ACT8890 Rev 1, 05-Sep-13 Advanced PMU for Portable Handheld Equipment FEATURES GENERAL DESCRIPTION • • • • • • The ACT8890 is a complete, cost effective, highlyefficient ActivePMUTM power management solution, for portable handheld equipment such as Smartphones, Mobile Internet Devices (MID), eBooks and etc. Three Step-Down DC/DC Converters Four Low-Dropout Linear Regulators I2CTM Serial Interface Advanced Enable/Disable Sequencing Controller This device features three step-down DC/DC converters and four low-noise, low-dropout linear regulators. Minimal External Components Tiny 4×4mm TQFN44-32 Package − 0.75mm Package Height − Pb-Free and RoHS Compliant The three DC/DC converters utilize a highefficiency, fixed-frequency (2MHz), current-mode PWM control architecture that requires a minimum number of external components. Two DC/DCs are capable of supplying up to 1150mA of output current, while the third supports up to 1300mA. All four low-dropout linear regulators are highperformance, low-noise, regulators that supply up to 320mA each. The ACT8890 is available in a compact, Pb-Free and RoHS-compliant TQFN44-32 package. SYSTEM BLOCK DIAGRAM ActivePMU TM Innovative PowerTM -1Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 TABLE OF CONTENTS General Information ..................................................................................................................................... p. 01 Functional Block Diagram ............................................................................................................................ p. 03 Ordering Information .................................................................................................................................... p. 04 Pin Configuration ......................................................................................................................................... p. 04 Pin Descriptions ........................................................................................................................................... p. 05 Absolute Maximum Ratings ......................................................................................................................... p. 07 I2C Interface Electrical Characteristics ........................................................................................................ p. 08 Global Register Map .................................................................................................................................... p. 09 Register and Bit Descriptions ...................................................................................................................... p. 10 System Control Electrical Characteristics.................................................................................................... p. 13 Step-Down DC/DC Electrical Characteristics .............................................................................................. p. 14 Low-Noise LDO Electrical Characteristics ................................................................................................... p. 15 Typical Performance Characteristics ........................................................................................................... p. 16 System control information .......................................................................................................................... p. 21 Control Signals ................................................................................................................................. p. 21 Functional Description ................................................................................................................................. p. 22 I2C Interface ..................................................................................................................................... p. 22 Thermal Shutdown ........................................................................................................................... p. 22 Step-Down DC/DC Regulators .................................................................................................................... p. 23 General Description.......................................................................................................................... p. 23 100% Duty Cycle Operation ............................................................................................................. p. 23 Synchronous Rectification ................................................................................................................ p. 23 Soft-Start .......................................................................................................................................... p. 23 Compensation .................................................................................................................................. p. 23 Configuration Options....................................................................................................................... p. 23 Output OK[ ] .................................................................................................................................... p. 24 PCB Layout Considerations ............................................................................................................. p. 24 Low-Noise, Low-Dropout Linear Regulators................................................................................................ p. 