
SD7
SD8
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 30. SDHC timing
60
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
3.8.11 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] =
0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or
the frame sync (I2S_FS) shown in the figures below.
Table 51. I2S master mode timing
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_BCLK cycle time
80
—
ns
S4
I2S_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_BCLK to I2S_FS output valid
—
15
ns
S6
I2S_BCLK to I2S_FS output invalid
0
—
ns
S7
I2S_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_FS input setup before I2S_BCLK
17
—
ns
S10
I2S_RXD/I2S_FS input hold after I2S_BCLK
0
—
ns
S1
S2
S2
I2S_MCLK (output)
S3
I2S_BCLK (output)
S4
S4
S6
S5
I2S_FS (output)
S10
S9
I2S_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 31. I2S timing — master mode
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
61
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 52. I2S slave mode timing
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S11
I2S_BCLK cycle time (input)
80
—
ns
S12
I2S_BCLK pulse width high/low (input)
45%
55%
MCLK period
S13
I2S_FS input setup before I2S_BCLK
5
—
ns
S14
I2S_FS input hold after I2S_BCLK
2
—
ns
S15
I2S_BCLK to I2S_TXD/I2S_FS output valid
—
19.5
ns
S16
I2S_BCLK to I2S_TXD/I2S_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_BCLK
5
—
ns
S18
I2S_RXD hold after I2S_BCLK
2
—
ns
21
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S11
S12
I2S_BCLK (input)
S12
S15
S16
I2S_FS (output)
S13
I2S_FS (input)
S14
S15
S19
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 32. I2S timing — slave modes
3.8.11.1
Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 53. I2S/SAI master mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK (as an input) pulse width high/low
45%
55%
MCLK period
Table continues on the next page...
62
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 53. I2S/SAI master mode timing (continued)
Num.
Characteristic
Min.
Max.
Unit
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
-1
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
22.5
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0
—
ns
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 33. I2S/SAI timing — master modes
Table 54. I2S/SAI slave mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
7
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
63
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 54. I2S/SAI slave mode timing (continued)
Num.
Characteristic
Min.
Max.
Unit
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
25.5
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output
invalid
3
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
5.8
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
25
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 34. I2S/SAI timing — slave modes
3.8.11.2
VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
62.5
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
250
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
Table continues on the next page...
64
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Peripheral operating requirements and behaviors
Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
(continued)
Num.
Characteristic
Min.
Max.
Unit
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
45
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
45
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0
—
ns
S1
45
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 35. I2S/SAI timing — master modes
Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
250
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
11
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
ns
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
65
Freescale Semiconductor, Inc.
Dimensions
Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
(continued)
Num.
Characteristic
Min.
Max.
Unit
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output
invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
30
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
11
—
ns
—
72
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 36. I2S/SAI timing — slave modes
4 Dimensions
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
100-pin LQFP
98ASS23308W
121-pin XFBGA
98ASA00595D
144-pin LQFP
98ASS23177W
144-pin MAPBGA
98ASA00222D
66
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Pinout
5 Pinout
5.1 K64 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is
responsible for selecting which ALT functionality is available on each pin.
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
—
L5
L7
—
RTC_
RTC_
RTC_
WAKEUP_ WAKEUP_ WAKEUP_
B
B
B
—
—
B11
—
PTB12
DISABLED
PTB12
UART3_
RTS_b
FTM1_CH0 FTM0_CH4
FTM1_QD_
PHA
—
—
C11
—
PTB13
DISABLED
PTB13
UART3_
CTS_b
FTM1_CH1 FTM0_CH5
FTM1_QD_
PHB
—
—
A11
—
NC
NC
NC
—
M5
—
—
NC
NC
NC
—
A10
—
—
NC
NC
NC
—
B10
K3
—
NC
NC
NC
—
C10
H4
—
NC
NC
NC
1
D3
E4
1
PTE0
ADC1_
SE4a
ADC1_
SE4a
PTE0
SPI1_
PCS1
UART1_TX SDHC0_D1 TRACE_
CLKOUT
I2C1_SDA
RTC_
CLKOUT
2
D2
E3
2
PTE1/
LLWU_P0
ADC1_
SE5a
ADC1_
SE5a
PTE1/
LLWU_P0
SPI1_
SOUT
UART1_RX SDHC0_D0 TRACE_D3 I2C1_SCL
SPI1_SIN
3
D1
E2
3
PTE2/
LLWU_P1
ADC0_
DP2/
ADC1_
SE6a
ADC0_
DP2/
ADC1_
SE6a
PTE2/
LLWU_P1
SPI1_SCK
UART1_
CTS_b
SDHC0_
DCLK
TRACE_D2
4
E4
F4
4
PTE3
ADC0_
DM2/
ADC1_
SE7a
ADC0_
DM2/
ADC1_
SE7a
PTE3
SPI1_SIN
UART1_
RTS_b
SDHC0_
CMD
TRACE_D1
5
E5
E7
—
VDD
VDD
VDD
6
F6
F7
—
VSS
VSS
VSS
7
E3
H7
5
PTE4/
LLWU_P2
DISABLED
PTE4/
LLWU_P2
SPI1_
PCS0
UART3_TX SDHC0_D3 TRACE_D0
8
E2
G4
6
PTE5
DISABLED
PTE5
SPI1_
PCS2
UART3_RX SDHC0_D2
FTM3_CH0
9
E1
F3
7
PTE6
DISABLED
PTE6
SPI1_
PCS3
UART3_
CTS_b
FTM3_CH1 USB_SOF_
OUT
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
I2S0_
MCLK
EzPort
SPI1_
SOUT
67
Freescale Semiconductor, Inc.
