Traffic Manager Co-processor Data Sheet Description 89TTM553 Preliminary Information* 89TTM55x Features Features The 89TTM553 is a flow-based traffic management co-processor that can be used in conjunction with the 89TTM552. It has two major functional parts: the queue manager (QM) and the FLQ scheduler. The QM is responsible for all the non-bandwidth functions, which include managing up to 1 Million queuing structures, handling cell and packet arrivals and departures from these queues, and maintaining a database of congestion management and statistics parameters for each flow queue (FLQ). The FLQ scheduler is responsible for managing the FLQ bandwidth functions. The 89TTM553 FLQ scheduler supports traffic scheduling on up to 1M discrete flows. In addition to the scheduling levels provided by the 89TTM552, the 89TTM553 provides one or two levels of additional scheduling hierarchy. It also provides guaranteed minimum rate, maximum rate capping, excess rate distribution using weighted fair queuing (WFQ), byte rate shaping, and dynamic configuration adjustments. The 89TTM553 stores all the flow-based parameters (and state information) that are made available to the 89TTM552 for flow-based processing. When the 89TTM553 is used with the 89TTM552, congestion and bandwidth management features are enabled at the flow level as well as at the aggregate-flow level. Deterministic performance at 10 Gbps wire-speed (35 Mcps) regardless of the number of flows, traffic size, and patterns. ◆ Up to 256 megabytes of external memory buffer space (equivalent to a 210 ms buffer at 10 Gbps). ◆ Support (Rx and Tx) for industry-standard SPI-4 phase 2, NPF Streaming Interface, and CSIX over LVDS. ◆ Hierarchical queuing and precise scheduling: – Traffic management flexibility. – Support for up to 4K aggregate flow queues (AFQs), 1K port queues (PQs), 2K arrival reassembly queues (ARQs), and 1K output queues/channels (OQs) with no external memory required. Configurable AFQ-to-port assignments. – Support for up to 1M discrete flows (FLQs), with queuing for each flow, using external memory. Configurable mapping of FLQs into aggregate flow queues. – Two-level FLQ scheduling mode that supports up to 128K or 256K virtual pipe or subscriber queues with up to 8 or 4 CoS priority queues each. – Accurate byte-rate shaping at the FLQ, AFQ and port levels. ◆ Multiple levels of buffer congestion management. – Hierarchical queue structure and thresholding. – Congestion indication. – Dynamic adjustment of thresholds during periods of congestion. – Packet discard (PD). – Weighted random early discard (WRED). – Local congestion indication (CI). ◆ IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. 1 of 30 2005 Integrated Device Technology, Inc. *Notice: The information in this document is subject to change without notice March 3, 2005 DSC 6797 IDT 89TTM553 Configurable forwarding based on classification index. Two ports for obtaining event-based statistics. ◆ Configurable on-chip diagnostic statistics. ◆ Bandwidth management rate guarantee and shaping mechanisms for each flow, each aggregate flow and each port queue. – Priority and weighted bandwidth distribution mechanisms across groups of flows and aggregate flows. – Schedules rates as low as 2 kbps for each flow. – One- and two-level byte-rate FLQ scheduling: maximum and minimum rates, and strict priority and weighted fair queuing (WFQ) for each FLQ. Per-flow byte-rate shaping. – AFQ scheduling with byte-rate shaping: minimum and maximum rates with VBR MBS and PCR enforcement. Excess distribution using weighted fair queuing (WFQ) and PRR. – Port queues: maximum rates with byte-rate scheduling. ◆ Wire-speed logical multicasting. – Four classes of service. – Programmable service rate (minimum and excess bandwidth distribution). – Programmable thresholds. – Branch connections can be added and deleted during live traffic. – Traffic management features on all multicast roots and branches. ◆ Multicast label generation for spatial multicast support. ◆ Integrated wire-speed AAL-5 segmentation and reassembly (AAL-5 CPCS SAR) in the datapath. ◆ 32-bit processor interface running at up to 66 MHz with integrated AAL-5 SAR and DMA engine for data insertion and extraction. – Four classes of service. – Integrated AAL-5-compliant and packet-based SAR. – Programmable service rate. – Programmable queue thresholds. – Use of descriptors and DMA support for maximum performance. – 16-bit data bus transfer at up to 66 MHz. ◆ Algorithms implemented in hardware; software intervention required for initialization and configuration only. ◆ Error protection on all external RAM and BIST on all internal RAM. ◆ Inter-operable with the IDT ZTM200 traffic manager. ◆ ◆ 2 of 30 March 3, 2005 IDT 89TTM553 89TTM55x Functional Block Diagram Data Buffer Memory (DDR SDRAM) 89TTM552 Multicast Engine (DFC) SPI-4.2 or Streaming Interface or SIX-over-LVDS Control Path SAR (SAR) CPU and Peripheral Interface (CPIF, DMA) Rx DSR, BRX Forwarding and Thresholding Engine (AC) Tx OQ Manager (VOQM, BPQ) Memory Controller (PBC) Queue Manager (QM) Forwarding and Thresholding Engine (AC) DST, BTX SPI-4.2 or Streaming Interface or CSIX-over-LVD Packet Scheduler (SS) Statistics Processor (SP) Extended Scheduler Interface 89TTM553 Datapath AAL-5 SAR (ILS) ZBus 89TTM552-to-89TTM553 Interface