PoE-PD - ON Semiconductor

NCP1080
Integrated PoE-PD & DC-DC
Converter Controller
Introduction
The NCP1080 is a member of ON Semiconductor’s Power over
Ethernet Powered Device (PoE−PD) product family and represents a
robust, flexible and highly integrated solution targeting demanding
Ethernet applications. It combines in a single unit an enhanced
PoE−PD interface fully supporting the IEEE802.3af specification and
a flexible and configurable DC−DC converter controller.
The NCP1080’s exceptional capabilities offer new opportunities for
the design of products powered directly over Ethernet lines,
eliminating the need for local power adaptors or power supplies and
drastically reducing the overall installation and maintenance cost.
ON Semiconductor’s unique manufacturing process and design
enhancements allow the NCP1080 to deliver up to 13 W of regulated
power to support PoE applications according to the IEEE802.3af
standard. This device leverages the significant cost advantages of
PoE−enabled systems to a broad spectrum of products in markets such
as VoIP phones, wireless LAN access point, security cameras, point of
sales terminals, RFID readers, industrial ethernet devices, etc.
The integrated current mode DC−DC controller facilitates isolated
and non−isolated fly−back, forward and buck converter topologies. It
has all the features necessary for a flexible, robust and highly efficient
design including programmable switching frequency, duty cycle up to
80 percent, slope compensation, and soft start−up.
The NCP1080 is fabricated in a robust high voltage process and
integrates a rugged vertical N−channel DMOS with a low loss current
sense technique suitable for the most demanding environments and
capable of withstanding harsh environments such as hot swap and
cable ESD events.
The NCP1080 complements ON Semiconductor’s ASSP portfolio
in communications and industrial devices and can be combined with
other high−voltage interfacing devices to offer complete solutions to
the communication, industrial and security markets.
Features
• These are Pb−Free Devices
•
May, 2013 − Rev. 7
NCP1080 = Specific Device Code
XXXX = Date Code
Y
= Assembly Location
ZZ
= Traceability Code
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Robustness of Discrete MOSFETs with Integrated
Temperature Control
Fully Supports IEEE802.3af Standard
Regulated Power Output up to 13 W
Programmable Classification Current
Adjustable Under Voltage Lock Out
Programmable Inrush Current Limit
Programmable Operational Current Limit up to 500 mA
Over−temperature Protection
Industrial Temperature Range −40°C to 85°C with Full
Operation up to 150°C Junction Temperature
0.6 W Hot−swap Pass−switch with Low Loss Current
Sense Technique
© Semiconductor Components Industries, LLC, 2013
1
TSSOP−20 EP
DE SUFFIX
CASE 948AB
• Vertical N−channel DMOS Pass−switch Offers the
Powered Device Interface
•
•
•
•
•
•
•
•
http://onsemi.com
DC−DC Converter Controller
• Current Mode Control
• Supports Isolated and Non−isolated DC−DC Converter
Applications
• Internal Voltage Regulators
• Wide Duty Cycle Range with Internal Slope
Compensation Circuitry
• Programmable Oscillator Frequency
• Programmable Soft−start Time
1
Publication Order Number:
NCP1080/D
NCP1080
PIN DIAGRAM
VPORTP
CLASS
UVLO
INRUSH
ILIM1
VPORTN1
RTN
VPORTN2
TEST1
TEST2
SS
FB
COMP
VDDL
VDDH
GATE
ARTN
NC
CS
OSC
1
Exposed
Pad
(Top View)
ORDERING INFORMATION
Package
Shipping Configuration†
Temperature Range
NCP1080DEG
TSSOP−20 EP
(Pb−Free)
74 units / Tube
−40°C to 85°C
NCP1080DER2G
TSSOP−20 EP
(Pb−Free)
2500 / Tape & Reel
−40°C to 85°C
Part Number
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specification Brochure, BRD8011/D.