Pinout
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT6
10
F4
—
—
PTE7
DISABLED
PTE7
UART3_
RTS_b
11
F3
—
—
PTE8
DISABLED
PTE8
I2S0_RXD1 UART5_TX I2S0_RX_
FS
FTM3_CH3
12
F2
—
—
PTE9
DISABLED
PTE9
I2S0_TXD1 UART5_RX I2S0_RX_
BCLK
FTM3_CH4
13
F1
—
—
PTE10
DISABLED
PTE10
UART5_
CTS_b
I2S0_TXD0
FTM3_CH5
14
G4
—
—
PTE11
DISABLED
PTE11
UART5_
RTS_b
I2S0_TX_
FS
FTM3_CH6
15
G3
—
—
PTE12
DISABLED
PTE12
I2S0_TX_
BCLK
FTM3_CH7
16
E6
E6
8
VDD
VDD
VDD
17
F7
G7
9
VSS
VSS
VSS
18
H3
L6
—
VSS
VSS
VSS
19
H1
F1
10
USB0_DP
USB0_DP
USB0_DP
20
H2
F2
11
USB0_DM
USB0_DM
USB0_DM
21
G1
G1
12
VOUT33
VOUT33
VOUT33
22
G2
G2
13
VREGIN
VREGIN
VREGIN
23
J1
H1
14
ADC0_DP1 ADC0_DP1 ADC0_DP1
24
J2
H2
15
ADC0_
DM1
25
K1
J1
16
ADC1_DP1 ADC1_DP1 ADC1_DP1
26
K2
J2
17
ADC1_
DM1
27
L1
K1
18
ADC0_
ADC0_
ADC0_
DP0/
DP0/
DP0/
ADC1_DP3 ADC1_DP3 ADC1_DP3
28
L2
K2
19
ADC0_
DM0/
ADC1_
DM3
29
M1
L1
20
ADC1_
ADC1_
ADC1_
DP0/
DP0/
DP0/
ADC0_DP3 ADC0_DP3 ADC0_DP3
30
M2
L2
21
ADC1_
DM0/
ADC0_
DM3
ADC1_
DM0/
ADC0_
DM3
ADC1_
DM0/
ADC0_
DM3
31
H5
F5
22
VDDA
VDDA
VDDA
32
G5
G5
23
VREFH
VREFH
VREFH
33
G6
G6
24
VREFL
VREFL
VREFL
34
H6
F6
25
VSSA
VSSA
VSSA
68
Freescale Semiconductor, Inc.
ADC0_
DM1
ADC1_
DM1
ADC0_
DM0/
ADC1_
DM3
I2S0_RXD0
ALT5
ALT7
EzPort
FTM3_CH2
ADC0_
DM1
ADC1_
DM1
ADC0_
DM0/
ADC1_
DM3
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Pinout
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
35
K3
J3
—
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
36
J3
H3
—
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
37
M3
L3
26
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
38
L3
K5
27
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
39
L4
K4
—
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
40
M7
L4
28
XTAL32
XTAL32
XTAL32
41
M6
L5
29
EXTAL32
EXTAL32
EXTAL32
42
L6
K6
30
VBAT
VBAT
VBAT
43
—
—
—
VDD
VDD
VDD
44
—
—
—
VSS
VSS
VSS
45
M4
H5
31
PTE24
ADC0_
SE17
ADC0_
SE17
PTE24
UART4_TX
I2C0_SCL
EWM_
OUT_b
46
K5
J5
32
PTE25
ADC0_
SE18
ADC0_
SE18
PTE25
UART4_RX
I2C0_SDA
EWM_IN
47
K4
H6
33
PTE26
DISABLED
PTE26
48
J4
—
—
PTE27
DISABLED
PTE27
49
H4
—
—
PTE28
DISABLED
PTE28
50
J5
J6
34
PTA0
JTAG_
TCLK/
SWD_CLK/
EZP_CLK
PTA0
UART0_
CTS_b/
UART0_
COL_b
FTM0_CH5
JTAG_
TCLK/
SWD_CLK
EZP_CLK
51
J6
H8
35
PTA1
JTAG_TDI/
EZP_DI
PTA1
UART0_RX FTM0_CH6
JTAG_TDI
EZP_DI
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
ENET_
1588_
CLKIN
UART4_
CTS_b
RTC_
CLKOUT
USB_
CLKIN
UART4_
RTS_b
69
Freescale Semiconductor, Inc.