Statistics Processor (SP) Packet Scheduler (ARS, GS, WFQ) Queue Manager (QM) 3 of 30 External Statistics Port CPU and Peripheral Interface (CPIF, DMA) ZBus March 3, 2005 IDT 89TTM553 89TTM553 Pin Description Note: Information in this section is subject to change. Contact your IDT FAE before making design decisions. In this data sheet, direction is indicated as follows: I for In, O for Out, B for Bi-directional, and P for power. Signal Name I/O Type Dir. Freq. Remarks BLL_CLK_CP, BLL_CLK_CN 1.5V HSTL Class 1 I 175 MHz BLL QDR SRAM input clock: This clock pair registers data inputs on the rising edge of C and C#. All synchronous inputs must meet setup and hold times around the clock rising edges. BLL_CLK_KP, BLL_CLK_KN 1.5V HSTL Class 1 O 175 MHz BLL QDR SRAM output clock: This clock pair times the control outputs to the rising edge of K, and times the address and data outputs to the rising edge of K and K#. BLL_ADDR[21:0] 1.5V HSTL Class 1 O 175 MHz BLL QDR SRAM address outputs. BLL_RD_N 1.5V HSTL Class 1 O 175 MHz BLL QDR SRAM synchronous read output (active low): When asserted, a read cycle is initiated to the external QDR SRAM devices. BLL_DIN[17:0] 1.5V HSTL Class 1 I 175 MHz BLL QDR SRAM data inputs: Input data must meet setup and hold times around the rising edges of C and C# during read operations BLL_WR_N 1.5V HSTL Class 1 O 175 MHz BLL QDR SRAM synchronous write output (active low): When asserted, a write cycle is initiated to the external QDR SRAM devices. BLL_DOUT[17:0] 1.5V HSTL Class 1 O 175 MHz BLL QDR SRAM write data outputs: Output data is synchronized to the K and K# during write operations BLL_VREF 0.75V — — HSTL reference. Nominally VDDQ / 2, so connect to 0.75 V Table 1 Buffer Linked List QDR SRAM Signal Name I/O Type Dir. Freq. Remarks BXT_CLK_CP, BXT_CLK_CN 1.5V HSTL Class 1 I 175 MHz BXT QDR SRAM input clock: This clock pair registers data inputs on the rising edge of C and C#. All synchronous inputs must meet setup and hold times around the clock rising edges. BXT_CLK_KP, BXT_CLK_KN 1.5V HSTL Class 1 O 175 MHz BXT QDR SRAM output clock: This clock pair times the control outputs to the rising edge of K, and times the address and data outputs to the rising edge of K and K#. BXT_ADDR[21:0] 1.5V HSTL Class 1 O 175 MHz BXT QDR SRAM address outputs. BXT_RD_N 1.5V HSTL Class 1 O 175 MHz BXT QDR SRAM synchronous read output (active low): When asserted, a read cycle is initiated to the external QDR SRAM devices. BXT_DIN[3:0] 1.5V HSTL Class 1 I 175 MHz BXT QDR SRAM data inputs: Input data must meet setup and hold times around the rising edges of C and C# during read operations Table 2 Buffer Linked List Extension QDR SRAM (Part 1 of 2) 4 of 30 March 3, 2005 IDT 89TTM553 Signal Name I/O Type Dir. Freq. Remarks BXT_WR_N 1.5V HSTL Class 1 O 175 MHz BXT QDR SRAM synchronous write output (active low): When asserted, a write cycle is initiated to the external QDR SRAM devices. BXT_DOUT[3:0] 1.5V HSTL Class 1 O 175 MHz BXT QDR SRAM write data outputs: Output data is synchronized to the K and K# during write operations BXT_LLT_VREF 0.75V — — HSTL reference. Nominally VDDQ / 2, so connect to 0.75 V Table 2 Buffer Linked List Extension QDR SRAM (Part 2 of 2) Signal Name I/O Type Dir. Freq. Remarks FCT_CLK_CP, FCT_CLK_CN 1.5V HSTL Class 1 I 175 MHz FCT QDR SRAM input clock: This clock pair registers data inputs on the rising edge of C and C#. All synchronous inputs must meet setup and hold times around the clock rising edges. FCT_CLK_KP, FCT_CLK_KN 1.5V HSTL Class 1 O 175 MHz FCT QDR SRAM output clock: This clock pair times the control outputs to the rising edge of K, and times the address and data outputs to the rising edge of K and K#. FCT_ADDR[19:0] 1.5V HSTL Class 1 O 175 MHz FCT QDR SRAM address outputs. FCT_RD_N 1.5V HSTL Class 1 O 175 MHz FCT QDR SRAM synchronous read output (active low): When asserted, a read cycle is initiated to the external QDR SRAM devices. FCT_DIN[27:0] 1.5V HSTL Class 1 I 175 MHz FCT QDR SRAM data inputs: Input data must meet setup and hold times around the rising edges of C and C# during read operations FCT_WR_N 1.5V HSTL Class 1 O 175 MHz FCT QDR SRAM synchronous write output (active low): When asserted, a write cycle is initiated to the external QDR SRAM devices. FCT_DOUT[27:0] 1.5V HSTL Class 1 O 175 MHz FCT QDR SRAM write data outputs: Output data is synchronized to the K and K# during write operations FCT_VREF[1:0] 0.75 — — HSTL reference. Nominally VDDQ / 2, so connect to 0.75 V Table 3 Flow Control Table QDR SRAM Signal Name I/O Type Dir. Freq. Remarks FPT_CLK_CP, FPT_CLK_CN 1.5V HSTL Class 1 I 175 MHz FPT QDR SRAM input clock: This clock pair registers data inputs on the rising edge of C and C#. All synchronous inputs must meet setup and hold times around the clock rising edges. FPT_CLK_KP, FPT_CLK_KN 1.5V HSTL Class 1 O 175 MHz FPT QDR SRAM output clock: This clock pair times the control outputs to the rising edge of K, and times the address and data outputs to the rising edge of K and K#. FPT_ADDR[20:0] 1.5V HSTL Class 1 O 175 MHz FPT QDR SRAM address outputs. FPT_RD_N 1.5V HSTL Class 1 O 175 MHz FPT QDR SRAM synchronous read output (active low): When asserted, a read cycle is initiated to the external QDR SRAM devices. Table 4 Flow Parameters Table QDR SRAM (Part 1 of 2) 5 of 30 March 3, 2005 IDT 