VPORTP
DETECTION
CLASS
THERMAL
SHUT
DOWN
INTERNAL
SUPPLY
&
BANDGAP
VDDH
VDDH
VDDL
VDDL
CLASSIFICATION
VDDL
VDDL
5 mA
SS
UVLO
UVLO
VPORT
MONITOR
VDDL
5K
DC−DC
CONVERTER
CONTROL
1.2 V
FB
COMP
CS
INRUSH
ILIM1
INRUSH
ILIM1
OSC
HOT SWAP SWITCH
CONTROL & CURRENT
OSC
VDDH
GATE
LIMIT BLOCKS
NC
ARTN
RTN
VPORTN1,2
Figure 1. NCP1080 Block Diagram
http://onsemi.com
2
NCP1080
SIMPLIFIED APPLICATION DIAGRAMS
RJ−45
CLASS
Cline
DB1
Z_line
Rinrush
Data
Pairs
Rilim1
Cpd
VPORTP
Rclass
VDDH
INRUSH
ILIM1
VDDL
Cvddl
NCP1080
UVLO
FB
OSC
COMP
DB2
R5
OC1
Rcs C2
ARTN
SS
VPORTN2
Cload
Rslope
CS
TEST1
Spare
Pairs
LD1
M1
GATE
TEST2
VPORTN1
R3
RTN
Optocoupler
Rosc
Css
Voutput
Rd1
R1
R2
D1
T1
Cvddh
Z1
C1
R4
Figure 2. Isolated Fly−back Converter
Figure 2 shows the integrated PoE−PD switch and DC−DC controller configured to work in a fully isolated application. The
output voltage regulation is accomplished with an external opto−coupler and a shunt regulator (Z1).
RJ−45
Rclass
Cline
DB1
Z_line
Rinrush
Data
Pairs
Rilim1
Cpd
VPORTP
CLASS
INRUSH
ILIM1
Cvddh
VDDL
Cvddl
NCP1080
R2
TEST2
CS
TEST1
FB
Css
OSC
VPORTN1
VPORTN2
COMP
DB2
R3
Cload
M1
GATE
SS
Spare
Pairs
LD1
Rd1
R1
UVLO
Voutput
T1
VDDH
Rslope
R4
Rcs
ARTN
RTN
Rosc
C1comp Rcomp
C2comp
Figure 3. Non−Isolated Fly−back Converter
Figure 3 shows the integrated PoE−PD and DC−DC controller configured in a non−isolated fly−back configuration. A
compensation network is inserted between the FB and the COMP pin for overall stability of the feedback loop.
http://onsemi.com
3
NCP1080
SIMPLIFIED APPLICATION DIAGRAMS
D2
VPORTP
RJ−45
Rclass
Cline
Z_line
DB1
R5
CLASS
Rinrush
Data
Pairs
VDDH
ILIM1
D1
VDDL
LD1
Cvddl
Cload
NCP1080
UVLO
Rslope
CS
TEST2
FB
COMP
OSC
SS
VPORTN1
VPORTN2
DB2
M1
GATE
TEST1
Spare
Pairs
R3
Rd1
R1
R2
Voutput
Cpd
Cvddh
INRUSH
Rilim1
T1
Css Rosc
R4
Rcs
ARTN
RTN
C1comp Rcomp
C2comp
Figure 4. Non−Isolated Fly−back with Extra Winding
Figure 4 shows the same non−isolated fly−back configuration as Figure 3, but adds a 12 V auxiliary bias winding on the
transformer to provide power to the NCP1080 DC−DC controller via its VDDH pin. This topology shuts off the current flowing
from VPORTP to VDDH and therefore reduces the internal power dissipation of the PD, resulting in higher overall power
efficiency.
D3
T1
Cpd
RJ−45
DB1
Cline
Rinrush
Z_line
Data
Pairs
Rclass
Rilim1
VPORTP
D1
CLASS
VDDH
INRUSH
Cvddl
Voutput
D2
Cvddh
VDDL
L1
R3
LD1
Cload
ILIM1
NCP1080
Rd1
R1
UVLO
R2
TEST2
CS
TEST1
FB
OSC
Css Rosc
COMP
VPORTN1
VPORTN2
SS
Spare
Pairs
DB2
M1
GATE
Rslope
R4
Rcs
ARTN
RTN
C1comp Rcomp
C2comp
Figure 5. Non−Isolated Forward Converter
Figure 5 shows the NCP1080 used in a non−isolated forward topology.
http://onsemi.com
4
NCP1080
Table 1. PIN DESCRIPTIONS
Name
Pin No.
Type
1
Supply
Positive input power. Voltage with respect to VPORTN1,2
6,8
Ground
Negative input power. Connected to the source of the internal pass−switch.
RTN
7
Ground
DC−DC controller power return. Connected to the drain of the internal pass−switch. It must
be connected to ARTN. This pin is also the drain of the internal pass−switch.