25 General Description.......................................................................................................................... p. 25 Output Current Limit ......................................................................................................................... p. 25 Compensation .................................................................................................................................. p. 25 Configuration Options....................................................................................................................... p. 25 Output OK[ ] .................................................................................................................................... p. 25 PCB Layout Considerations ............................................................................................................. p. 25 TQFN44-32 Package Outline and Dimensions ........................................................................................... p. 26 Innovative PowerTM -2Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 FUNCTIONAL BLOCK DIAGRAM VP1 To Battery ACT8890 SW1 OUT1 OUT1 OUT1 nRSTO GP1 VP2 To Battery SW2 OUT2 ON1 OUT2 GP2 ON2 VP3 ON3 To Battery SW3 OUT3 ON45 OUT3 System Control GP3 ON6 INL45 ON7 REG4 LDO SCL SDA Serial Interface REG5 LDO VDDREF REFBP OUT4 OUT4 OUT5 OUT5 INL67 To Battery Reference GA REG6 LDO REG7 LDO To Battery To Battery OUT6 OUT6 OUT7 OUT7 EP Innovative PowerTM -3Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 ORDERING INFORMATION PART NUMBER VOUT1 VOUT2 VOUT3 VOUT4 VOUT5 VOUT6 VOUT7 PACKAGE PINS TEMPERATURE RANGE ACT8890Q4I133-T 3.3V 1.3V 1.3V 1.2V 1.2V 1.2V 3.3V TQFN44-32 32 -40°C to +85°C ACT8890Q4I233-T 1.2V 1.5V 1.2V 1.2V 3.0V 3.0V 1.8V TQFN44-32 32 -40°C to +85°C ACT8890Q4I234-T 1.8V 3.0V 1.2V 1.2V 3.0V 3.3V 2.5V TQFN44-32 32 -40°C to +85°C : All Active-Semi components are RoHS Compliant and with Pb-free plating unless specified differently. The term Pb-free means semiconductor products that are in compliance with current RoHS (Restriction of Hazardous Substances) standards. : Standard product options are identified in this table. Contact factory for custom options, minimum order quantity is 12,000 units. PIN CONFIGURATION REFBP VP1 SW1 GP1 GP2 SW2 VP2 NC2 ON6 ON7 nRSTO ON45 ON1 GP3 SW3 VP3 TOP VIEW Thin - QFN (TQFN44-32) Innovative PowerTM -4Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 PIN DESCRIPTIONS PIN NAME DESCRIPTION 1 OUT1 Output Feedback Sense for REG1. Connect this pin directly to the output node to connect the internal feedback network to the output voltage. 2 GA Analog Ground. Connect GA directly to a quiet ground node. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible. 3 OUT4 Output Voltage for REG4. Capable of delivering up to 320mA of output current. Connect a 3.3µF ceramic capacitor from OUT4 to GA. The output is discharged to GA with 1.5kΩ resistor when disabled. 4 OUT5 Output Voltage for REG5. Capable of delivering up to 320mA of output current. Connect a 3.3µF ceramic capacitor from OUT5 to GA. The output is discharged to GA with 1.5kΩ resistor when disabled. 5 INL45 Power Input for REG4 and REG5. Bypass to GA with a high quality ceramic capacitor placed as close to the IC as possible. 6 INL67 Power Input for REG6 and REG7. Bypass to GA with a high quality ceramic capacitor placed as close to the IC as possible. 7 OUT6 Output Voltage for REG6. Capable of delivering up to 320mA of output current. Connect a 3.3µF ceramic capacitor from OUT6 to GA. The output is discharged to GA with 1.5kΩ resistor when disabled. 8 OUT7 Output Voltage for REG7. Capable of delivering up to 320mA of output current. Connect a 3.3µF ceramic capacitor from OUT7 to GA. The output is discharged to GA with 1.5kΩ resistor when disabled. 9 ON6 Enable Input for REG6. Drive to VP1 or a logic high to enable REG6. Drive to GA to disable. 10 ON7 Enable Input for REG7. Drive to VP1 or a logic high to enable REG7. Drive to GA to disable. 11 nRSTO 12 ON45 Enable Input for REG4 and REG5. Drive to VP1 or a logic high to enable REG4 and REG5. Drive to GA to disable. 13 ON1 Enable Input for REG1. Drive to VP1 or a logic high to enable REG1. Drive to GA to disable. 14 GP3 Power Ground for REG3. Connect GA, GP1, GP2, and GP3 together at a single point as close to the IC as possible. 15 SW3 Switching Node Output for REG3. Connect this pin to the switching end of the inductor. 16 VP3 Power Input for REG3. Bypass to GP3 with a high quality ceramic capacitor placed as close to the IC as possible. 17 ON3 Enable Input for REG3. Drive to VP1 or a logic high to enable REG3. Drive to GA to disable. 18 NC1 Not Connected. Not internally connected. 19 OUT3 20 ON2 Enable Input for REG2. Drive to VP1 or a logic high to enable REG2. Drive to GA to disable. 21 SCL Clock Input for I2C Serial Interface. 22 SDA Data Input for I2C Serial Interface. Data is read on the rising edge of SCL. Active Low Reset Output. See the nRSTO Output section for more information. Output Feedback Sense for REG3. Connect this pin directly to the output node to connect the internal feedback network to the output voltage. Innovative PowerTM -5Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 PIN DESCRIPTIONS CONT’D PIN 23 NAME DESCRIPTION Power supply for the internal reference. Connect this pin directly to the system power supply. VDDREF Bypass VDDREF to GA with a 1µF capacitor placed as close to the IC as possible. Star connection with VP1, VP2 and VP3 preferred. Output Feedback Sense for REG2. Connect this pin directly to the output node to connect the internal feedback network to the output voltage. 