Pinout
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
EZP_DO
52
K6
J7
36
PTA2
JTAG_
TDO/
TRACE_
SWO/
EZP_DO
PTA2
UART0_TX FTM0_CH7
JTAG_
TDO/
TRACE_
SWO
53
K7
H9
37
PTA3
JTAG_
TMS/
SWD_DIO
PTA3
UART0_
RTS_b
FTM0_CH0
JTAG_
TMS/
SWD_DIO
54
L7
J8
38
PTA4/
LLWU_P3
NMI_b/
EZP_CS_b
PTA4/
LLWU_P3
FTM0_CH1
NMI_b
55
M8
K7
39
PTA5
DISABLED
PTA5
56
E7
E5
40
VDD
VDD
VDD
57
G7
G3
41
VSS
VSS
VSS
58
J7
—
—
PTA6
DISABLED
59
J8
—
—
PTA7
ADC0_
SE10
60
K8
—
—
PTA8
ADC0_
SE11
61
L8
—
—
PTA9
62
M9
J9
—
63
L9
J4
64
K9
65
USB_
CLKIN
FTM0_CH2 RMII0_
CMP2_
RXER/
OUT
MII0_RXER
I2S0_TX_
BCLK
JTAG_
TRST_b
PTA6
FTM0_CH3
ADC0_
SE10
PTA7
FTM0_CH4
TRACE_D3
ADC0_
SE11
PTA8
FTM1_CH0
FTM1_QD_ TRACE_D2
PHA
DISABLED
PTA9
FTM1_CH1 MII0_RXD3
FTM1_QD_ TRACE_D1
PHB
PTA10
DISABLED
PTA10
FTM2_CH0 MII0_RXD2
FTM2_QD_ TRACE_D0
PHA
—
PTA11
DISABLED
PTA11
FTM2_CH1 MII0_
RXCLK
K8
42
PTA12
CMP2_IN0 CMP2_IN0 PTA12
CAN0_TX
FTM1_CH0 RMII0_
I2C2_SCL
RXD1/
MII0_RXD1
I2S0_TXD0 FTM1_QD_
PHA
J9
L8
43
PTA13/
LLWU_P4
CMP2_IN1 CMP2_IN1 PTA13/
LLWU_P4
CAN0_RX
FTM1_CH1 RMII0_
I2C2_SDA
RXD0/
MII0_RXD0
I2S0_TX_
FS
FTM1_QD_
PHB
66
L10
K9
44
PTA14
DISABLED
PTA14
SPI0_
PCS0
UART0_TX RMII0_
I2C2_SCL
CRS_DV/
MII0_RXDV
I2S0_RX_
BCLK
I2S0_TXD1
67
L11
L9
45
PTA15
DISABLED
PTA15
SPI0_SCK
UART0_RX RMII0_
TXEN/
MII0_TXEN
I2S0_RXD0
68
K10
J10
46
PTA16
DISABLED
PTA16
SPI0_
SOUT
UART0_
CTS_b/
UART0_
COL_b
RMII0_
TXD0/
MII0_TXD0
I2S0_RX_
FS
69
K11
H10
47
PTA17
ADC1_
SE17
ADC1_
SE17
PTA17
SPI0_SIN
UART0_
RTS_b
RMII0_
TXD1/
MII0_TXD1
I2S0_
MCLK
70
E8
L10
48
VDD
VDD
VDD
70
Freescale Semiconductor, Inc.
CLKOUT
I2C2_SDA
EZP_CS_b
TRACE_
CLKOUT
FTM2_QD_
PHB
I2S0_RXD1
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Pinout
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
71
G8
K10
49
VSS
VSS
VSS
72
M12
L11
50
PTA18
EXTAL0
EXTAL0
PTA18
FTM0_
FLT2
FTM_
CLKIN0
73
M11
K11
51
PTA19
XTAL0
XTAL0
PTA19
FTM1_
FLT0
FTM_
CLKIN1
LPTMR0_
ALT1
74
L12
J11
52
RESET_b
RESET_b
RESET_b
75
K12
—
—
PTA24
DISABLED
PTA24
MII0_TXD2
FB_A29
76
J12
—
—
PTA25
DISABLED
PTA25
MII0_
TXCLK
FB_A28
77
J11
—
—
PTA26
DISABLED
PTA26
MII0_TXD3
FB_A27
78
J10
—
—
PTA27
DISABLED
PTA27
MII0_CRS
FB_A26
79
H12
—
—
PTA28
DISABLED
PTA28
MII0_TXER
FB_A25
80
H11
H11
—
PTA29
DISABLED
PTA29
MII0_COL
FB_A24
81
H10
G11
53
PTB0/
LLWU_P5
ADC0_
ADC0_
PTB0/
SE8/
SE8/
LLWU_P5
ADC1_SE8 ADC1_SE8
I2C0_SCL
FTM1_CH0 RMII0_
MDIO/
MII0_MDIO
FTM1_QD_
PHA
82
H9
G10
54
PTB1
ADC0_
ADC0_
PTB1
SE9/
SE9/
ADC1_SE9 ADC1_SE9
I2C0_SDA
FTM1_CH1 RMII0_
MDC/
MII0_MDC
FTM1_QD_
PHB
83
G12
G9
55
PTB2
ADC0_
SE12
ADC0_
SE12
PTB2
I2C0_SCL
UART0_
RTS_b
ENET0_
1588_
TMR0
FTM0_
FLT3
84
G11
G8
56
PTB3
ADC0_
SE13
ADC0_
SE13
PTB3
I2C0_SDA
UART0_