ARTN
14
Ground
DC−DC controller ground pin. Must be connected to RTN as a single point ground connection
for improved noise immunity.
VDDH
16
Supply
Output of the 9 V LDO internal regulator. Voltage with respect to ARTN. Supplies the internal
gate driver. VDDH must be bypassed to ARTN with a 1 mF or 2.2 mF ceramic capacitor with
low ESR.
VDDL
17
Supply
Output of the 3.3 V LDO internal regulator. Voltage with respect to ARTN. This pin can be
used to bias an external low−power LED (1 mA max.) connected to ARTN, and can also be
used to add extra biasing current in the external opto−coupler. VDDL must be bypassed to
ARTN with a 330 nF or 470 nF ceramic capacitor with low ESR.
CLASS
2
Input
Classification current programming pin. Connect a resistor between CLASS and VPORTN1,2.
INRUSH
4
Input
Inrush current limit programming pin. Connect a resistor between INRUSH and VPORTN1,2.
ILIM1
5
Input
Operational current limit programming pin. Connect a resistor between ILIM1 and
VPORTN1,2.
UVLO
3
Input
DC−DC controller under−voltage lockout input. Voltage with respect to VPORTN1,2. Connect
a resistor−divider from VPORTP to UVLO to VPORTN1,2 to set an external UVLO threshold.
GATE
15
Output
OSC
11
Input
NC
13
COMP
18
I/O
Output of the internal error amplifier of the DC−DC controller. COMP is pulled−up internally to
VDDL with a 5 kW resistor. In isolated applications, COMP is connected to the collector of the
opto−coupler. Voltage with respect to ARTN.
FB
19
Input
DC−DC controller inverting input of the internal error amplifier. In isolated applications, the pin
should be strapped to ARTN to disable the internal error amplifier.
CS
12
Input
Current−sense input for the DC−DC controller. Voltage with respect to ARTN.
SS
20
Input
Soft−start input for the DC−DC controller. A capacitor between SS and ARTN determines the
soft−start timing.
TEST1
9
Input
Digital test pin must always be connected to VPORTN1,2.
TEST2
10
Input
Digital test pin must always be connected to VPORTN1,2.
VPORTP
VPORTN1
VPORTN2
EP
Description
DC−DC controller gate driver output pin.
Internal oscillator frequency programming pin. Connect a resistor between OSC and ARTN.
No connect pin, must not be connected.
Exposed pad. Connected to VPORTN1,2 ground.
http://onsemi.com
5
NCP1080
Table 2. ABSOLUTE MAXIMUM RATINGS
Symbol
Min.
Max.
Units
Input power supply
−0.3
72
V
Voltage with respect to VPORTN1,2
RTN
ARTN
Analog ground supply 2
−0.3
72
V
Pass−switch in off−state
(Voltage with respect to VPORTN1,2)
VDDH
Internal regulator output
−0.3
17
V
Voltage with respect to ARTN
VDDL
Internal regulator output
−0.3
3.6
V
Voltage with respect to ARTN
CLASS
Analog output
−0.3
3.6
V
Voltage with respect to VPORTN1,2
INRUSH
Analog output
−0.3
3.6
V
Voltage with respect to VPORTN1,2
ILIM1
Analog output
−0.3
3.6
V
Voltage with respect to VPORTN1,2
UVLO
Analog input
−0.3
3.6
V
Voltage with respect to VPORTN1,2
OSC
Analog output
−0.3
3.6
V
Voltage with respect to ARTN
Analog input / output
−0.3
3.6
V
Voltage with respect to ARTN
FB
Analog input
−0.3
3.6
V
Voltage with respect to ARTN
CS
Analog input
−0.3
3.6
V
Voltage with respect to ARTN
SS
Analog input
−0.3
3.6
V
Voltage with respect to ARTN
NC
Open pin
Digital inputs
−0.3
3.6
V
Voltage with respect to VPORTN1,2
TA
Ambient temperature
−40
85
°C
TJ
Junction temperature
−
150
°C
Junction temperature (Note 1)
−
175
°C
−55
150
°C
37.6
°C/W
4
−
kV
750
−
V
Machine Model
300
−
V
Latch−up
±200
−
mA
System ESD (contact/air) (Note 3)
8/15
−
kV
VPORTP
COMP
TEST1
TEST2
TJ−TSD
Parameter
Tstg
Storage Temperature
TθJA
Thermal Resistance,
Junction to Air (Note 2)
ESD−HBM
Human Body Model
ESD−CDM
Charged Device Model
ESD−MM
LU
ESD−SYS
Conditions
Thermal shutdown condition
Exposed pad connected to VPORTN1,2 ground
per JEDEC Standard JESD22
per JEDEC Standard JESD78
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. TJ−TSD allowed during error conditions only. It is assumed that this maximum temperature condition does not occur more than 1 hour
cumulative during the useful life for reliability reasons.