24 OUT2 25 NC2 Not Connected. Not internally connected. 26 VP2 Power Input for REG2 and System Control. Bypass to GP2 with a high quality ceramic capacitor placed as close to the IC as possible. 27 SW2 Switching Node Output for REG2. Connect this pin to the switching end of the inductor. 28 GP2 Power Ground for REG2. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible. 29 GP1 Power Ground for REG1. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible. 30 SW1 Switching Node Output for REG1. Connect this pin to the switching end of the inductor. 31 VP1 Power Input for REG1. Bypass to GP1 with a high quality ceramic capacitor placed as close to the IC as possible. 32 REFBP EP EP Reference Bypass. Connect a 0.047μF ceramic capacitor from REFBP to GA. This pin is discharged to GA in shutdown. Exposed Pad. Must be soldered to ground on PCB. Innovative PowerTM -6Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 ABSOLUTE MAXIMUM RATINGS PARAMETER VALUE UNIT VP1 to GP1, VP2 to GP2, VP3 to GP3 -0.3 to + 6 V INL, VDDREF to GA -0.3 to + 6 V -0.3 to (VVDDREF + 0.3) V -0.3 to + 6 V SW1, OUT1 to GP1 -0.3 to (VVP1 + 0.3) V SW2, OUT2 to GP2 -0.3 to (VVP2 + 0.3) V SW3, OUT3 to GP3 -0.3 to (VVP3 + 0.3) V OUT4, OUT5, OUT6, OUT7 to GA -0.3 to (VINL + 0.3) V -0.3 to + 0.3 V 27.5 °C/W Operating Ambient Temperature -40 to 85 °C Maximum Junction Temperature 125 °C -65 to 150 °C 300 °C SCL, SDA, REFBP, ON1, ON2, ON3, ON45, ON6, ON7 to GA nRSTO to GA GP1, GP2, GP3 to GA Junction to Ambient Thermal Resistance (θJA) Storage Temperature Lead Temperature (Soldering, 10 sec) : Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability. Innovative PowerTM -7Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 I2C INTERFACE ELECTRICAL CHARACTERISTICS (VVP1 = VVP2 = VVP3 = 3.6V, TA = 25°C, unless otherwise specified.) PARAMETER TEST CONDITIONS MIN SCL, SDA Input Low VVDDREF = 3.1V to 5.5V, TA = -40ºC to 85ºC SCL, SDA Input High VVDDREF = 3.1V to 5.5V, TA = -40ºC to 85ºC TYP UNIT 0.35 V 1.55 V SDA Leakage Current SCL Leakage Current 1 SDA Output Low MAX IOL = 5mA 1 µA 2 µA 0.35 V SCL Clock Period, tSCL 1.5 µs SDA Data Setup Time, tSU 100 ns SDA Data Hold Time, tHD 300 ns Start Setup Time, tST For Start Condition 100 ns Stop Setup Time, tSP For Stop Condition 100 ns Figure 1: I2C Compatible Serial Bus Timing tSCL SCL tST tHD tSU tSP SDA Start condition Innovative PowerTM -8Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. Stop condition www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 GLOBAL REGISTER MAP BITS OUTPUT ADDRESS SYS SYS 0x00 0x01 REG1 0x20 REG1 0x22 REG2 REG2 REG3 REG3 REG4 REG4 REG5 REG5 REG6 REG6 REG7 REG7 0x30 0x32 0x40 0x42 0x50 0x51 0x54 0x55 0x60 0x61 0x64 0x65 NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0 TRST Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 1 1 1 0 1 0 R Reserved Reserved Reserved Reserved SCRATCH SCRATCH SCRATCH SCRATCH 0 0 0 0 0 0 0 0 Reserved Reserved VSET[5] VSET[4] VSET[3] VSET[2] VSET[1] VSET[0] 0 0 1 1 1 0 0 1 ON PHASE MODE Reserved Reserved Reserved Reserved OK 0 0 0 0 0 0 0 R Reserved Reserved VSET[5] VSET[4] VSET[3] VSET[2] VSET[1] VSET[0] 0 0 0 1 1 0 1 0 ON PHASE MODE Reserved Reserved Reserved Reserved OK 0 0 0 0 0 0 0 R Reserved Reserved VSET[5] VSET[4] VSET[3] VSET[2] VSET[1] VSET[0] 0 0 0 1 1 0 1 0 ON Reserved MODE Reserved Reserved Reserved Reserved OK 0 0 0 0 0 0 0 R Reserved Reserved VSET[5] VSET[4] VSET[3] VSET[2] VSET[1] VSET[0] 0 0 0 1 1 0 0 0 ON DIS LOWIQ Reserved Reserved Reserved Reserved OK 0 1 0 0 0 0 0 R Reserved Reserved VSET[5] VSET[4] VSET[3] VSET[2] VSET[1] VSET[0] 0 0 0 1 1 0 0 0 ON DIS LOWIQ Reserved Reserved Reserved Reserved OK 0 1 0 0 0 0 0 R Reserved Reserved VSET[5] VSET[4] VSET[3] VSET[2] VSET[1] VSET[0] 0 0 0 1 1 0 0 0 ON DIS LOWIQ Reserved Reserved Reserved Reserved OK 0 1 0 0 0 0 0 R Reserved Reserved VSET[5] VSET[4] VSET[3] VSET[2] VSET[1] VSET[0] 0 0 1 1 1 0 0 1 ON DIS LOWIQ Reserved Reserved Reserved Reserved OK 0 1 0 0 0 0 0 R : Default values of ACT8890Q4I133-T. Innovative PowerTM -9Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 REGISTER AND BIT DESCRIPTIONS Table 1: Global Register Map OUTPUT ADDRESS BIT NAME ACCESS DESCRIPTION Reset Timer Setting. Defines the reset time-out threshold. Reset time-out is 65ms when value is 1, reset time-out is 260ms when value is 0. See nRSTO Output section for more information. SYS 0x00 [7] TRST R/W SYS 0x00 [6:0] - R Reserved. SYS 0x01 [7:4] - R/W Reserved. SYS 0x01 [3:0] SCRATCH R/W Scratchpad Bits. Non-functional bits, maybe be used by user to store system status information. Volatile bits, which are cleared upon system shutdown. REG1 0x20 [7:6] - R REG1 0x20 [5:0] VSET R/W Primary Output Voltage Selection. See the Output Voltage Programming section for more information. REG1 0x22 [7] ON R/W Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator. REG1 0x22 [6] PHASE R/W Regulator Phase Control. Set bit to 1 for regulator to operate 180° out of phase with the oscillator, clear bit to 0 for regulator to operate in phase with the oscillator. REG1 0x22 [5] MODE R/W Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transition to powersavings mode under light-load conditions. REG1 0x22 [4:1] - R Reserved. REG1 0x22 [0] OK R Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise. REG2 0x30 [7:6] - R