CTS_b/
UART0_
COL_b
ENET0_
1588_
TMR1
FTM0_
FLT0
85
G10
—
—
PTB4
ADC1_
SE10
ADC1_
SE10
PTB4
ENET0_
1588_
TMR2
FTM1_
FLT0
86
G9
—
—
PTB5
ADC1_
SE11
ADC1_
SE11
PTB5
ENET0_
1588_
TMR3
FTM2_
FLT0
87
F12
F11
—
PTB6
ADC1_
SE12
ADC1_
SE12
PTB6
FB_AD23
88
F11
E11
—
PTB7
ADC1_
SE13
ADC1_
SE13
PTB7
FB_AD22
89
F10
D11
—
PTB8
DISABLED
PTB8
90
F9
E10
57
PTB9
DISABLED
PTB9
91
E12
D10
58
PTB10
ADC1_
SE14
ADC1_
SE14
92
E11
C10
59
PTB11
ADC1_
SE15
ADC1_
SE15
93
H7
—
60
VSS
VSS
VSS
UART3_
RTS_b
FB_AD21
SPI1_
PCS1
UART3_
CTS_b
FB_AD20
PTB10
SPI1_
PCS0
UART3_RX
FB_AD19
FTM0_
FLT1
PTB11
SPI1_SCK
UART3_TX
FB_AD18
FTM0_
FLT2
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
ALT7
EzPort
71
Freescale Semiconductor, Inc.
Pinout
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
94
F5
—
61
VDD
VDD
95
E10
B10
62
PTB16
DISABLED
PTB16
SPI1_
SOUT
UART0_RX FTM_
CLKIN0
FB_AD17
EWM_IN
96
E9
E9
63
PTB17
DISABLED
PTB17
SPI1_SIN
UART0_TX FTM_
CLKIN1
FB_AD16
EWM_
OUT_b
97
D12
D9
64
PTB18
DISABLED
PTB18
CAN0_TX
FTM2_CH0 I2S0_TX_
BCLK
FB_AD15
FTM2_QD_
PHA
98
D11
C9
65
PTB19
DISABLED
PTB19
CAN0_RX
FTM2_CH1 I2S0_TX_
FS
FB_OE_b
FTM2_QD_
PHB
99
D10
F10
66
PTB20
DISABLED
PTB20
SPI2_
PCS0
FB_AD31
CMP0_
OUT
100
D9
F9
67
PTB21
DISABLED
PTB21
SPI2_SCK
FB_AD30
CMP1_
OUT
101
C12
F8
68
PTB22
DISABLED
PTB22
SPI2_
SOUT
FB_AD29
CMP2_
OUT
102
C11
E8
69
PTB23
DISABLED
PTB23
SPI2_SIN
SPI0_
PCS5
103
B12
B9
70
PTC0
ADC0_
SE14
ADC0_
SE14
PTC0
SPI0_
PCS4
PDB0_
EXTRG
USB_SOF_ FB_AD14
OUT
I2S0_TXD1
104
B11
D8
71
PTC1/
LLWU_P6
ADC0_
SE15
ADC0_
SE15
PTC1/
LLWU_P6
SPI0_
PCS3
UART1_
RTS_b
FTM0_CH0 FB_AD13
I2S0_TXD0
105
A12
C8
72
PTC2
ADC0_
ADC0_
PTC2
SE4b/
SE4b/
CMP1_IN0 CMP1_IN0
SPI0_
PCS2
UART1_
CTS_b
FTM0_CH1 FB_AD12
I2S0_TX_
FS
106
A11
B8
73
PTC3/
LLWU_P7
CMP1_IN1 CMP1_IN1 PTC3/
LLWU_P7
SPI0_
PCS1
UART1_RX FTM0_CH2 CLKOUT
I2S0_TX_
BCLK
107
H8
—
74
VSS
VSS
VSS
108
—
—
75
VDD
VDD
VDD
109
A9
A8
76
PTC4/
LLWU_P8
DISABLED
PTC4/
LLWU_P8
SPI0_
PCS0
UART1_TX FTM0_CH3 FB_AD11
CMP1_
OUT
110
D8
D7
77
PTC5/
LLWU_P9
DISABLED
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_
ALT2
I2S0_RXD0 FB_AD10
CMP0_
OUT
111
C8
C7
78
PTC6/
CMP0_IN0 CMP0_IN0 PTC6/
SPI0_
LLWU_P10
LLWU_P10 SOUT
PDB0_
EXTRG
I2S0_RX_
BCLK
FB_AD9
I2S0_
MCLK
112
B8
B7
79
PTC7
CMP0_IN1 CMP0_IN1 PTC7
USB_SOF_ I2S0_RX_
OUT
FS
FB_AD8
113
A8
A7
80
PTC8
ADC1_
ADC1_
PTC8
SE4b/
SE4b/
CMP0_IN2 CMP0_IN2
FTM3_CH4 I2S0_
MCLK
FB_AD7
114
D7
D6
81
PTC9
ADC1_
ADC1_
PTC9
SE5b/
SE5b/
CMP0_IN3 CMP0_IN3
FTM3_CH5 I2S0_RX_
BCLK
FB_AD6
115
C7
C6
82
PTC10
ADC1_
SE6b
ADC1_
SE6b
PTC10
FTM3_CH6 I2S0_RX_
FS
FB_AD5
116
B7
C5
83
PTC11/
ADC1_
LLWU_P11 SE7b
ADC1_
SE7b
PTC11/
I2C1_SDA
LLWU_P11
72
Freescale Semiconductor, Inc.