2. Mounted on a 1S2P (3 layer) test board with copper coverage of 25 percent for the signal layers and 90 percent copper coverage for the
inner planes at an ambient temperature of 85°C in still air. Refer to JEDEC JESD51−7 for details.
3. Surges per EN61000−4−2, 1999 applied between RJ−45 and output ground and between adapter input and output ground of the evaluation
board. The specified values are the test levels and not the failure levels.
http://onsemi.com
6
NCP1080
Recommended Operating Conditions
Operating conditions define the limits for functional operation and parametric characteristics of the device. Note that the
functionality of the device outside the operating conditions described in this section is not warranted. Operating outside the
recommended operating conditions for extended periods of time may affect device reliability.
All values concerning the DC−DC controller, VDDH and VDDL blocks are with respect to ARTN. All others are with respect
to VPORTN1,2 (unless otherwise noted).
Table 3. OPERATING CONDITIONS
Symbol
Parameter
Min.
Typ.
Max.
Units
0
57
V
1.4
9.5
V
23.75
26.25
kW
Conditions
INPUT SUPPLY
VPORT
Input supply voltage
VPORT = VPORTP −
VPORTN1,2
SIGNATURE DETECTION
Vsignature
Input supply voltage signature detection range
Rsignature
Signature resistance (Note 4)
Offset_current
I_VportP + I_Rtn
−
1.8
5
mA
VPORTP = RTN = 1.4 V
Sleep_current
I_VportP + I_Rtn
−
15
25
mA
VPORTP = RTN = 9.5 V
20.5
V
CLASSIFICATION
Vcl
Input supply voltage classification range
13
Iclass0
Class 0: Rclass 10 kW (Note 5)
0
−
4
mA
Iclass0 = I_VportP + I_Rdet
Iclass1
Class 1: Rclass 130 W (Note 5)
9
−
12
mA
Iclass1 = I_VportP + I_Rdet
Iclass2
Class 2: Rclass 69.8 W (Note 5)
17
−
20
mA
Iclass2 = I_VportP + I_Rdet
Iclass3
Class 3: Rclass 44.2 W (Note 5)
26
−
30
mA
Iclass3 = I_VportP + I_Rdet
Iclass4
Class 4: Rclass 30.9 W (Note 5)
36
−
44
mA
Iclass4 = I_VportP + I_Rdet
IDCclass
Internal current consumption during
classification (Note 6)
−
600
−
mA
For information only
38
40
V
UVLO pin tied to
VPORTN1,2
29.5
32
−
V
UVLO pin tied to
VPORTN1,2
UVLO
Vuvlo_on
Default turn on voltage (VportP rising)
Vuvlo_off
Default turn off voltage (VportP falling)
Vhyst_int
UVLO internal hysteresis
−
6
−
V
UVLO pin tied to
VPORTN1,2
Vuvlo_pr
UVLO external programming range
25
−
50
V
UVLO pin connected to the
resistor divider (R1 & R2).
For information only
Vhyst_ext
UVLO external hysteresis
−
15
−
%
UVLO pin connected to the
resistor divider (R1 & R2)
Uvlo_Filter
UVLO on/off filter time
−
90
−
mS
4. Test done according to the IEEE802.3af 2 Point Measurement. The minimum probe voltages measured at the PoE−PD are 1.4 V and 2.4 V,
and the maximum probe voltages are 8.5 V and 9.5 V.
5. Measured with an external Rdet of 25.5 kW between VPORTP and VPORTN1,2, and for 13 V < VPORT < 20.5 V (with VPORT = VPORTP
– VPORTN1,2). Resistors are assumed to have 1% accuracy.
6. This typical current excludes the current in the Rclass and Rdet external resistors.
http://onsemi.com
7
NCP1080
Table 3. OPERATING CONDITIONS
Symbol
Parameter
Min.