Reserved. REG2 0x30 [5:0] VSET R/W Primary Output Voltage Selection. See the Output Voltage Programming section for more information. REG2 0x32 [7] ON R/W Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator. REG2 0x32 [6] PHASE R/W Regulator Phase Control. Set bit to 1 for regulator to operate 180° out of phase with the oscillator, clear bit to 0 for regulator to operate in phase with the oscillator. Reserved. Innovative PowerTM - 10 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 REGISTER AND BIT DESCRIPTIONS CONT’D OUTPUT ADDRESS BIT NAME ACCESS DESCRIPTION Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transition to powersavings mode under light-load conditions. REG2 0x32 [5] MODE R/W REG2 0x32 [4:1] - R Reserved. REG2 0x32 [0] OK R Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise. REG3 0x40 [7:6] - R Reserved. REG3 0x40 [5:0] VSET R/W Primary Output Voltage Selection. See the Output Voltage Programming section for more information. REG3 0x42 [7] ON R/W Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator. REG3 0x42 [6] - R REG3 0x42 [5] MODE R/W REG3 0x42 [4:1] - R Reserved. REG3 0x42 [0] OK R Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise. REG4 0x50 [7:6] - R Reserved. REG4 0x50 [5:0] VSET R/W Output Voltage Selection. See the Output Voltage Programming section for more information. REG4 0x51 [7] ON R/W Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator. Reserved. Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transit to powersavings mode under light-load conditions. REG4 0x51 [6] DIS R/W Output Discharge Control. When activated, discharges LDO output to GA through 1.5kΩ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function. REG4 0x51 [5] LOWIQ R/W LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode. REG4 0x51 [4:1] - R Reserved. REG4 0x51 [0] OK R Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise. REG5 0x54 [7:6] - R Reserved. REG5 0x54 [5:0] VSET R/W Output Voltage Selection. See the Output Voltage Programming section for more information. REG5 0x55 [7] ON R/W Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator. REG5 0x55 [6] DIS R/W Output Discharge Control. When activated, discharges LDO output to GA through 1.5kΩ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function. REG5 0x55 [5] LOWIQ R/W LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode. REG5 0x55 [4:1] - R Reserved. REG5 0x55 [0] OK R Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise. Innovative PowerTM - 11 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 REGISTER AND BIT DESCRIPTIONS CONT’D OUTPUT ADDRESS BIT NAME ACCESS REG6 0x60 [7:6] - R DESCRIPTION Reserved. REG6 0x60 [5:0] VSET R/W Output Voltage Selection. See the Output Voltage Programming section for more information. REG6 0x61 [7] ON R/W Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator. REG6 0x61 [6] DIS R/W Output Discharge Control. When activated, discharges LDO output to GA through 1.5kΩ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function. REG6 0x61 [5] LOWIQ R/W LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode. REG6 0x61 [4:1] - R Reserved. REG6 0x61 [0] OK R Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise. REG7 0x64 [7:6] - R Reserved. REG7 0x64 [5:0] VSET R/W Output Voltage Selection. See the Output Voltage Programming section for more information. REG7 0x65 [7] ON R/W Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator. REG7 0x65 [6] DIS R/W Output Discharge Control. When activated, discharges LDO output to GA through 1.5kΩ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function. REG7 0x65 [5] LOWIQ R/W LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode. REG7 0x65 [4:1] - R Reserved. REG7 0x65 [0] OK R Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise. Innovative PowerTM - 12 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 SYSTEM CONTROL ELECTRICAL CHARACTERISTICS (VVP1 = VVP2 = VVP3 = 3.6V, TA = 25°C, unless otherwise specified.) PARAMETER TEST CONDITIONS Input Voltage Range MIN TYP 2.7 MAX UNIT 5.5 V 2.65 V UVLO Threshold Voltage VVDDREF Rising UVLO Hysteresis VVDDREF Falling 200 mV Supply Current REG1, REG2, REG3, REG4, REG5, REG6 and REG7 Enabled 420 µA Shutdown Supply Current All Regulators Disabled 1.5 3.0 µA 2 2.2 MHz Oscillator Frequency Logic High Input Voltage 2.2 1.8 2.45 1.4 1 V Logic Low Input Voltage Leakage Current Low Level Output Voltage VnRSTO = 4.2V 2 nRSTO. ISINK = 5mA nRSTO Delay Thermal Shutdown Temperature Temperature rising Thermal Shutdown Hysteresis 0.4 V 1 µA 0.35 V 260 ms 160 °C 20 °C : ON1, ON2, ON3, ON45, ON6, ON7 are logic inputs. 2: nRSTO are open drain outputs. 3: Typical value shown. Actual value may vary from 227.9ms to 291.2ms. Innovative PowerTM - 13 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 STEP-DOWN DC/DC ELECTRICAL CHARACTERISTICS (VVP1 = VVP2 = VVP3 = 3.6V, TA = 25°C, unless otherwise specified.) PARAMETER CONDITIONS Operating Voltage Range MIN TYP 2.7 5.5 V 2.7 V Input Voltage Rising UVLO Hysteresis Input Voltage Falling 100 Quiescent Supply Current Regulator Enabled 65 90 µA Shutdown Current VVP = 5.5V, Regulator Disabled 0 1 µA mV VOUT ≥ 1.2V, IOUT = 10mA -1% VNOM 1% VOUT < 1.2V, IOUT = 10mA -2% VNOM 2% Line Regulation VVP = Max(VNOM1 +1, 3.2V) to 5.5V Load Regulation IOUT = 10mA to IMAX Power Good Threshold Power Good Hysteresis Oscillator Frequency 2.6 UNIT UVLO Threshold Output Voltage Accuracy 2.5 MAX V 0.15 %/V 0.0017 %/mA VOUT Rising 93 %VNOM VOUT Falling 2 %VNOM 2 VOUT ≥ 20% of VNOM 1.8 2 VOUT = 0V 2.2 MHz 500 kHz Soft-Start Period 400 µs Minimum On-Time 75 ns REG1 Maximum Output Current 1.15 Current Limit 1.5 A 1.8 2.1 A PMOS On-Resistance ISW1 = -100mA 0.16 Ω NMOS On-Resistance ISW1 = 100mA 0.16 Ω SW1 Leakage Current VVP1 = 5.5V, VSW1 = 0 or 5.5V 0 1 µA REG2 Maximum Output Current 1.15 Current Limit 1.5 PMOS On-Resistance A 1.8 ISW2 = -100mA 0.16 NMOS On-Resistance ISW2 = 100mA 0.16 SW2 Leakage Current VVP2 = 5.5V, VSW2 = 0 or 5.5V 0 2.1 A Ω Ω 1 µA REG3 Maximum Output Current 1.3 Current Limit 1.7 A 2.1 2.5 A PMOS On-Resistance ISW3 = -100mA 0.16 Ω NMOS On-Resistance ISW3 = 100mA 0.16 Ω SW3 Leakage Current VVP3 = 5.5V, VSW3 = 0 or 5.5V 0 1 µA : VNOM refers to the nominal output voltage level for VOUT as defined by the Ordering Information section. 