ALT7
EzPort
VDD
SPI0_SIN
I2C1_SCL
FB_AD28
FTM0_CH2
FTM2_
FLT0
FTM3_CH7 I2S0_RXD1 FB_RW_b
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Pinout
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
117
A7
B6
84
PTC12
DISABLED
PTC12
UART4_
RTS_b
FB_AD27
118
D6
A6
85
PTC13
DISABLED
PTC13
UART4_
CTS_b
FB_AD26
119
C6
A5
86
PTC14
DISABLED
PTC14
UART4_RX
FB_AD25
120
B6
B5
87
PTC15
DISABLED
PTC15
UART4_TX
FB_AD24
121
—
—
88
VSS
VSS
VSS
122
—
—
89
VDD
VDD
VDD
123
A6
D5
90
PTC16
DISABLED
PTC16
UART3_RX ENET0_
1588_
TMR0
FB_CS5_b/
FB_TSIZ1/
FB_BE23_
16_BLS15_
8_b
124
D5
C4
91
PTC17
DISABLED
PTC17
UART3_TX ENET0_
1588_
TMR1
FB_CS4_b/
FB_TSIZ0/
FB_BE31_
24_BLS7_
0_b
125
C5
B4
92
PTC18
DISABLED
PTC18
UART3_
RTS_b
ENET0_
1588_
TMR2
FB_TBST_
b/
FB_CS2_b/
FB_BE15_
8_BLS23_
16_b
126
B5
A4
—
PTC19
DISABLED
PTC19
UART3_
CTS_b
ENET0_
1588_
TMR3
FB_CS3_b/ FB_TA_b
FB_BE7_
0_BLS31_
24_b
127
A5
D4
93
PTD0/
DISABLED
LLWU_P12
PTD0/
SPI0_
LLWU_P12 PCS0
UART2_
RTS_b
FTM3_CH0 FB_ALE/
FB_CS1_b/
FB_TS_b
128
D4
D3
94
PTD1
PTD1
UART2_
CTS_b
FTM3_CH1 FB_CS0_b
129
C4
C3
95
PTD2/
DISABLED
LLWU_P13
PTD2/
SPI0_
LLWU_P13 SOUT
UART2_RX FTM3_CH2 FB_AD4
I2C0_SCL
130
B4
B3
96
PTD3
PTD3
UART2_TX FTM3_CH3 FB_AD3
I2C0_SDA
131
A4
A3
97
PTD4/
DISABLED
LLWU_P14
132
A3
A2
98
PTD5
ADC0_
SE6b
133
A2
B2
99
134
M10
—
135
F8
—
ADC0_
SE5b
ADC0_
SE5b
DISABLED
SPI0_SCK
SPI0_SIN
FTM3_
FLT0
PTD4/
SPI0_
LLWU_P14 PCS1
UART0_
RTS_b
FTM0_CH4 FB_AD2
EWM_IN
SPI1_
PCS0
ADC0_
SE6b
PTD5
UART0_
CTS_b/
UART0_
COL_b
FTM0_CH5 FB_AD1
EWM_
OUT_b
SPI1_SCK
PTD6/
ADC0_
LLWU_P15 SE7b
ADC0_
SE7b
PTD6/
SPI0_
LLWU_P15 PCS3
UART0_RX FTM0_CH6 FB_AD0
FTM0_
FLT0
SPI1_
SOUT
—
VSS
VSS
VSS
—
VDD
VDD
VDD
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
SPI0_
PCS2
EzPort
73
Freescale Semiconductor, Inc.