Typ.
Max.
Units
Conditions
PASS−SWITCH AND CURRENT LIMITS
Ron
Pass−switch Rds−on
−
0.6
1.2
W
Max Ron specified at
Tj = 130°C
I_Rinrush1
Rinrush = 150 kW (Note 7)
95
125
155
mA
Measured at RTN−
VPORTN1,2 = 3 V
I_Rinrush2
Rinrush = 57.6 kW (Note 7)
260
310
360
mA
Measured at RTN−
VPORTN1,2 = 3 V
I_Rilim1
Rilim1 = 84.5 kW (Note 7)
450
510
570
mA
Current limit threshold
0.8
1
1.2
V
RTN−VPORTN1,2
falling; voltage with respect to VPORTN1,2
Voltage with respect to
VPORTN1,2
INRUSH AND ILIM1 CURRENT LIMIT TRANSITION
Vds_pgood
VDS required for power good status
Vds_pgood_hyst
VDS hysteresis required for power good
status
−
8.2
−
V
VDDH_reg
Regulator output voltage (Notes 8 and 9)
Ivddh_load + Ivddl_load < 10 mA
with
0 < Ivddl_load < 2.25 mA
8.4
9
9.6
V
VDDH_Off
Regulator turn−off voltage
−
VDDH_reg
+ 0.5 V
−
V
VDDH_lim
VDDH regulator current limit
(Notes 8 and 9)
13
−
26
mA
VDDH_Por_R
VDDH POR level (rising)
7.3
−
8.3
V
VDDH_Por_F
VDDH POR level (falling)
6
−
7
V
VDDH_ovlo
VDDH over−voltage level (rising)
16
−
18.5
V
3.05
3.3
3.55
V
VDDH REGULATOR
For information only
VDDL REGULATOR
VDDL_reg
Regulator output voltage (Notes 8 and 9)
0 < Ivddl_load < 2.25 mA
with
Ivddh_load + Ivddl_load < 10 mA
VDDL_Por_R
VDDL POR level (rising)
VDDL
– 0.2
−
VDDL
– 0.02
V
VDDL_Por_F
VDDL POR level (falling)
2.5
−
2.9
V
Gate_Tr
GATE rise time (10−90%)
−
−
50
ns
Cload = 2 nF,
VDDHreg = 9 V
Gate_Tf
GATE fall time (90−10%)
−
−
50
ns
Cload = 2 nF,
VDDHreg = 9 V
1.3
−
3
V
For information only
GATE DRIVER
PWM COMPARATOR
VCOMP
COMP control voltage range
7. The current value corresponds to the PoE−PD input current (the current flowing in the external Rdet and the quiescent current of the device
are included). Resistors are assumed to have 1% accuracy.
8. Power dissipation must be considered. Load on VDDH and VDDL must be limited especially if VDDH is not powered by an auxiliary winding.
9. Ivddl_load = current flowing out of the VDDL pin.
Ivddh_load = current flowing out of the VDDH pin + current delivered to the Gate Driver (function of the frequency, VDDH voltage & MOSFET
gate capacitance).
http://onsemi.com
8
NCP1080
Table 3. OPERATING CONDITIONS
Symbol
Parameter
Min.
Typ.
Max.