2: IMAX Maximum Output Current. Innovative PowerTM - 14 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 LOW-NOISE LDO ELECTRICAL CHARACTERISTICS (VINL = 3.6V, COUT4 = COUT5 = COUT6 = COUT7 = 3.3µF, LOWIQ[ ] = [0], TA = 25°C, unless otherwise specified.) PARAMETER TEST CONDITIONS Operating Voltage Range Output Voltage Accuracy Line Regulation Load Regulation Power Supply Rejection Ratio Supply Current per Output MIN MAX UNIT 5.5 V 2.5 VOUT ≥ 1.2V, TA = 25°C, IOUT = 10mA -1% VNOM 2% VOUT < 1.2V, TA = 25°C, IOUT = 10mA -2% VNOM 4% VINL = Max(VOUT + 0.5V, 3.6V) to 5.5V LOWIQ[ ] = [0] 0.05 VINL = Max(VOUT + 0.5V, 3.6V) to 5.5V LOWIQ[ ] = [1] 0.5 IOUT = 1mA to IMAX2 0.08 V mV/V V/A f = 1kHz, IOUT = 20mA 75 f = 10kHz, IOUT = 20mA 65 Regulator Enabled, LOWIQ[ ] = [0] 37 60 Regulator Enabled, LOWIQ[ ] = [1] 31 52 0 1 Regulator Disabled Soft-Start Period TYP dB µA VOUT = 2.9V 140 µs Power Good Threshold VOUT Rising 89 % Power Good Hysteresis VOUT Falling 3 % Output Noise IOUT = 20mA, f = 10Hz to 100kHz, VOUT = 1.2V 50 µVRMS Discharge Resistance LDO Disabled, DIS[ ] = 1 1.5 kΩ REG4 Dropout Voltage IOUT = 160mA, VOUT > 3.1V Maximum Output Current Current Limit 90 180 320 VOUT = 95% of regulation voltage Stable COUT4 Range mV mA 400 mA 3.3 20 µF 280 mV REG5 Dropout Voltage IOUT = 160mA, VOUT > 3.1V Maximum Output Current Current Limit VOUT = 95% of regulation voltage Stable COUT5 Range 140 320 mA 400 mA 3.3 20 µF 180 mV REG6 Dropout Voltage IOUT = 160mA, VOUT > 3.1V Maximum Output Current Current Limit 90 320 VOUT = 95% of regulation voltage Stable COUT6 Range mA 400 mA 3.3 20 µF 280 mV REG7 Dropout Voltage IOUT = 160mA, VOUT > 3.1V Maximum Output Current Current Limit VOUT = 95% of regulation voltage Stable COUT7 Range 140 320 mA 400 mA 3.3 20 µF : VNOM refers to the nominal output voltage level for VOUT as defined by the Ordering Information section. 2: IMAX Maximum Output Current. 3: Dropout Voltage is defined as the differential voltage between input and output when the output voltage drops 100mV below the regulation voltage (for 3.1V output voltage or higher). : LDO current limit is defined as the output current at which the output voltage drops to 95% of the respective regulation voltage. Under heavy overload conditions the output current limit folds back by 30% (typ) Innovative PowerTM - 15 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 TYPICAL PERFORMANCE CHARACTERISTICS (VVP1 = VVP2 = VVP3 = 3.6V, TA = 25°C, unless otherwise specified.) Frequency vs. Temperature VREF vs. Temperature 0 -0.42 -20 0 20 40 60 80 100 1.5 1 0.5 0 -0.5 Typical VREF=1.2V -0.84 -40 2 Frequency (%) VREF (%) 0.42 2.5 ACT8890-002 ACT8890-001 0.84 Typical Oscillator Frequency=2MHz -1 -40 120 -20 0 20 40 Temperature (°C) Temperature (°C) ON1 Startup Sequence ON2 Startup Sequence 60 ACT8890-004 ACT8890-003 CH1 80 85 CH1 CH2 CH2 CH3 CH1: ON2, 2V/div CH2: VOUT2, 500mV/div TIME: 400µs/div CH1: ON1, 2V/div CH2: VOUT1, 2V/div CH3: VnRSTO, 2V/div TIME: 40ms/div ON3 Startup Sequence ON4, 5 Startup Sequence ACT8890-006 ACT8890-005 CH1 CH1 CH2 CH2 CH3 CH1: ON3, 2V/div CH2: VOUT3, 500mV/div TIME: 400µs/div Innovative PowerTM - 16 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. CH1: ON4, 5, 2V/div CH2: VOUT4, 500mV/div CH3: VOUT5, 500mV/div TIME: 100µs//div www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 TYPICAL PERFORMANCE CHARACTERISTICS CONT’D (TA = 25°C, unless otherwise specified.) ON6 startup sequence ON7 startup sequence ACT8890-008 ACT8890-007 CH1 CH1 CH2 CH2 CH1: ON6, 2V/div CH2: VOUT6, 500mV/div TIME: 100µs/div CH1: ON7, 2V/div CH2: VOUT7, 1V/div TIME: 100µs/div REG1 Efficiency vs. Output Current REG2 Efficiency vs. Output Current Efficiency (%) 80 VIN = 3.6V VIN=5.0V VIN = 4.2V 60 VOUT = 1.3V 80 Efficiency (%) VOUT = 3.3V 100 40 ACT8890-010 ACT8890-009 100 VIN=5.0V VIN = 3.6V 60 VIN = 4.2V 40 20 20 0 0 1 10 100 10 1 1000 100 1000 Output Current (mA) Output Current (mA) REG3 Efficiency vs. Output Current 100 Efficiency (%) 80 VIN = 3.6V ACT8890-011 VOUT = 1.3V VIN=5.0V VIN = 4.2V 60 40 20 0 1 10 100 1000 Output Current (mA) Innovative PowerTM - 17 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 TYPICAL PERFORMANCE CHARACTERISTICS CONT’D (TA = 25°C, unless otherwise specified.) REG1 Output Voltage vs. Temperature REG2 Output Voltage vs. Temperature Output Voltage (V) 3.306 3.302 3.298 3.294 3.290 -40 -20 0 20 40 60 80 100 VOUT2 = 1.3V ILOAD = 100mA 1.306 Output Voltage (V) VOUT1 = 3.3V ILOAD = 100mA 1.310 1.302 1.298 1.294 1.290 -40 120 -20 0 40 60 80 100 120 REG1, 2, 3 MOSFET Resistance REG3 Output Voltage vs. Temperature 1.298 ILOAD = 100mA 300 250 RDSON (mΩ) 1.302 ACT8890-015 350 ACT8890-014 VOUT2 = 1.3V ILOAD = 100mA 1.306 Output Voltage (V) 20 Temperature (°C) Temperature (°C) 1.310 ACT8890-013 ACT8890-012 3.310 200 PMOS NMOS 150 100 1.294 1.290 -40 50 0 -20 0 20 40 60 80 100 120 Temperature (°C) Innovative PowerTM - 18 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage (V) www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 TYPICAL PERFORMANCE CHARACTERISTICS CONT’D (TA = 25°C, unless otherwise specified.) REG4, 5, 6 Output Voltage vs. Output Current 1.24 REG4, REG5, REG6 1.2 1.16 1.12 1.08 3.58 Output Voltage (V) Output Voltage (V) 1.28 REG7 Output Voltage vs. Output Current 3.66 ACT8890-017 ACT8890-016 1.32 3.5 3.42 REG7 3.34 3.26 3.18 3.1 1.04 3.02 1 0 50 100 150 200 250 300 0 400 50 Dropout Voltage vs. Output Current 100 50 VIN = 3.3V 0 150 200 250 300 350 400 Output Current (mA) Innovative PowerTM - 19 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. 300 400 350 300 Dropout Voltage (mV) Dropout Voltage (mV) REG4, REG6 100 250 ACT8890-019 ACT8890-018 200 50 200 Dropout Voltage vs. Output Current 250 0 150 Output Current (mA) Output Current (mA) 150 100 250 REG5, REG7 200 150 100 50 0 VIN = 3.3V 0 50 100 150 200 250 300 350 400 Output Current (mA) www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 TYPICAL PERFORMANCE CHARACTERISTICS CONT’D (TA = 25°C, unless otherwise specified.) Output Voltage vs. Temperature 2.50 ESR (Ω) Output Voltage (V) 3.00 2.00 1.50 1 REG4, REG5, REG6 ACT8890-021 REG7 3.50 Region of Stable COUT ESR vs. Output Current ACT8890-020 4.00 0.1 Stable ESR 1.00 0.50 0.01 0 -40 -20 0 20 40 60 80 100 120 0 Temperature (°C) 50 100 150 200 250 Output Current (mA) LDO Output Voltage Noise ACT8890-022 CH1 CH1: VOUTx, 200µV/div (AC COUPLED) TIME: 200ms/div Innovative PowerTM - 20 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 SYSTEM CONTROL INFORMATION Control Signals nRSTO Output Enable Inputs ON1, ON2, ON3, ON45, ON6 and ON7 are independent logic inputs for the regulators as shown in Table 2. Drive to logic high to enable the corresponding regulator(s); Drive to GA to disable. nRSTO is an open-drain output which asserts low when any one or more of the regulator reaches the power-OK threshold. nRSTO remains low until the 260ms reset timeout period expires. Connect a 10kΩ or greater pull-up resistor from nRSTO to an appropriate voltage supply (typically OUT1). Table 2: Control Pins PIN NAME REGULATOR(S) ON1 OUT1 ON2 OUT2 ON3 OUT3 ON45 OUT4, OUT5 ON6 OUT6 ON7 OUT7 Figure 2: Enable/Disable Sequence Innovative PowerTM - 21 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 FUNCTIONAL DESCRIPTION I2C Interface The ACT8890 features an I2C interface that allows advanced programming capability to enhance overall system performance. To ensure compatibility with a wide range of system processors, the I2C interface supports clock speeds of up to 400kHz (“Fast-Mode” operation) and uses standard I2C commands. I2C write-byte commands are used to program the ACT8890, and I2C read-byte commands are used to read the ACT8890’s internal registers. The ACT8890 always operates as a slave device, and is addressed using a 7-bit slave address followed by an eighth bit, which indicates whether the transaction is a readoperation or a write-operation, [1011011x]. SDA is a bi-directional data line and SCL is a clock input. The master device initiates a transaction by issuing a START condition, defined by SDA transitioning from high to low while SCL is high. Data is transferred in 8-bit packets, beginning with the MSB, and is clocked-in on the rising edge of SCL. Each packet of data is followed by an “Acknowledge” (ACK) bit, used to confirm that the data was transmitted successfully. For more information regarding the I2C 2-wire serial interface, go to the NXP website: http://www.nxp.com. Thermal Shutdown The ACT8890 integrates thermal shutdown protection circuitry to prevent damage resulting from excessive thermal stress, as may be encountered under fault conditions. This circuitry disables all regulators if the ACT8890 die temperature exceeds 160°C, and prevents the regulators from being enabled until the IC temperature drops by 20°C (typ). Innovative PowerTM - 22 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 STEP-DOWN DC/DC REGULATORS General Description The ACT8890 features three synchronous, fixedfrequency, current-mode PWM step down converters that achieve peak efficiencies of up to 97%. REG3 is capable of supplying up to 1300mA of output current, while REG1 and REG2 support up to 1150mA. These regulators operate with a fixed frequency of 2MHz, minimizing noise in sensitive applications and allowing the use of small external components. 100% Duty Cycle Operation Each regulator is capable of operating at up to 100% duty cycle. During 100% duty-cycle operation, the high-side power MOSFET is held on continuously, providing a direct connection from the input to the output (through the inductor), ensuring the lowest possible dropout voltage in battery powered applications. Synchronous Rectification REG1, REG2, and REG3 each feature integrated nchannel synchronous rectifiers, maximizing efficiency and minimizing the total solution size and cost by eliminating the need for external rectifiers. Soft-Start When enabled, each output voltages tracks an internal 400μs soft-start ramp, minimizing input current during startup and allowing each regulator to power up in a smooth, monotonic manner that is independent of output load conditions. Compensation Each buck regulator