Pinout
144 144
LQFP MAP
BGA
121 100 Pin Name
XFB LQFP
GA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
136
A1
A1
100
PTD7
DISABLED
PTD7
CMT_IRO
UART0_TX FTM0_CH7
FTM0_
FLT1
137
C9
A10
—
PTD8
DISABLED
PTD8
I2C0_SCL
UART5_RX
FB_A16
138
B9
A9
—
PTD9
DISABLED
PTD9
I2C0_SDA
UART5_TX
FB_A17
139
B3
B1
—
PTD10
DISABLED
PTD10
UART5_
RTS_b
FB_A18
140
B2
C2
—
PTD11
DISABLED
PTD11
SPI2_
PCS0
UART5_
CTS_b
SDHC0_
CLKIN
FB_A19
141
B1
C1
—
PTD12
DISABLED
PTD12
SPI2_SCK
FTM3_
FLT0
SDHC0_D4
FB_A20
142
C3
D2
—
PTD13
DISABLED
PTD13
SPI2_
SOUT
SDHC0_D5
FB_A21
143
C2
D1
—
PTD14
DISABLED
PTD14
SPI2_SIN
SDHC0_D6
FB_A22
144
C1
E1
—
PTD15
DISABLED
PTD15
SPI2_
PCS1
SDHC0_D7
FB_A23
ALT7
EzPort
SPI1_SIN
5.2 Unused analog interfaces
Table 57. Unused analog interfaces
Module name
Pins
Recommendation if unused
ADC
ADC0_DP1, ADC0_DM1, ADC1_DP1,
ADC1_DM1, ADC0_DP0/ADC1_DP3,
ADC0_DM0/ADC1_DM3, ADC1_DP0/
ADC0_DP3, ADC1_DM0/ADC0_DM3,
ADC1_SE16/ADC0_SE22,
ADC0_SE16/ADC0_SE21,
ADC1_SE18
Ground
DAC 1
DAC0_OUT, DAC1_OUT
Float
USB
VREGIN, USB0_GND,
USB0_DM, USB0_DP
VOUT332
Connect VREGIN and VOUT33
together and tie to ground through a 10
kΩ resistor. Do not tie directly to
ground, as this causes a latch-up risk.
Float
1. Unused DAC signals do not apply to all parts. See the Pinout section for details.
2. USB0_VBUS and USB0_GND are board level signals
5.3 K64 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
74
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
111
110
109
PTC13
PTC8
PTC14
118
112
PTC15
119
PTC9
VSS
120
113
VDD
121
PTC10
PTC16
122
115
PTC17
123
114
PTC18
124
PTC12
PTC19
125
PTC11/LLWU_P11
PTD0/LLWU_P12
126
116
PTD1
127
117
PTD2/LLWU_P13
VSS
134
128
VDD
135
PTD3
PTD7
136
129
PTD8
137
PTD4/LLWU_P14
PTD9
138
131
PTD10
139
130
PTD11
140
PTD6/LLWU_P15
PTD12
141
PTD5
PTD13
142
132
PTD14
143
133
PTD15
144
Pinout
PTE0
1
108
VDD
PTE1/LLWU_P0
2
107
VSS
PTE2/LLWU_P1
3
106
PTC3/LLWU_P7
PTE3
4
105
PTC2
VDD
5
104
PTC1/LLWU_P6
VSS
6
103
PTC0
PTE4/LLWU_P2
7
102
PTB23
PTE5
8
101
PTB22
PTE6
9
100
PTB21
PTE7
10
99
PTB20
PTE8
11
98
PTB19
PTE9
12
97
PTB18
PTE10
13
96
PTB17
PTE11
14
95
PTB16
PTE12
15
94
VDD
VDD
16
93
VSS
VSS
17
92
PTB11
VSS
18
91
PTB10
USB0_DP
19
90
PTB9
USB0_DM
20
89
PTB8
VOUT33
21
88
PTB7
VREGIN
22
87
PTB6
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
VDD
VSS
PTA6
PTA7
PTA8
PTA9
PTA10
PTA11
PTA12
PTA13/LLWU_P4
PTA14
PTA15
PTA16
PTA17
VDD
VSS
PTA18
PTA19
55
RESET_b
73
PTA5
74
36
54
35
PTA4/LLWU_P3
ADC1_SE16/CMP2_IN2/ADC0_SE22
ADC0_SE16/CMP1_IN2/ADC0_SE21
53
PTA24
PTA3
75
52
34
PTA2
PTA25
VSSA
51
PTA26
76
50
77
33
PTA1
32
VREFL
PTA0
VREFH
49
PTA27
PTE28
78
48
31
PTE27
PTA28
VDDA
47
79
PTE26
30
46
PTA29
ADC1_DM0/ADC0_DM3
PTE25
80
45
29
PTE24
PTB0/LLWU_P5
ADC1_DP0/ADC0_DP3
44
81
VSS
28
43
PTB1
ADC0_DM0/ADC1_DM3
VDD
82
42
27
VBAT
PTB2
ADC0_DP0/ADC1_DP3
41
83
EXTAL32
26
40
PTB3
ADC1_DM1
XTAL32
84
39
25
DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23
PTB4
ADC1_DP1
38
PTB5
85
37
86
24
DAC0_OUT/CMP1_IN3/ADC0_SE23
23
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
ADC0_DP1
ADC0_DM1
Figure 37. 144 LQFP Pinout Diagram
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
75
Freescale Semiconductor, Inc.