89TTM553 Signal Name I/O Type Dir. Freq. Remarks FPT_DIN[35:0] 1.5V HSTL Class 1 I 175 MHz FPT QDR SRAM data inputs: Input data must meet setup and hold times around the rising edges of C and C# during read operations FPT_WR_N 1.5V HSTL Class 1 O 175 MHz FPT QDR SRAM synchronous write output (active low): When asserted, a write cycle is initiated to the external QDR SRAM devices. FPT_BW_N[3:0] 1.5V HSTL Class 1 O 175 MHz FPT QDR SRAM synchronous write byte enables (active low) FPT_DOUT[35:0] 1.5V HSTL Class 1 O 175 MHz FPT QDR SRAM write data outputs: Output data is synchronized to the K and K# during write operations FPT_VREF[1:0] 0.75V — — HSTL reference. Nominally VDDQ / 2, so connect to 0.75 V Table 4 Flow Parameters Table QDR SRAM (Part 2 of 2) Signal Name I/O Type Dir. Freq. Remarks GPT_CLK_CP, GPT_CLK_CN 1.5V HSTL Class 1 I 175 MHz GPT QDR SRAM input clock: This clock pair registers data inputs on the rising edge of C and C#. All synchronous inputs must meet setup and hold times around the clock rising edges. GPT_CLK_KP, GPT_CLK_KN 1.5V HSTL Class 1 O 175 MHz GPT QDR SRAM output clock: This clock pair times the control outputs to the rising edge of K, and times the address and data outputs to the rising edge of K and K#. GPT_ADDR[20:0] 1.5V HSTL Class 1 O 175 MHz GPT QDR SRAM address outputs. GPT_RD_N 1.5V HSTL Class 1 O 175 MHz GPT QDR SRAM synchronous read output (active low): When asserted, a read cycle is initiated to the external QDR SRAM devices. GPT_DIN[17:0] 1.5V HSTL Class 1 I 175 MHz GPT QDR SRAM data inputs: Input data must meet setup and hold times around the rising edges of C and C# during read operations. GPT_WR_N 1.5V HSTL Class 1 O 175 MHz GPT QDR SRAM synchronous write output (active low): When asserted, a write cycle is initiated to the external QDR SRAM devices. GPT_BW_N[1:0] 1.5V HSTL Class 1 O 175 MHz GPT QDR SRAM synchronous byte enables (active low). GPT_DOUT[17:0] 1.5V HSTL Class 1 O 175 MHz GPT QDR SRAM write data outputs: Output data is synchronized to the K and K# during write operations. GPT_VREF 0.75V — — HSTL reference. Nominally VDDQ / 2, so connect to 0.75 V Table 5 Group Parameters Table QDR SRAM 6 of 30 March 3, 2005 IDT 89TTM553 Signal Name I/O Type Dir. Freq. Remarks HT_CLK_CP, HT_CLK_CN 1.5V HSTL Class 1 I 175 MHz HT QDR SRAM input clock: This clock pair registers data inputs on the rising edge of C and C#. All synchronous inputs must meet setup and hold times around the clock rising edges. HT_CLK_KP, HT_CLK_KN 1.5V HSTL Class 1 O 175 MHz HT QDR SRAM output clock: This clock pair times the control outputs to the rising edge of K, and times the address and data outputs to the rising edge of K and K#. HT_ADDR[19:0] 1.5V HSTL Class 1 O 175 MHz HT QDR SRAM address outputs. HT_RD_N 1.5V HSTL Class 1 O 175 MHz HT QDR SRAM synchronous read output (active low): When asserted, a read cycle is initiated to the external QDR SRAM devices. HT_DIN[35:0] 1.5V HSTL Class 1 I 175 MHz HT QDR SRAM data inputs: Input data must meet setup and hold times around the rising edges of C and C# during read operations. HT_WR_N 1.5V HSTL Class 1 O 175 MHz HT QDR SRAM synchronous write output (active low): When asserted, a write cycle is initiated to the external QDR SRAM devices. HT_DOUT[35:0] 1.5V HSTL Class 1 O 175 MHz HT QDR SRAM write data outputs: Output data is synchronized to the K and K# during write operations. HT_VREF[1:0] 0.75V — — HSTL reference. Nominally VDDQ / 2, so connect to 0.75 V Table 6 Head Tail QDR SRAM Signal Name I/O Type Dir. Freq. Remarks LLT_CLK_CP, LLT_CLK_CN 1.5V HSTL Class 1 I 175 MHz LLT QDR SRAM input clock: This clock pair registers data inputs on the rising edge of C and C#. All synchronous inputs must meet setup and hold times around the clock rising edges. LLT_CLK_KP, LLT_CLK_KN 1.5V HSTL Class 1 O 175 MHz LLT QDR SRAM output clock: This clock pair times the control outputs to the rising edge of K, and times the address and data outputs to the rising edge of K and K#. LLT_ADDR[19:0] 1.5V HSTL Class 1 O 175 MHz LLT QDR SRAM address outputs. LLT_RD_N 1.5V HSTL Class 1 O 175 MHz LLT QDR SRAM synchronous read output (active low): When asserted, a read cycle is initiated to the external QDR SRAM devices. LLT_DIN[10:0] 1.5V HSTL Class 1 I 175 MHz LLT QDR SRAM data inputs: Input data must meet setup and hold times around the rising edges of C and C# during read operations. LLT_WR_N 1.5V HSTL Class 1 O 175 MHz LLT QDR SRAM synchronous write output (active low): When asserted, a write cycle is initiated to the external QDR SRAM devices. LLT_DOUT[10:0] 1.5V HSTL Class 1 O 175 MHz LLT QDR SRAM write data outputs: Output data is synchronized to the K and K# during write operations. Table 7 Linked List Table QDR SRAM 7 of 30 March 3, 2005 IDT 89TTM553 Signal Name I/O Type Dir. Freq. Remarks FLQS_DIN[14:0] FLQS_DIN_PRTY 1.5V HSTL Class 1 I 175 MHz Control serial interface to 89TTM552 (15 signal lines + 1 parity line) FLQS_DOUT[19:0] FLQS_DOUT_PRTY 1.5V HSTL Class 1 O 175 MHz Control serial interface to 89TTM552 (20 signal lines + 1 parity line) FLQS_CLKIN 1.5V HSTL Class 1 I 175 MHz Clock input from 89TTM552 FLQS_CLKOUT 1.5V HSTL Class 1 O 175 MHz Clock output to 89TTM552 FLQS_TIC_IN 1.5V HSTL Class 1 I 175 MHz Cell time tic input from 89TTM552 FLQS_TIC_OUT 1.5V HSTL Class 1 O 175 MHz Cell time tic out to 89TTM552 