Units
Conditions
ERROR AMPLIFIER
Vbg_fb
Reference voltage
1.15
1.2
1.25
V
Voltage with respect to ARTN
Av_ol
DC open loop gain
−
80
−
dB
For information only
GBW
Error amplifier GBW
1
−
−
MHz
For information only
Vss
Soft−start voltage range
−
1.15
−
V
Vss_r
Soft−start low threshold (rising edge)
0.35
0.45
0.55
V
Iss
Soft−start source current
3
5
7
mA
SOFT−START
CURRENT LIMIT COMPARATOR
CSth
CS threshold voltage
324
360
396
mV
Tblank
Blanking time
−
100
−
ns
DutyC
Maximum duty cycle
−
80%
−
Frange
Oscillator frequency range
100
−
500
F_acc
Oscillator frequency accuracy
For information only
OSCILLATOR
Fixed internally
kHz
%
±25
CURRENT CONSUMPTION
IvportP1
VPORTP internal current consumption
(Note 10)
−
2.5
3.5
mA
DC−DC controller off
IvportP2
VPORTP internal current consumption
(Note 11)
−
4.7
6.5
mA
DC−DC controller on
150
−
−
°C Tj
TJ = junction temperature
−
15
−
°C Tj
TJ = junction temperature
THERMAL SHUTDOWN
TSD
Thermal shutdown threshold
Thyst
Thermal hysteresis
THERMAL RATINGS
TA
Ambient temperature
−40
−
85
°C
TJ
Junction temperature
−
−
125
150
°C
°C
10. Conditions
a. No current through the pass−switch
b. DC−DC controller inactive (SS shorted to RTN)
c. No external load on VDDH and VDDL
d. VPORTP = 57 V
11. Conditions
a. No current through the pass−switch
b. Oscillator frequency = 100 kHz
c. No external load on VDDH and VDDL
d. Aux winding not used
e. 2 nF on GATE, DC−DC controller enabled
f. VPORTP = 57 V
http://onsemi.com
9
Parametric values guaranteed
Max 1000 hours
NCP1080
DESCRIPTION OF OPERATION
Powered Device Interface
Power Mode
The PD interface portion of the NCP1080 supports the
IEEE802.3af defined operating modes: detection signature,
current source classification, inrush and operating current
limits. In order to give more flexibility to the user and also
to keep control of the power dissipation in the NCP1080,
both current limits are configurable. The device enters
operation once its programmable Vuvlo_on threshold is
reached, and operation ceases when the supplied voltage
falls below the Vuvlo_off threshold. Sufficient hysteresis
and Uvlo filter time are provided to avoid false power on/off
cycles due to transient voltage drops on the cable.
When the classification hand−shake is completed, the
PSE and PD devices move into the operating mode.
Under Voltage Lock Out (UVLO)
The NCP1080 incorporates an under voltage lock out
(UVLO) circuit which monitors the input voltage and
determines when to apply power to the DC−DC controller.
To use the default settings for UVLO (see Table 3), the pin
UVLO must be connected to VPORTN1,2. In this case the
signature resistor has to be placed directly between
VPORTP and VPORTN1,2, as shown in Figure 7.
Detection
VPORTP
During the detection phase, the incremental equivalent
resistance seen by the PSE through the cable must be in the
IEEE802.3af standard specification range (23.75 kW to
26.25 kW) for a PSE voltage from 2.7 V to 10.1 V. In order
to compensate for the non−linear effect of the diode bridge
and satisfy the specification at low PSE voltage, the
NCP1080 presents a suitable impedance in parallel with the
25.5 kW Rdet external resistor connected between VPORTP
and VPORTN. For some types of diodes (especially
Schottky diodes), it may be necessary to adjust this external
resistor.
When the Detection_Off level is detected (typically
11.5 V) on VPORTP, the NCP1080 turns on its internal
3.3 V regulator and biasing circuitry in anticipation of the
classification phase as the next step.
VPORT
VPORTN1,2
NCP1080
Figure 7. Default UVLO Settings
To define the UVLO threshold externally, the UVLO pin
must be connected to the center of an external resistor
divider between VPORTP and VPORTN1,2 as shown in
Figure 8. The series resistance value of the external resistors
must add to 25.5 kW and replaces the internal signature
resistor.
Classification
Once the PSE device has detected the PD device, the
classification process begins. In classification, the PD
regulates a constant current source that is set by the external
resistor RCLASS value on the CLASS pin. Figure 6 shows
the schematic overview of the classification block. The
current source is defined as:
I class +
VPORTP
V bg
R class
UVLO
Rdet
VPORTP
R1
VPORT
, (where V bg is 1.2 V)
UVLO
R2
VDDA1
1.2 V
VPORTN1,2
NCP1080
Figure 8. External UVLO Configuration
CLASS
For a Vuvlo_on desired turn−on voltage threshold, R1 and
R2 can be calculated using the following equations:
Rclass
R1 ) R2 + R det
R2 +
VPORTN1,2
NCP1080
Figure 6. Classification Block Diagram
http://onsemi.com
10
1.2
V ulvo_on
R det
NCP1080
When using the external resistor divider, the NCP1080 has an external reference voltage hysteresis of 15% typical.
Inrush and Operational Current Limitations
The inrush current limit and the operational current limit are programmed individually by an external Rinrush and Rilim1
resistors respectively connected between INRUSH and VPORTN1,2, and between ILIM1 and VPORTN1,2 as shown in
Figure 9.