utilizes current-mode control and a proprietary internal compensation scheme to simultaneously simplify external component selection and optimize transient performance over its full operating range. No compensation design is required; simply follow a few simple guidelines described below when choosing external components. Input Capacitor Selection The input capacitor reduces peak currents and noise induced upon the voltage source. A 4.7μF ceramic capacitor is recommended for each regulator in most applications. Output Capacitor Selection For most applications, 22μF ceramic output capacitors are recommended for REG1, REG2 and REG3. Despite the advantages of ceramic capacitors, care must be taken during the design process to ensure stable operation over the full operating voltage and temperature range. Ceramic capacitors are available in a variety of dielectrics, each of which exhibits different characteristics that can greatly affect performance over their temperature and voltage ranges. Two of the most common dielectrics are Y5V and X5R. Whereas Y5V dielectrics are inexpensive and can provide high capacitance in small packages, their capacitance varies greatly over their voltage and temperature ranges and are not recommended for DC/DC applications. X5R and X7R dielectrics are more suitable for output capacitor applications, as their characteristics are more stable over their operating ranges, and are highly recommended. Inductor Selection REG1, REG2, and REG3 utilize current-mode control and a proprietary internal compensation scheme to simultaneously simplify external component selection and optimize transient performance over their full operating range. These devices were optimized for operation with 2.2μH inductors, although inductors in the 1.5μH to 3.3μH range can be used. Choose an inductor with a low DC-resistance, and avoid inductor saturation by choosing inductors with DC ratings that exceed the maximum output current by at least 30%. Configuration Options Output Voltage Programming Each regulator powers up and regulates to its default output voltage. Once the system is enabled, each regulator's output voltage may be independently programmed to a different value, typically in order to minimize the power consumption of the microprocessor during some operating modes. Program the output voltages via the I2C serial interface by writing to the regulator's VSET[-] register as shown in Table 4. Enable / Disable Control During normal operation, each buck may be enabled or disabled via the I2C interface by writing to that regulator's ON[ ] bit. The regulator accept rising or falling edge of ON[ ] bit as on/off signal. To enable the regulator, clear ON[ ] to 0 first then set to 1. To disable the regulator, set ON[ ] to 1 first then clear it to 0. Operating Mode By default, REG1, REG2, and REG3 each operate in fixed-frequency PWM mode at medium to heavy Innovative PowerTM - 23 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 loads, while automatically transitioning to a proprietary power-saving mode at light loads in order to maximize standby battery life. In applications where low noise is critical, force fixed-frequency PWM operation across the entire load current range, at the expense of light-load efficiency, by setting the MODE[ ] bit to 1. Output OK[ ] Each DC/DC features a power-OK status bit that can be read by the system microprocessor via the I2C interface. If an output voltage is lower than the powerOK threshold, typically 7% below the programmed regulation voltage, that regulator's OK[ ] bit will be 0. via if possible. The inductor, input filter capacitor, and output filter capacitor should be connected as close together as possible, with short, direct, and wide traces. The ground nodes for each regulator's power loop should be connected at a single point in a starground configuration, and this point should be connected to the backside ground plane with multiple via. The output node for each regulator should be connected to its corresponding OUTx pin through the shortest possible route, while keeping sufficient distance from switching nodes to prevent noise injection. Finally, the exposed pad should be directly connected to the backside ground plane using multiple via to achieve low electrical and thermal resistance. PCB Layout Considerations High switching frequencies and large peak currents make PC board layout an important part of step-down DC/DC converter design. A good design minimizes excessive EMI on the feedback paths and voltage gradients in the ground plane, both of which can result in instability or regulation errors. Step-down DC/DCs exhibit discontinuous input current, so the input capacitors should be placed as close as possible to the IC, and avoiding the use of Table 4: REGx/VSET[ ] Output Voltage Setting REGx/VSET[2:0] REGx/VSET[5:3] 000 001 010 011 100 101 110 111 000 0.600 0.800 1.000 1.200 1.600 2.000 2.400 3.200 001 0.625 0.825 1.025 1.250 1.650 2.050 2.500 3.300 010 0.650 0.850 1.050 1.300 1.700 2.100 2.600 3.400 011 0.675 0.875 1.075 1.350 1.750 2.150 2.700 3.500 100 0.700 0.900 1.100 1.400 1.800 2.200 2.800 3.600 101 0.725 0.925 1.125 1.450 1.850 2.250 2.900 3.700 110 0.750 0.950 1.150 1.500 1.900 2.300 3.000 3.800 111 0.775 0.975 1.175 1.550 1.950 2.350 3.100 3.900 Innovative PowerTM - 24 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 LOW-NOISE, LOW-DROPOUT LINEAR REGULATORS General Description REG4, REG5, REG6, and REG7 are low-noise, low-dropout