FLQS_VREF 0.75V — — HSTL reference. Nominally VDDQ / 2, so connect to 0.75 V Table 8 89TTM552/89TTM553 Interface Signal Name I/O Type Dir. Freq. Remarks ZBUS_AVALID_N 3.3V LVTTL, 12mA drive, internal pullup B 33 or 66 MHz ZBus address valid flag (active low) ZBUS_CLK 3.3V, no internal pullup I 33 or 66 MHz ZBus clock input (up to 66 MHz) ZBUS_AD[15:0] 3.3V LVTTL, 12mA drive, internal pullup B 33 or 66 MHz ZBus 16-bit multiplexed address/data bus ZBUS_DEVID[4:0] 3.3V, internal pullup I 33 or 66 MHz Used for ZBus device identification ZBUS_DVALID_N 3.3V LVTTL, 12mA drive, internal pullup B 33 or 66 MHz ZBus data valid flag (active low) ZBUS_GNT_N 3.3V, internal pullup I 33 or 66 MHz ZBus grant (active low) ZBUS_INT_N[2:0] 3.3V LVTTL, 12mA drive O 33 or 66 MHz ZBus device interrupt (active low) ZBUS_PRTY 3.3V LVTTL, 12mA drive, internal pullup B 33 or 66 MHz ZBus parity over address/data; one parity bit for 16 bits ZBUS_DIR 3.3V LVTTL, 12mA drive O 33 or 66 MHz ZBus write/read flag ZBUS_REQ_N 3.3V LVTTL, 12mA drive O 33 or 66 MHz ZBus master cycle request (active low) Table 9 Processor Interface (ZBus) 8 of 30 March 3, 2005 IDT 89TTM553 Signal Name I/O Type Dir. Freq. Remarks IDDQ 3.3V, internal pulldown I N/A IDDQ input (active high). For IDT use only. Do not connect. RESERVE_1 3.3V LVTTL, 4 mA drive O N/A For IDT use only. Do not connect. SCAN_EN 3.3V I N/A Scan enable (active high) For IDT use only. Attach to a 4.7K resistor to 0V RESERVE_0 3.3V, internal pullup I N/A Tristate enable (active low) For IDT use only. Attach to a 4.7K resistor to 3.3V TCK 3.3V I — JTAG (IEEE 1149.1) clock input. TDI 3.3V, internal pullup I — JTAG (IEEE 1149.1) test data input. TDO 3.3V LVTTL, 12 mA drive O — JTAG (IEEE 1149.1) test data output. TMS 3.3V, internal pullup I — JTAG (IEEE 1149.1) test mode select TRST_N 3.3V, internal pullup I — JTAG (IEEE 1149.1) test reset input. Table 10 Test I/O Signal Name I/O Type Dir. Freq. Remarks PLL_2X_BPCLK 3.3V, internal pulldown I N/A Bypass Clock Input For IDT use only. Do not connect. PLL_BP_MODE 3.3V, internal pulldown I N/A Bypass Clock Input For IDT use only. Do not connect. PLL_MON 3.3V LVTTL, 12mA drive O N/A PLL Monitor For IDT use only. Do not connect. PLL_CFG_OVR 3.3V, internal pulldown I N/A PLL Configuration Override PLL_RST 3.3V I Async PLL_VDDA 1.8V — — PLL Analog VDD PLL_VSSA — — — PLL Analog VSS PLL_SYS_REFCLK 3.3V I 100 MHz RESET_N 3.3V, internal pullup I Async VDD18 — — — 1.8V core power VDD15 — — — 1.5V I/O power for HSTL-2 I/Os: Isolated output buffer supply set nominally to 1.5V PLL reset. A special initialization sequence is required. Chip core PLL reference clock. Chip reset input (active low). Table 11 PLL I/O (Part 1 of 2) 9 of 30 March 3, 2005 IDT 89TTM553 Signal Name I/O Type Dir. Freq. Remarks VDD33 — — — 3.3V I/O power for LVTTL I/Os N/C — — N/A Do not connect. GND — I N/A Ground Table 11 PLL I/O (Part 2 of 2) 89TTM553 Electrical Specifications Some data are TBD and will be published as they become available. The specifications are subject to change without notice. Absolute Maximum Ratings The absolute maximum ratings are the maximum conditions that the device can withstand without sustaining permanent damage. Exceeding any of these conditions could result in permanent damage to the device. Normal operation should not be expected at these conditions. In addition, exposure to absolute maximum rated conditions (or near absolute maximum rated conditions) for extended periods may affect device reliability. Operation of the device is not guaranteed at the absolute maximum ratings, but rather at the operating conditions outlined in “DC Characteristics” on page 11 and “AC Characteristics” on page 12. Symbol Min Max Units Junction temperature under bias — 105 °C Storage temperature — 150 °C Storage temperature range –40 85 °C TSOLDER Soldering temperature — 215 °C TREWORK Rework temperature — 204 °C TJMAX TSTORAGE Parameter Conditions Long term storage Table 12 Absolute Maximum Ratings Operating Ranges Symbol Parameter Min Typical Max Units TJ Operating junction temperature range 0 — 85 °C IV15 Input current for 1.5V power supply — 800 — mA IV18 Input current for 1.8V power supply — 1.16 — A IV33 Input current for 3.3V power supply — 60 — mA Conditions VDD15 1.5V HSTL supply 1.425 1.5 1.575 V ±5% VDD18 1.8V Core supply 1.71 1.8 1.89 V ±5% Table 13 Operating Ranges (Part 1 of 2) 10 of 30 March 3, 2005 IDT 89TTM553 Symbol Parameter VDD33 VRFHSTL 1 Min Typical Max Units Conditions 3.3V LVTTL supply 3.135 3.3 3.465 V ±5% 0.75V HSTL reference voltage 0.7125 0.75 0.7875 V ±5% — 3.49 3.66 W Max. values use the maximum voltages and current listed in this table and typical values use the typical voltages and current. Power Dissipation Table 13 Operating Ranges (Part 2 of 2) 1. This operating range applies to the following pins: BLL_VREF, BXT_LLT_VREF, FCT_VREF[1:0], FPT_VREF[1:0], GPT_VREF, HT_VREF[1:0], and FLQS_VREF. DC Characteristics Unless otherwise stated, the following parameters are provided given the conditions outlined in Table 13. Symbol Parameter Min Typical Max VILHSTL (1.5v HSTL) Input low voltage for 1.5V HSTL inputs (VREF = 0.75V) — VREF – 0.1 V VIHHSTL (1.5v HSTL) Input high voltage for 1.5V HSTL inputs (VREF = 0.75V, VDDQ = 1.5V) VREF+ 0.1 VDDQ+0.3 V VIL33 (3.3v LVTTL) Input low voltage for 