VDDA1
VDDA1
Vbg1
ILIM1 /
INRUSH
Ilim_ref
NCP1080
VPORTNx
Figure 9. Current Limitation Configuration (Inrush & Ilim1 Pins)
Inrush
0
Ilim1
1
I_pass_switch
&
VDS_PGOOD
Vds_pgood
threshold
Current_limit_ON
detector
VDDA1
VDDA1
VDDA1
2V
1 V / 9.2 V
VPORTNx
RTN
Pass Switch
NCP1080
Figure 10. Inrush and Ilim1 Selection Mechanism
enabled once the pass−switch is not limiting the current
anymore, meaning that the Cpd capacitor is fully charged.
When VPORT reaches the UVLO_on level, the Cpd
capacitor is charged with the INRUSH current (in order to
limit the internal power dissipation of the pass−switch).
Once the Cpd capacitor is fully charged, the current limit
switches from the inrush current to the current limit level
(ilim1) as shown in Figure 10. This transition occurs when
both following conditions are satisfied:
1. The VDS of the pass−switch is below the
Vds_pgood low level (1 V typical).
2. The pass−switch is no longer in current limit
mode, meaning the gate of the pass−switch is
“high” (above 2 V typical).
The operational current limit will stay selected as long as
Vds_pgood is true (meaning that RTN−VPORTN1,2 is
below the high level of Vds_pgood). This mechanism allows
a current level transition without any current spike in the
pass−switch because the operational current limit (ilim1) is
Thermal Shutdown
The NCP1080 includes thermal protection which shuts
down the device in case of high power dissipation. Once the
thermal shutdown (TSD) threshold is exceeded, following
blocks are turned off:
• DC−DC controller
• Pass−switch
• VDDH and VDDL regulators
• CLASS regulator
When the TSD error disappears and if the input line
voltage is still above the UVLO level, the NCP1080
automatically restarts with the current limit set in the inrush
state, the DC−DC controller is disabled and the Css
http://onsemi.com
11
NCP1080
DC−DC Converter Controller
(soft−start capacitor) discharged. The DC−DC controller
becomes operational as soon as RTN−VPORTN1,2 is below
the Vds_pgood threshold.
The NCP1080 implements a current mode DC−DC
converter controller which is illustrated in Figure 11.
VPORTP
OSC
VDDL
5 kW
1.2 V
Oscillator
Reset
CLK
FB
Set
CLK
VDDL
3.3 V LDO
COMP
9 V LDO
Current Slope
Compensation
10 mA
0
VDDH
PWM comp
CS
Blanking
time
S
Q
1.45 V
11 kW
Gate
Driver
GATE
R
2
ARTN
Current limit
comp
VDDL
360 mV
5 mA
SS
Soft−start
Figure 11. DC−DC Controller Block Diagram
Internal VDDH and VDDL Regulators and Gate Driver
In isolated topologies the error amplifier is not used
because it is already implemented externally with the shunt
regulator on the secondary side of the DC−DC controller
(see Figure 2). Therefore the FB pin must be strapped to
ARTN and the output transistor of the opto−coupler has to
be connected on the COMP pin where an internal 5 kW
pull−up resistor is tied to the VDDL supply (see Figure 11).
An internal linear regulator steps down the VPORTP
voltage to a 9 V output on the VDDH pin. VDDH supplies
the internal gate driver circuit which drives the GATE pin
and the gate of the external power MOSFET. The NCP1080
gate driver supports an external MOSFET with high Vth and
high input gate capacitance. A second LDO regulator steps
down the VDDH voltage to a 3.3 V output on VDDL. VDDL
powers the analog circuitry of the DC−DC controller.
In order to prevent uncontrolled operations, both regulators
include power−on−reset (POR) detectors which prevent the
DC−DC controller from operating when either VDDH or
VDDL is too low. In addition, an over−voltage lockout
(OVLO) on the VDDH supply disables the gate driver in case
of an open−loop converter with a configuration using the bias
winding of the transformer (see Figure 4).
Both VDDH and VDDL regulators turn on as soon as
VPORT reaches the Vuvlo_on threshold.
Soft−Start
The soft−start function provided by the NCP1080 allows
the output voltage to ramp up in a controlled fashion,
eliminating output voltage overshoot. This function is
programmed by connecting a capacitor CSS between the SS
and ARTN pins.