Pinout
1
2
3
4
5
6
7
8
9
10
11
12
A
PTD7
PTD6/
LLWU_P15
PTD5
PTD4/
LLWU_P14
PTD0/
LLWU_P12
PTC16
PTC12
PTC8
PTC4/
LLWU_P8
NC
PTC3/
LLWU_P7
PTC2
A
B
PTD12
PTD11
PTD10
PTD3
PTC19
PTC15
PTC11/
LLWU_P11
PTC7
PTD9
NC
PTC1/
LLWU_P6
PTC0
B
C
PTD15
PTD14
PTD13
PTD2/
LLWU_P13
PTC18
PTC14
PTC10
PTC6/
LLWU_P10
PTD8
NC
PTB23
PTB22
C
D
PTE2/
LLWU_P1
PTE1/
LLWU_P0
PTE0
PTD1
PTC17
PTC13
PTC9
PTC5/
LLWU_P9
PTB21
PTB20
PTB19
PTB18
D
E
PTE6
PTE5
PTE4/
LLWU_P2
PTE3
VDD
VDD
VDD
VDD
PTB17
PTB16
PTB11
PTB10
E
F
PTE10
PTE9
PTE8
PTE7
VDD
VSS
VSS
VDD
PTB9
PTB8
PTB7
PTB6
F
G
VOUT33
VREGIN
PTE12
PTE11
VREFH
VREFL
VSS
VSS
PTB5
PTB4
PTB3
PTB2
G
H
USB0_DP
USB0_DM
VSS
PTE28
VDDA
VSSA
VSS
VSS
PTB1
PTB0/
LLWU_P5
PTA29
PTA28
H
J
ADC0_DP1
ADC0_DM1
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
PTE27
PTA0
PTA1
PTA6
PTA7
PTA13/
LLWU_P4
PTA27
PTA26
PTA25
J
K
ADC1_DP1
ADC1_DM1
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
PTE26
PTE25
PTA2
PTA3
PTA8
PTA12
PTA16
PTA17
PTA24
K
L
ADC0_DP0/
ADC1_DP3
ADC0_DM0/
ADC1_DM3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
VBAT
PTA4/
LLWU_P3
PTA9
PTA11
PTA14
PTA15
RESET_b
L
M ADC1_DP0/
ADC0_DP3
ADC1_DM0/
ADC0_DM3
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
PTE24
NC
EXTAL32
XTAL32
PTA5
PTA10
VSS
PTA19
PTA18
M
2
3
4
5
6
7
8
9
10
11
12
1
DAC1_OUT/
CMP0_IN4/
RTC_
CMP2_IN3/ WAKEUP_B
ADC1_SE23
Figure 38. 144 MAPBGA Pinout Diagram
76
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Pinout
1
2
3
4
5
6
7
8
9
10
11
A
PTD7
PTD5
PTD4/
LLWU_P14
PTC19
PTC14
PTC13
PTC8
PTC4/
LLWU_P8
PTD9
PTD8
NC
A
B
PTD10
PTD6/
LLWU_P15
PTD3
PTC18
PTC15
PTC12
PTC7
PTC3/
LLWU_P7
PTC0
PTB16
PTB12
B
C
PTD12
PTD11
PTD2/
LLWU_P13
PTC17
PTC11/
LLWU_P11
PTC10
PTC6/
LLWU_P10
PTC2
PTB19
PTB11
PTB13
C
D
PTD14
PTD13
PTD1
PTD0/
LLWU_P12
PTC16
PTC9
PTC5/
LLWU_P9
PTC1/
LLWU_P6
PTB18
PTB10
PTB8
D
E
PTD15
PTE2/
LLWU_P1
PTE1/
LLWU_P0
PTE0
VDD
VDD
VDD
PTB23
PTB17
PTB9
PTB7
E
F
USB0_DP
USB0_DM
PTE6
PTE3
VDDA
VSSA
VSS
PTB22
PTB21
PTB20
PTB6
F
G
VOUT33
VREGIN
VSS
PTE5
VREFH
VREFL
VSS
PTB3
PTB2
PTB1
PTB0/
LLWU_P5
G
H
ADC0_SE16/
ADC0_DP1 ADC0_DM1 CMP1_IN2/
ADC0_SE21
NC
PTE24
PTE26
PTE4/
LLWU_P2
PTA1
PTA3
PTA17
PTA29
H
J
ADC1_SE16/
ADC1_DP1 ADC1_DM1 CMP2_IN2/
ADC0_SE22
PTA11
PTE25
PTA0
PTA2
PTA4/
LLWU_P3
PTA10
PTA16
RESET_b
J
K
ADC0_DP0/ ADC0_DM0/
ADC1_DP3 ADC1_DM3
VBAT
PTA5
PTA12
PTA14
VSS
PTA19
K
L
VREF_OUT/
ADC1_DP0/ ADC1_DM0/ CMP1_IN5/
ADC0_DP3 ADC0_DM3 CMP0_IN5/
ADC1_SE18
PTA15
VDD
PTA18
L
9
10
11
1
2
NC
3
DAC1_OUT/ DAC0_OUT/
CMP0_IN4/ CMP1_IN3/
CMP2_IN3/ ADC0_SE23
ADC1_SE23
XTAL32
EXTAL32
VSS
4
5
6
RTC_
PTA13/
WAKEUP_B LLWU_P4
7
8
Figure 39. 121 XFBGA Pinout Diagram
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
77
Freescale Semiconductor, Inc.