3.3V LVTTL inputs — 0.8 V VIH33 (3.3v LVTTL) Input high voltage for 3.3V LVTTL inputs 2.0 — V VOLHSTL Output low voltage for 1.5V HSTL outputs — 0.4 V 1.5v HSTL classI w/8mA Drive) VOHHSTL Output high voltage for 1.5V HSTL outputs (VDDQ = 1.5V) VDDQ-0.4 - V 1.5v HSTL classI w/ 8mA Drive) VOL33 Output low voltage for 3.3V CMOS outputs (12mA pads) — 0.5 V 3.3v LVTTL w/ 12mA Drive VOH33 Output high voltage for 3.3V CMOS outputs (12mA pads) 2.4 — V 3.3v LVTTL w/ 12mA Drive IILHSTL (1.5v HSTL) Input Leakage low current for 1.5V HSTL Inputs -10 10 uA IIHHSTL (1.5v HSTL) Input Leakage high current for 1.5V HSTL Inputs -10 10 uA IIL33 (3.3v pads w/o Pull Up/Down) Input Leakage low current for 3.3V Inputs -10 10 uA IIH33 (3.3v pads w/o Pull Up/Down) Input Leakage high current for 3.3V Inputs -10 10 uA Input Leakage low current for 3.3V with PullUp Inputs -200 -10 uA IIL33PU (3.3v pads w/ Pull Up) Units Table 14 DC Parameters (Part 1 of 2) 11 of 30 March 3, 2005 IDT 89TTM553 Symbol Parameter Min Typical Max IIH33PU (3.3v pads w/ Pull Up) Input Leakage high current for 3.3V with PullUp Inputs -10 +10 uA IIL33PD (3.3v pads w/ Pull Down) Input Leakage low current for 3.3V with PullDown Inputs -10 +10 uA IIH33PD (3.3v pads w/ Pull Down) Input Leakage high current for 3.3V with PullDown Inputs 10 200 uA Units Table 14 DC Parameters (Part 2 of 2) AC Characteristics Unless otherwise stated, the following parameters are provided given the conditions outlined in Table 13. Symbol Min Typical Max Units Frequency for system (core) clock reference — 100 — MHz TJSYS Jitter requirements for system clock — — 80 ps DSYS Percentage duty for system clock 45 50 55 % fZB Frequency for ZBus clock 33 33 66 MHz DZB Percentage duty for ZBus clock 45 50 55 % Min Typical Max Units — — 1.61 ns — — ns fSYS Parameter Table 15 System Clock Timing Symbol TKQOV Parameter K/K rising edge to address/data output valid TKQOX K/K rising edge to address/data output invalid 0.81 TCQIS C/C rising edge to data input setup –0.2 — — ns TCQIH C/C rising edge to data input hold — — 1.6 ns Min Typical Max Units Table 16 QDR SSRAM Interface Timing 1. The parameter is specified at Symbol 89TTM55x core clock frequency of 175 MHz. Parameter TKQV Zbus clock high to output valid — — 8.3 ns TKQX Zbus clock high to output invalid 2.5 — — ns TKQLZ Zbus clock high to output low-Z 1.0 — 6.0 ns TKQHZ Zbus clock high to output high-Z 1.0 — 6.0 ns TS Input setup time from system clock 3.0 — — ns TH Input hold time from system clock 0 — — ns Table 17 Zbus Interface Timing 12 of 30 March 3, 2005 IDT 89TTM553 AC Test Conditions Input Rise/Fall Time 1 V / ns (20% / 80%) Output timing measurement reference level (VREF) for 3.3V interfaces (VDDQ/2) V Output load As shown in Figure 1 Table 18 AC Test Conditions VDD For enable/disable spec Z0 = 50Ω 75Ω 50Ω 20 pF 75Ω 5 pF VREF For output timing Figure 1 AC Test Load 89TTM553 Thermal Considerations Considerations This section describes the temperature and heat sink calculations for flip-chip BGA devices. Symbol ØJA Parameter Value Units Conditions 9.8 °C / W Max: still air. 7.8 °C / W Typical: 200 FPM. Thermal resistance, junction to ambient (no heat sink) ØJB Estimated thermal resistance, junction to board 3.1 °C / W ØJC Thermal resistance, junction to case 0.7 °C / W Table 19 89TTM553 Thermal Characteristics The thermal circuit is as shown below. ØJB Device TA W2 (dissipated through board) TJ Total Power =W TA W1 ØJC ØCA Figure 2 89TTM553 Thermal Circuit 13 of 30 March 3, 2005 IDT 89TTM553 For flip-chip BGA devices, there are two paths for heat dissipation: one through the package balls to the board and other through the package case to air. The device specifications provide ØJB and ØJC numbers. The ØCA number comes from the heat sink manufacturer and depends on type of heat sink (area, height, fin type, etc.) and the airflow across the heat sink. The device specifications also provide the maximum operating junction temperature (TJ) that will not degrade the device reliability. The system designer should ensure that the device maximum junction temperature is not exceeded under any operating condition. One method of accomplishing this is to calculate the maximum ambient temperature (TA) that can be tolerated based on the above device parameters. The formula is shown below. ØJB x (ØJC + ØCA) TA = TJ - W x ----------------------ØJB + ØJC + ØCA The following graph depicts the ambient temperature (TA) versus ØCA. Ambient Temp. vs ØCA 90.0 80.0 81.0 79.7 78.8 78.2 77.7 77.2 76.9 76.6 o C 70.0 TA 60.0 50.0 40.0 30.0 1.0 2.0 3.0 4.0 ØCA 5.0 o 6.0 7.0 8.0 C/W Figure 3 89TTM553 Ambient Temperature Curve For system designers, specification of the maximum device junction temperature (operating) is critical, since it allows them to select a heat sink that meets the maximum ambient temperature requirements of their system. The other parameter that is device package-specific is ØJA, without a heat sink, and is specified for various air-flow conditions. This is the intrinsic thermal resistance of the package (junction to case + case to ambient) and is mainly specified as a reference parameter. (This is when a heat sink is not present and the top surface of the package is essentially acting as the heat sink). However, in devices that have high power dissipation, heat sink usage is highly desirable. Consequently, system designers may have limited use for this parameter. 