While the DC−DC controller is in POR, the capacitor CSS
is fully discharged. After coming out of POR, an internal
current source of 5 mA typically starts charging the capacitor
CSS to initiate soft−start. When the voltage on SS pin has
reached 0.45 V (typical), the gate driver is enabled and
DC−DC operation starts with a duty cycle limit which
increases with the SS pin voltage. The soft−start function is
finished when the SS pin voltage goes above 1.6 V for which
the duty cycle limit reaches its maximum value of 80%.
Soft−start can be programmed by using the following
equation:
Error Amplifier
In non−isolated converter topologies, the high gain
internal error amplifier of the NCP1080 and the internal
1.2 V reference voltage regulate the DC−DC output voltage.
In this configuration, the feedback loop compensation
network should be inserted between the FB and COMP pins
as shown in Figures 3, 4 and 5.
t SS(ms) + 0.23
http://onsemi.com
12
C SS(nF)
NCP1080
Current Limit Comparator
conduction mode (CCM) and when the duty cycle is close
or above 50%, the NCP1080 integrates a current slope
compensation circuit. The amplitude of the added slope
compensation is typically 110 mV over one cycle.
As an example, for an operating switching frequency of
250 kHz, the internal slope provided by the NCP1080 is
27.5 mV/ mA typically.
The NCP1080 current limit block behind the CS pin
senses the current flowing in the external MOSFET for
current mode control and cycle−by−cycle current limit. This
is performed by the current limit comparator which, on the
CS pin, senses the voltage across the external Rcs resistor
located between the source of the MOSFET and the ARTN
pin.
The NCP1080 also provides a blanking time function on
CS pin which ensures that the current limit and PWM
comparators are not prematurely trigged by the current spike
that occurs when the switching MOSFET turns on.
DC−DC Controller Oscillator
The frequency is configured with the Rosc resistor
inserted between OSC and ARTN, and is defined by the
following equation:
R OSC(kW) +
Slope Compensation Circuitry
To overcome sub−harmonic oscillations and instability
problems that exist with converters running in continuous
38600
F OSC(kHz)
The duty cycle limit is fixed internally at 80%.
http://onsemi.com
13
NCP1080
PACKAGE DIMENSIONS
TSSOP−20 EP
CASE 948AB−01
ISSUE O
D
B
B
DETAIL B
20
e/2
0.20 C A-B D
11
2X 10 TIPS
E1
DETAIL B
ÉÉÉ
ÉÉÉ
PIN 1
REFERENCE
1
E
b
b1
D
10
e
20X
A
SECTION B−B
b
0.10
TOP VIEW
M
C A-B D
M
A2
B
0.05 C
B
A
DETAIL A
END VIEW
0.08 C
20X
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
c c1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.07 IN EXCESS OF THE LEAD WIDTH AT
MMC. DAMBAR CANNOT BE LOACTED ON THE
LOWER RADIUS OR THE FOOT OF THE LEAD.
4. DIMENSIONS b, b1, c, c1 TO BE MEASURED BETWEEN 0.10 AND 0.25 FROM LEAD TIP.
5. DATUMS A AND B ARE ARE DETERMINED AT DATUM
H. DATUM H IS LOACTED AT THE MOLD PARTING
LINE AND COINCIDENT WITH LEAD WHERE THE
LEAD EXITS THE PLASTIC BODY.
6. DIMENSION D DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.15 PER SIDE. DIMENSION E1 DOES NOT
INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 PER SIDE. D AND E1 ARE DETERMINED
AT DATUM H.
SIDE VIEW
A1
C
SEATING
PLANE
H
L2
P
SEATING
PLANE
GAUGE
PLANE
L
C
DETAIL A
P1
DIM
A
A1
A2
b
b1
c
c1
D
E
E1
e
L
L2
M
P
P1
MILLIMETERS
MAX
MIN
--1.10
0.05
0.15
0.85
0.95
0.19
0.30
0.19
0.25
0.09
0.20
0.09
0.16
6.40
6.60
6.40 BSC
4.30
4.50
0.65 BSC
0.50
0.70
0.25 BSC
0_
8_
--4.20
--3.00
SOLDERING FOOTPRINT*
4.30
BOTTOM VIEW
6.76
20X
0.98
3.10
0.65
PITCH
20X
0.35
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
14
NCP1080
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
15
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP1080/D