PTC16
VDD
VSS
PTC15
PTC14
PTC13
PTC12
PTC11/LLWU_P11
PTC10
PTC9
PTC8
90
89
88
87
86
85
84
83
82
81
80
PTC4/LLWU_P8
PTC17
91
PTC5/LLWU_P9
PTC18
92
76
PTD0/LLWU_P12
93
77
PTD1
94
PTC7
PTD2/LLWU_P13
95
PTC6/LLWU_P10
PTD3
79
PTD4/LLWU_P14
96
78
PTD5
98
97
PTD7
PTD6/LLWU_P15
100
99
Ordering parts
PTE0
1
75
VDD
PTE1/LLWU_P0
2
74
VSS
PTE2/LLWU_P1
3
73
PTC3/LLWU_P7
PTE3
4
72
PTC2
PTE4/LLWU_P2
5
71
PTC1/LLWU_P6
PTE5
6
70
PTC0
PTE6
7
69
PTB23
VDD
8
68
PTB22
9
67
PTB21
USB0_DP
10
66
PTB20
USB0_DM
11
65
PTB19
VOUT33
12
64
PTB18
VREGIN
13
63
PTB17
VSS
44
45
46
47
48
49
50
PTA14
PTA15
PTA16
PTA17
VDD
VSS
PTA18
PTA19
43
51
42
25
PTA12
VSSA
PTA13/LLWU_P4
RESET_b
VSS
VREFL
41
PTB0/LLWU_P5
52
40
53
24
VDD
23
39
VREFH
PTA5
PTB1
38
54
PTA4/LLWU_P3
22
37
PTB2
VDDA
36
55
PTA3
21
PTA2
PTB3
ADC1_DM0/ADC0_DM3
35
56
PTA1
20
34
PTB9
ADC1_DP0/ADC0_DP3
PTA0
57
33
19
PTE26
ADC0_DM0/ADC1_DM3
32
PTB10
31
58
PTE25
18
PTE24
PTB11
ADC0_DP0/ADC1_DP3
VBAT
59
30
17
29
VSS
ADC1_DM1
28
60
XTAL32
16
EXTAL32
VDD
ADC1_DP1
27
PTB16
61
26
62
15
DAC0_OUT/CMP1_IN3/ADC0_SE23
14
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
ADC0_DP1
ADC0_DM1
Figure 40. 100 LQFP Pinout Diagram
6 Ordering parts
78
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Part identification
6.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable
part numbers for this device, go to freescale.com and perform a part number search for
the following device numbers: PK64 and MK64
7 Part identification
7.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
7.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
7.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K64 = Ethernet with high RAM density
A
Key attribute
• D = Cortex-M4 w/ DSP
• F = Cortex-M4 w/ DSP and FPU
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
FFF
Program flash memory size
•
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
2M0 = 2 MB
Table continues on the next page...
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
79
Freescale Semiconductor, Inc.
Terminology and guidelines
Field
Description
Values
R
Silicon revision
• Z = Initial
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
CC
Maximum CPU frequency (MHz)
•
•
•
•
•
•
•
5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
16 = 168 MHz
18 = 180 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
7.4 Example
This is an example part number:
MK64FN1M0VMD12
8 Terminology and guidelines
8.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
80
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Terminology and guidelines
8.1.1 Example
This is an example of an operating requirement:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
8.2 Definition: Operating behavior
Unless otherwise specified, an operating behavior is a specified value or range of
values for a technical characteristic that are guaranteed during operation if you meet
the operating requirements and any other specified conditions.
8.2.1 Example
This is an example of an operating behavior:
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
8.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that
are guaranteed, regardless of whether you meet the operating requirements.
8.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Max.
7
Unit
pF
81
Freescale Semiconductor, Inc.
Terminology and guidelines
8.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
8.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
8.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
82
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Terminology and guidelines
8.6 Relationship between ratings and operating requirements
.)
)
)
ing
rat
e
Op
g
tin
in.
(m
ra
rat
e
Op
ax
t (m
ing
ire
qu
re
ing
rat
e
Op
.)
en
rem
re
i
qu
rat
e
Op
ing
g
tin
ra
ax
(m
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
g
lin
nd
Ha
in
rat
n.)
mi
g(
–∞
in.
t (m
n
me
g(
ng
li
nd
Ha
in
rat
.)
x
ma
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
∞
Handling (power off)
8.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
8.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
83
Freescale Semiconductor, Inc.
Terminology and guidelines
8.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
Max.
70
130
Unit
µA
8.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
8.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
84
Freescale Semiconductor, Inc.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
Revision History
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
9 Revision History
The following table provides a revision history for this document.
Table 58. Revision History
Rev. No.
Date
Substantial Changes
2
01/2014
3
04/2014
• Format changes
• Updated Table 23 "Flash command timing specifications."
4
09/2014
• Updated Table 6 "Power consumption operating behavior."
• Updated Table 17 "IRC48M specifications
• Updated Table 35 "VREF full-range operating behavior"
5
12/2014
• Updated Table 6 "Power consumption operating behavior."
• Added a note to the section "Power consumption operating behaviors."
Initial public release.
Kinetis K64F Sub-Family Data Sheet, Rev5, 12/2014.
85
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale, Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. ARM and
Cortex are registered trademarks of ARM Limited (or its subsidiaries) in
the EU and/or elsewhere. All rights reserved.
©2014-2015 Freescale Semiconductor, Inc.
Document number
K64P144M120SF5
Revision 5, 12/2014