14 of 30 March 3, 2005 IDT 89TTM553 89TTM553 Reset Sequence A PLL reset sequence must be followed when resetting the 89TTM553 to ensure that clocks are stable when the chip comes out of reset. This section describes the reset sequence for the 89TTM553 device. The 89TTM553 uses data presented on the ZBus data and parity pins to determine the clock frequencies when the chip is in reset. The PLL_CFG_OVR pin controls this feature. When left high, the PLL will determine its clock frequency by sampling these values on the ZBus pins. The feature is not necessary if the default clock frequencies are desired. (The default frequency for the core clock is 133 MHz when a 100 MHz clock reference is used.) When default frequencies are desired, the PLL_CFG_OVR should be held low and it is not necessary to drive the ZBus data and parity lines during the reset. Core PLL PLL Frequency Setting Following is the summary of the reset sequence: 1. Assert chip reset. 2. Drive LOR (latch on reset) values on ZBus (described below) and enable configuration override on all PLLs. (Configuration override remains ON forever). 3. Reset PLLs. 4. Release reset on PLLs. 5. Release chip reset. 6. Release LOR value on ZBus. The following values must be driven on ZBUS_AD[ ] and ZBUS_PRTY before the reset sequences in order to set the chip operation frequency properly. Note that the setting is based on a 100MHz reference input clock (PLL_SYS_REFCLK pin). ZB_PRTY[1:0] = 0x3, must be driven “LOW” for the entire reset sequence cycles ZB_AD[31:16], and ZB_AD[15:0] = bits are set as: Core/system clock frequency 0x154F = 187.50MHz 0x1527 = 175.00MHz 0x153a = 166.67MHz 0x1526 = 150.00MHz 0x1538 = 133.33MHz 0x1525 = 125.00MHz 15 of 30 March 3, 2005 IDT 89TTM553 Reset Sequence Timing Diagram T0 T1 T2 10ms 10ms Power T4 T3 10ms 10ms T5 10ms RESET_N ZBUS_AD[ ], ZBUS_PRTY[ ] PLL_CFG_OVR PLL_RST NOTE: - ZBUS_AD[ ] and ZBUS_PRTY[ ] are used to configure the chip operating frequency, and is listed on next page Figure 4 89TTM553 Reset Sequence Timing Diagram Pin List I/O Description The 89TTM553 Pin List on page 17 uses the following I/O notations: I Input O Output B Bidirectional P Power 16 of 30 March 3, 2005 IDT 89TTM553 89TTM553 Pin List Pin Signal Pin Signal Type Type B11 HT_DIN_32 I HT_DOUT_13 O A2 GND P B12 A3 VDD15 P B13 HT_DOUT_12 O A4 HT_CLK_CN I B14 VDD15 P A5 HT_CLK_CP I B15 GND P HT_DOUT_17 O A6 HT_DIN_19 I B16 A7 HT_DIN_20 I B17 HT_CLK_KP O A8 VDD15 P B18 HT_DOUT_34 O A9 GND P B19 HT_ADDR_15 O GND P A10 HT_DIN_34 I B20 A11 HT_DIN_35 I B21 VDD15 P A12 HT_DOUT_14 O B22 HT_ADDR_18 O A13 HT_DOUT_15 O B23 HT_ADDR_19 O FCT_ADDR_17 O A14 VDD15 P B24 A15 GND P B25 FCT_ADDR_16 O A16 HT_DOUT_16 O B26 GND P A17 HT_DOUT_31 O B27 VDD15 P FCT_DOUT_09 O A18 HT_DOUT_35 O B28 A19 HT_ADDR_14 O B29 FCT_DOUT_08 O A20 GND P B30 FCT_DOUT_10 O A21 VDD15 P B31 FCT_DOUT_11 O VDD15 P A22 HT_ADDR_16 O B32 A23 HT_ADDR_17 O B33 GND P A24 FCT_ADDR_12 O B34 GND P A25 FCT_ADDR_13 O C1 VDD15 P VDD15 P A26 GND P C2 A27 VDD15 P C3 HT_DIN_03 I A28 FCT_DOUT_02 O C4 HT_DIN_08 I A29 FCT_DOUT_03 O C5 HT_DIN_09 I HT_DIN_12 I A30 FCT_DOUT_04 O C6 A31 FCT_DOUT_05 O C7 HT_DIN_11 I A32 VDD15 P C8 VDD15 P A33 GND P C9 GND P HT_DIN_28 I B1 GND P C10 B2 GND P C11 HT_DIN_29 I B3 VDD15 P C12 HT_DOUT_08 O B4 HT_DIN_13 I C13 HT_DOUT_09 O VDD15 P B5 HT_DIN_14 I C14 B6 HT_DIN_15 I C15 GND P B7 HT_DIN_16 I C16 HT_DOUT_21 O B8 VDD15 P C17 HT_CLK_KN O HT_ADDR_00 O HT_ADDR_11 O B9 GND P C18 B10 HT_DIN_33 I C19 17 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type C20 GND P D29 FCT_DOUT_19 O C21 VDD15 P D30 FCT_DOUT_20 O C22 FCT_ADDR_01 O D31 FCT_DOUT_23 O C23 FCT_ADDR_00 O D32 FCT_DIN_05 I C24 FCT_ADDR_18 O D33 FCT_DIN_10 I C25 FCT_ADDR_19 O D34 FCT_CLK_CP I C26 GND P E1 BLL_DIN_04 I C27 VDD15 P E2 BLL_CLK_CN I C28 FCT_DOUT_12 O E3 BLL_DIN_10 I C29 FCT_DOUT_13 O E4 BLL_DIN_15 I C30 FCT_DOUT_17 O E5 BLL_DIN_14 I C31 FCT_DOUT_16 O E6 HT_DIN_05 I C32 FCT_DOUT_22 O E7 HT_DIN_10 I C33 VDD15 P E8 VDD15 P C34 VDD15 P E9 GND P D1 BLL_DIN_03 I E10 HT_VREF_01 P D2 BLL_CLK_CP I E11 HT_DIN_25 I D3 BLL_DIN_11 I E12 HT_DOUT_05 O D4 HT_DIN_02 I E13 HT_DOUT_04 O D5 HT_DIN_04 I E14 VDD15 P D6 HT_DIN_06 I E15 GND P D7 HT_DIN_07 I E16 HT_DOUT_22 O D8 VDD15 P E17 HT_DOUT_28 O D9 GND P E18 HT_ADDR_02 O D10 HT_DIN_26 I E19 HT_ADDR_09 O D11 HT_DIN_27 I E20 GND P D12 HT_DOUT_06 O E21 VDD15 P D13 HT_DOUT_07 O E22 FCT_ADDR_04 O D14 VDD15 P E23 FCT_ADDR_05 O D15 GND P E24 FCT_DOUT_01 O D16 HT_DOUT_20 O E25 FCT_DOUT_00 O D17 HT_DOUT_30 O E26 GND P D18 HT_ADDR_01 O E27 VDD15 P D19 HT_ADDR_10 O E28 FCT_DIN_08 I D20 GND P E29 FCT_DOUT_21 O D21 VDD15 P E30 FCT_DIN_01 I D22 FCT_ADDR_02 O E31 FCT_DIN_00 I D23 FCT_ADDR_03 O E32 FCT_DIN_04 I D24 FCT_CLK_KN O E33 FCT_DIN_09 I D25 FCT_CLK_KP O E34 FCT_CLK_CN I D26 GND P F1 BLL_DIN_00 I D27 VDD15 P F2 BLL_DIN_06 I D28 FCT_DOUT_18 O F3 BLL_DIN_08 I 18 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal F4 BLL_DIN_12 I G13 HT_DOUT_18 O F5 BLL_DIN_16 I G14 VDD15 P F6 HT_DIN_00 I G15 GND P F7 HT_VREF_00 P G16 HT_DOUT_24 O F8 VDD15 P G17 HT_DOUT_25 O F9 GND P G18 HT_ADDR_07 O F10 HT_DIN_21 I G19 HT_ADDR_06 O F11 HT_DIN_22 I G20 GND P F12 HT_DOUT_00 O G21 VDD15 P F13 HT_DOUT_01 O G22 FCT_ADDR_10 O F14 VDD15 P G23 FCT_ADDR_11 O F15 GND P G24 