linear regulators (LDOs) that supply up to 320mA. Each LDO has been optimized to achieve low noise and high-PSRR, achieving more than 65dB PSRR at frequencies up to 10kHz. Output Current Limit Each LDO contains current-limit circuitry featuring a current-limit fold-back function. During normal and moderate overload conditions, the regulators can support more than their rated output currents. During extreme overload conditions, however, the current limit is reduced by approximately 30%, reducing power dissipation within the IC. Compensation The LDOs are internally compensated and require very little design effort, simply select input and output capacitors according to the guidelines below. Input Capacitor Selection Each LDO requires a small ceramic input capacitor to supply current to support fast transients at the input of the LDO. Bypassing each INL pin to GA with 1μF. High quality ceramic capacitors such as X7R and X5R dielectric types are strongly recommended. Output Capacitor Selection Each LDO requires a small 3.3μF ceramic output capacitor for stability. For best performance, each output capacitor should be connected directly between the output and GA pins, as close to the output as possible, and with a short, direct connection. High quality ceramic capacitors such as X7R and X5R dielectric types are strongly recommended. Configuration Options Output Voltage Programming By default, each LDO powers up and regulates to its default output voltage. Once the system is enabled, each output voltage may be independently programmed to a different value by writing to the regulator's VSET[-] register via the I2C serial interface as shown in Table 4. Enable / Disable Control During normal operation, each LDO may be enabled or disabled via the I2C interface by writing to that LDO's ON[ ] bit. The regulator accept rising or falling edge of ON[ ] bit as on/off signal. To enable the regulator, clear ON[ ] to 0 first then set to 1. To disable the regulator, set ON[ ] to 1 first then clear it to 0. Output Discharge Each of the ACT8890’s LDOs features an optional output discharge function, which discharges the output to ground through a 1.5kΩ resistance when the LDO is disabled. This feature may be enabled or disabled by setting DIS[-] via; set DIS[-] to 1 to enable this function, clear DIS[-] to 0 to disable it. Low-Power Mode Each of ACT8890's LDOs features a LOWIQ[-] bit which, when set to 1, reduces the LDO's quiescent current by about 16%, saving power and extending battery lifetime. Output OK[ ] Each LDO features a power-OK status bit that be read by the system microprocessor via interface. If an output voltage is lower than power-OK threshold, typically 11% below programmed regulation voltage, the value of regulator's OK[-] bit will be 0. PCB Layout Considerations PCB Layout Considerations The ACT8890’s LDOs provide good DC, AC, and noise performance over a wide range of operating conditions, and are relatively insensitive to layout considerations. When designing a PCB, however, careful layout is necessary to prevent other circuitry from degrading LDO performance. A good design places input and output capacitors as close to the LDO inputs and output as possible, and utilizes a star-ground configuration for all regulators to prevent noise-coupling through ground. Output traces should be routed to avoid close proximity to noisy nodes, particularly the SW nodes of the DC/DCs. REFBP is a filtered reference noise, and internally has a direct connection to the linear regulator controller. Any noise injected onto REFBP will directly affect the outputs of the linear regulators, and therefore special care should be taken to ensure that no noise is injected to the outputs via REFBP. As with the LDO output capacitors, the REFBP bypass capacitor should be placed as close to the IC as possible, with short, direct connections to the star-ground. Avoid the use of via whenever possible. Noisy nodes, such as from the DC/DCs, should be routed as far away from REFBP as possible. Innovative PowerTM - 25 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. can the the the that www.active-semi.com Copyright © 2013 Active-Semi, Inc. ACT8890 Rev 1, 05-Sep-13 TQF44-32 PACKAGE OUTLINE AND DIMENSIONS D D/ 2 SYMBOL E/ 2 E A3 MAX MIN MAX A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 D2 L 0.150 0.250 0.008 0.006 0.010 4.000 TYP 0.158 TYP E 4.000 TYP 0.158 TYP D2 2.550 2.800 0.100 0.110 E2 2.550 2.800 0.100 0.110 L b 0.200 D e A1 DIMENSION IN INCHES MIN b A DIMENSION IN MILLIMETERS R 0.400 TYP 0.250 0.450 0.250 0.016 TYP 0.010 0.018 0.010 e E2 R Active-Semi, Inc. reserves the right to modify the circuitry or specifications without notice. Users should evaluate each product to make sure that it is suitable for their applications. Active-Semi products are not intended or authorized for use as critical components in life-support devices or systems. Active-Semi, Inc. does not assume any liability arising out of the use of any product or circuit described in this datasheet, nor does it convey any patent license. Active-Semi and its logo are trademarks of Active-Semi, Inc. For more information on this and other products, contact [email protected] or visit http://www.active-semi.com. is a registered trademark of Active-Semi. Innovative PowerTM - 26 Active-Semi Proprietary―For Authorized Recipients and Customers ActivePMUTM is a trademark of Active-Semi. I2CTM is a trademark of NXP. www.active-semi.com Copyright © 2013 Active-Semi, Inc.