FCT_WR_N O F16 HT_DOUT_23 O G25 FCT_RD_N O F17 HT_DOUT_29 O G26 GND P F18 HT_ADDR_03 O G27 VDD15 P F19 HT_ADDR_08 O G28 VDD15 P F20 GND P G29 FCT_DOUT_24 O F21 VDD15 P G30 FCT_DOUT_26 O F22 FCT_ADDR_09 O G31 FCT_DIN_03 I F23 FCT_ADDR_08 O G32 FCT_DIN_07 I F24 FCT_ADDR_15 O G33 FCT_DIN_12 I F25 FCT_ADDR_14 O G34 FCT_DIN_15 I F26 GND P H1 VDD15 P F27 VDD15 P H2 VDD15 P F28 FCT_VREF_00 P H3 VDD15 P F29 FCT_DOUT_25 O H4 VDD15 P F30 FCT_DOUT_27 O H5 VDD15 P F31 FCT_DIN_02 I H6 VDD15 P F32 FCT_DIN_06 I H7 VDD15 P F33 FCT_DIN_11 I H8 GND P F34 FCT_DIN_16 I H9 BLL_DIN_07 I G1 BLL_DOUT_17 O H10 HT_DIN_24 I G2 BLL_DIN_05 I H11 HT_DIN_23 I G3 BLL_DIN_09 I H12 HT_DOUT_11 O G4 BLL_DIN_13 I H13 HT_DOUT_10 O G5 BLL_DIN_17 I H14 VDD15 P G6 HT_DIN_01 I H15 GND P G7 VDD15 P H16 HT_DOUT_33 O G8 VDD15 P H17 HT_DOUT_32 O G9 GND P H18 HT_ADDR_04 O G10 HT_DIN_31 I H19 HT_ADDR_13 O G11 HT_DIN_30 I H20 GND P G12 HT_DOUT_19 O H21 VDD15 P 19 of 30 *Notice: The information in this document is subject to change without notice Type March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type H22 HT_WR_N O J31 GND P H23 HT_RD_N O J32 GND P H24 FCT_DOUT_07 O J33 GND P H25 FCT_DOUT_06 O J34 GND P H26 GND P K1 BLL_DOUT_02 O H27 GND P K2 BLL_DOUT_05 O H28 VDD15 P K3 BLL_DOUT_08 O H29 VDD15 P K4 BLL_DOUT_10 O H30 VDD15 P K5 BLL_DOUT_13 O H31 VDD15 P K6 BLL_DOUT_16 O H32 VDD15 P K7 BLL_DOUT_03 O H33 VDD15 P K8 BLL_DOUT_11 O H34 VDD15 P K9 BLL_DIN_01 I J1 GND P K26 FCT_DIN_21 I J2 GND P K27 FLQS_DOUT_PRTY O J3 GND P K28 FCT_DIN_17 I J4 GND P K29 FCT_DIN_19 I J5 GND P K30 FCT_VREF_01 P J6 GND P K31 FCT_DIN_24 I J7 GND P K32 FCT_DIN_26 I J8 GND P K33 FLQS_DOUT_01 O J9 BLL_VREF P K34 FLQS_DOUT_02 O J10 HT_DIN_18 I L1 BLL_DOUT_01 O J11 HT_DIN_17 I L2 BLL_DOUT_06 O J12 HT_DOUT_03 O L3 BLL_DOUT_07 O J13 HT_DOUT_02 O L4 BLL_DOUT_09 O J14 VDD15 P L5 BLL_DOUT_14 O J15 GND P L6 BLL_DOUT_15 O J16 HT_DOUT_27 O L7 BLL_DOUT_04 O J17 HT_DOUT_26 O L8 BLL_DOUT_12 O J18 HT_ADDR_05 O L9 BLL_DIN_02 I J19 HT_ADDR_12 O L26 FCT_DIN_22 I J20 GND P L27 FLQS_TIC_OUT O J21 VDD15 P L28 FCT_DIN_18 I J22 FCT_ADDR_07 O L29 FCT_DIN_20 I J23 FCT_ADDR_06 O L30 FCT_DIN_23 I J24 FCT_DOUT_15 O L31 FCT_DIN_25 I J25 FCT_DOUT_14 O L32 FCT_DIN_27 I J26 FCT_DIN_14 I L33 FLQS_DOUT_00 O J27 FCT_DIN_13 I L34 FLQS_DOUT_03 O J28 GND P M1 BLL_ADDR_13 O J29 GND P M2 BLL_ADDR_15 O J30 GND P M3 BLL_ADDR_18 O 20 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal M4 BLL_CLK_KP O P15 VDD18 P M5 BLL_ADDR_21 O P16 GND P M6 BLL_ADDR_02 O P17 VDD18 P M7 BLL_DOUT_00 O P18 GND P M8 BLL_ADDR_01 O P19 VDD18 P M9 BLL_ADDR_00 O P20 GND P M26 FLQS_DOUT_06 O P21 VDD18 P M27 FLQS_DOUT_13 O P26 VDD15 P M28 FLQS_TIC_IN I P27 VDD15 P M29 FLQS_DOUT_04 O P28 VDD15 P M30 FLQS_DOUT_09 O P29 VDD15 P M31 FLQS_CLKOUT O P30 VDD15 P M32 FLQS_DOUT_11 O P31 VDD15 P M33 FLQS_DOUT_16 O P32 VDD15 P M34 FLQS_DOUT_17 O P33 VDD15 P N1 BLL_ADDR_12 O P34 VDD15 P N2 BLL_ADDR_14 O R1 GND P N3 BLL_ADDR_19 O R2 GND P N4 BLL_CLK_KN O R3 GND P N5 BLL_ADDR_20 O R4 GND P N6 BLL_RD_N O R5 GND P N7 BLL_WR_N O R6 GND P N8 BLL_ADDR_17 O R7 GND P N9 BLL_ADDR_16 O R8 GND P N26 FLQS_DOUT_07 O R9 GND P N27 FLQS_DOUT_14 O R14 VDD18 P N28 FLQS_DIN_14 I R15 GND P N29 FLQS_DOUT_05 O R16 VDD18 P N30 FLQS_DOUT_08 O R17 GND P N31 FLQS_DOUT_10 O R18 VDD18 P N32 FLQS_DOUT_12 O R19 GND P N33 FLQS_DOUT_15 O R20 VDD18 P N34 FLQS_DOUT_18 O R21 GND P P1 VDD15 P R26 GND P P2 VDD15 P R27 GND P P3 VDD15 P R28 GND P P4 VDD15 P R29 GND P P5 VDD15 P R30 GND P P6 VDD15 P R31 GND P P7 VDD15 P R32 GND P P8 VDD15 P R33 GND P P9 VDD15 P R34 GND P P14 GND P T1 BLL_ADDR_10 O 21 of 30 *Notice: The information in this document is subject to change without notice Type March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type T2 BLL_ADDR_11 O U27 FLQS_DIN_00 I T3 BLL_ADDR_07 O U28 FLQS_DIN_08 I T4 BLL_ADDR_06 O U29 FLQS_DIN_06 I T5 BLL_ADDR_05 O U30 FLQS_CLKIN I T6 BLL_ADDR_04 O U31 FLQS_DIN_05 I T7 BXT_WR_N O U32 FLQS_DIN_04 I T8 BLL_ADDR_09 O U33 FLQS_DIN_03 I T9 BLL_ADDR_08 O U34 FLQS_DIN_02 I T14 GND P V1 BXT_ADDR_15 O T15 VDD18 P V2 BXT_CLK_KP O T16 GND P V3 BXT_CLK_KN O T17 VDD18 P V4 BXT_ADDR_14 O T18 GND P V5 BXT_ADDR_12 O T19 VDD18 P V6 BXT_ADDR_13 O T20 GND P V7 BXT_ADDR_09 O T21 VDD18 P V8 BXT_ADDR_17 O T26 FLQS_VREF P V9 BXT_ADDR_11 O T27 FLQS_DIN_01 I V14 GND P T28 FLQS_DIN_09 I V15 VDD18 P T29 FLQS_DIN_10 I V16 GND P T30 FLQS_DIN_11 I V17 VDD18 P T31 FLQS_DIN_13 I V18 GND P T32 FLQS_DIN_12 I V19 VDD18 P T33 FLQS_DIN_PRTY I V20 GND P T34 FLQS_DOUT_19 O V21 VDD18 P U1 BXT_ADDR_19 O V26 TDO O U2 BXT_ADDR_18 O V27 TMS I U3 BXT_ADDR_20 O V28 PLL_2X_BPCLK I U4 BXT_ADDR_21 O V29 TDI I U5 BXT_ADDR_00 O V30 TCK I U6 BXT_ADDR_01 O V31 RESERVE_0 I U7 BLL_ADDR_03 O V32 SCAN_EN I U8 BXT_RD_N O V33 IDDQ I U9 BXT_ADDR_02 O V34 RESERVE_1 I U14 VDD18 P W1 BXT_DOUT_01 O U15 GND P W2 BXT_DOUT_02 O U16 VDD18 P W3 BXT_ADDR_05 O U17 GND P W4 BXT_ADDR_04 O U18 VDD18 P W5 BXT_ADDR_06 O U19 GND P W6 BXT_ADDR_07 O U20 VDD18 P W7 BXT_ADDR_08 O U21 GND P W8 BXT_ADDR_16 O U26 FLQS_DIN_07 I W9 BXT_ADDR_10 O 22 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type W14 VDD18 P AA1 VDD15 P W15 GND P AA2 VDD15 P W16 VDD18 P AA3 VDD15 P W17 GND P AA4 VDD15 P W18 VDD18 P AA5 VDD15 P W19 GND P AA6 VDD15 P W20 VDD18 P AA7 VDD15 P W21 GND P AA8 VDD15 P W26 RESET_N I AA9 VDD15 P W27 PLL_SYS_REFCLK I AA14 VDD18 P W28 TRST_N I AA15 GND P W29 PLL_BP_MODE I AA16 VDD18 P W30 PLL_MON O AA17 GND P W31 PLL_CFG_OVR I AA18 VDD18 P W32 PLL_RST I AA19 GND P W33 NC AA20 VDD18 P W34 PLL_VSSA I AA21 GND P Y1 GND P AA26 VDD33 P Y2 GND P AA27 VDD33 P Y3 GND P AA28 VDD33 P Y4 GND P AA29 VDD33 P Y5 GND P AA30 VDD33 P Y6 GND P AA31 VDD33 P Y7 GND P AA32 VDD33 P Y8 GND P AA33 VDD33 P Y9 GND P AA34 VDD33 P Y14 GND P AB1 BXT_DOUT_00 O Y15 VDD18 P AB2 BXT_CLK_CP I Y16 GND P AB3 BXT_DIN_00 I Y17 VDD18 P AB4 LLT_DIN_09 I Y18 GND P AB5 LLT_DIN_06 I Y19 VDD18 P AB6 LLT_DIN_04 I Y20 GND P AB7 BXT_ADDR_03 O Y21 VDD18 P AB8 BXT_DIN_02 I Y26 GND P AB9 BXT_LLT_VREF P Y27 GND P AB26 ZBUS_AD_00 B Y28 GND P AB27 ZBUS_AD_01 B Y29 GND P AB28 ZBUS_AD_12 B Y30 GND P AB29 ZBUS_AD_11 B Y31 GND P AB30 ZBUS_AD_06 B Y32 GND P AB31 ZBUS_AD_04 B Y33 GND P AB32 ZBUS_AD_03 B Y34 GND P AB33 ZBUS_AVALID_N B 23 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type AB34 PLL_VDDA I AE7 LLT_RD_N O AC1 BXT_DIN_03 I AE8 LLT_DOUT_10 O AC2 BXT_CLK_CN I AE9 LLT_DOUT_02 O AC3 LLT_DIN_10 I AE26 GPT_DIN_01 I AC4 LLT_DIN_08 I AE27 ZBUS_INT_N_00 O AC5 LLT_DIN_07 I AE28 ZBUS_DEVID_00 I AC6 LLT_DIN_03 I AE29 ZBUS_DIR O AC7 BXT_DOUT_03 O AE30 ZBUS_INT_N_02 O AC8 BXT_DIN_01 I AE31 ZBUS_GNT_N I AC9 LLT_DIN_05 I AE32 ZBUS_DEVID_04 I AC26 ZBUS_AD_08 B AE33 ZBUS_DEVID_02 I AC27 ZBUS_AD_09 B AE34 ZBUS_AD_15 B AC28 ZBUS_AD_13 B AF1 GND P AC29 ZBUS_AD_10 B AF2 GND P AC30 ZBUS_AD_07 B AF3 GND P AC31 ZBUS_AD_05 B AF4 GND P AC32 ZBUS_AD_02 B AF5 GND P AC33 ZBUS_CLK I AF6 GND P AC34 NC AF7 GND P AD1 LLT_CLK_CP I AF8 LLT_ADDR_16 O AD2 LLT_DIN_01 I AF9 LLT_ADDR_17 O AD3 LLT_DOUT_09 O AF10 FPT_DIN_25 I AD4 LLT_DOUT_07 O AF11 FPT_DIN_26 I AD5 LLT_DOUT_04 O AF12 FPT_BW_N_01 O AD6 LLT_DOUT_01 O AF13 FPT_BW_N_02 O AD7 LLT_WR_N O AF14 VDD15 P AD8 LLT_DIN_00 I AF15 GND P AD9 LLT_DOUT_03 O AF16 FPT_ADDR_07 O AD26 GPT_DIN_02 I AF17 FPT_ADDR_00 O AD27 ZBUS_INT_N_01 O AF18 FPT_DOUT_21 O AD28 ZBUS_DEVID_01 I AF19 FPT_DOUT_22 O AD29 ZBUS_PRTY B AF20 GND P AD30 VDD33 P AF21 VDD15 P AD31 ZBUS_DVALID_N B AF22 GPT_BW_N_00 O AD32 VDD33 P AF23 GPT_BW_N_01 O AD33 ZBUS_DEVID_03 I AF24 GPT_ADDR_00 O AD34 ZBUS_AD_14 B AF25 GPT_ADDR_01 O AE1 LLT_CLK_CN I AF26 GPT_VREF P AE2 LLT_DIN_02 I AF27 GND P AE3 LLT_DOUT_08 O AF28 GND P AE4 LLT_DOUT_06 O AF29 GND P AE5 LLT_DOUT_05 O AF30 GND P AE6 LLT_DOUT_00 O AF31 GND P 24 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type AF32 GND P AH7 VDD15 P AF33 GND P AH8 VDD15 P AF34 GND P AH9 GND P AG1 VDD15 P AH10 FPT_DIN_11 I AG2 VDD15 P AH11 FPT_DIN_12 I AG3 VDD15 P AH12 FPT_DIN_01 I AG4 VDD15 P AH13 FPT_DIN_00 I AG5 VDD15 P AH14 VDD15 P AG6 VDD15 P AH15 GND P AG7 VDD15 P AH16 FPT_ADDR_01 O AG8 GND P AH17 FPT_ADDR_02 O AG9 GND P AH18 FPT_DOUT_20 O AG10 FPT_DIN_17 I AH19 FPT_DOUT_19 O AG11 FPT_DIN_18 I AH20 GND P AG12 FPT_ADDR_15 O AH21 VDD15 P AG13 FPT_ADDR_16 O AH22 FPT_DOUT_13 O AG14 VDD15 P AH23 FPT_DOUT_14 O AG15 GND P AH24 GPT_ADDR_14 O AG16 FPT_ADDR_08 O AH25 GPT_ADDR_15 O AG17 FPT_DOUT_35 O AH26 GND P AG18 FPT_DOUT_29 O AH27 VDD15 P AG19 FPT_DOUT_30 O AH28 VDD15 P AG20 GND P AH29 GPT_DOUT_01 O AG21 VDD15 P AH30 GPT_DIN_17 I AG22 FPT_DOUT_05 O AH31 GPT_DIN_13 I AG23 FPT_DOUT_06 O AH32 GPT_DIN_09 I AG24 GPT_ADDR_08 O AH33 GPT_DIN_05 I AG25 GPT_ADDR_09 O AH34 ZBUS_REQ_N O AG26 GPT_DIN_07 I AJ1 LLT_ADDR_19 O AG27 GND P AJ2 LLT_ADDR_12 O AG28 VDD15 P AJ3 LLT_ADDR_06 O AG29 VDD15 P AJ4 LLT_CLK_KN O AG30 VDD15 P AJ5 LLT_ADDR_01 O AG31 VDD15 P AJ6 FPT_DIN_35 I AG32 VDD15 P AJ7 LLT_ADDR_09 O AG33 VDD15 P AJ8 VDD15 P AG34 VDD15 P AJ9 GND P AH1 LLT_ADDR_18 O AJ10 FPT_DIN_04 I AH2 LLT_ADDR_13 O AJ11 FPT_DIN_05 I AH3 LLT_ADDR_07 O AJ12 FPT_BW_N_03 O AH4 LLT_CLK_KP O AJ13 FPT_WR_N O AH5 LLT_ADDR_00 O AJ14 VDD15 P AH6 FPT_DIN_34 I AJ15 GND P 25 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type AJ16 FPT_ADDR_03 O AK25 GPT_ADDR_11 O AJ17 FPT_DOUT_34 O AK26 GND P AJ18 FPT_DOUT_24 O AK27 VDD15 P AJ19 FPT_DOUT_18 O AK28 GPT_DOUT_11 O AJ20 GND P AK29 GPT_DOUT_05 O AJ21 VDD15 P AK30 GPT_DIN_14 I AJ22 GPT_RD_N O AK31 GPT_DIN_15 I AJ23 GPT_ADDR_20 O AK32 GPT_DIN_10 I AJ24 GPT_ADDR_07 O AK33 GPT_CLK_CN I AJ25 GPT_ADDR_06 O AK34 GPT_DIN_04 I AJ26 GND P AL1 LLT_ADDR_14 O AJ27 VDD15 P AL2 LLT_ADDR_11 O AJ28 GPT_DOUT_10 O AL3 LLT_ADDR_05 O AJ29 GPT_DOUT_00 O AL4 FPT_DIN_33 I AJ30 GPT_DIN_16 I AL5 FPT_DIN_30 I AJ31 GPT_DIN_12 I AL6 FPT_DIN_29 I AJ32 GPT_DIN_08 I AL7 FPT_VREF_01 P AJ33 GPT_DIN_06 I AL8 VDD15 P AJ34 GPT_DIN_00 I AL9 GND P AK1 LLT_ADDR_15 O AL10 FPT_VREF_00 P AK2 LLT_ADDR_10 O AL11 FPT_DIN_10 I AK3 LLT_ADDR_04 O AL12 FPT_ADDR_20 O AK4 LLT_ADDR_02 O AL13 FPT_ADDR_19 O AK5 LLT_ADDR_03 O AL14 VDD15 P AK6 FPT_DIN_31 I AL15 GND P AK7 LLT_ADDR_08 O AL16 FPT_ADDR_05 O AK8 VDD15 P AL17 FPT_DOUT_32 O AK9 GND P AL18 FPT_DOUT_25 O AK10 FPT_DIN_13 I AL19 FPT_DOUT_15 O AK11 FPT_DIN_14 I AL20 GND P AK12 FPT_BW_N_00 O AL21 VDD15 P AK13 FPT_RD_N O AL22 FPT_DOUT_02 O AK14 VDD15 P AL23 FPT_DOUT_01 O AK15 GND P AL24 GPT_CLK_KP O AK16 FPT_ADDR_04 O AL25 GPT_CLK_KN O AK17 FPT_DOUT_33 O AL26 GND P AK18 FPT_DOUT_23 O AL27 VDD15 P AK19 FPT_DOUT_17 O AL28 GPT_DOUT_07 O AK20 GND P AL29 GPT_DOUT_06 O AK21 VDD15 P AL30 GPT_DOUT_04 O AK22 GPT_WR_N O AL31 GPT_DOUT_02 O AK23 FPT_DOUT_00 O AL32 GPT_DIN_11 I AK24 GPT_ADDR_10 O AL33 GPT_CLK_CP I 26 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type Pin Signal Type AL34 GPT_DIN_03 I AN9 GND P AM1 VDD15 P AN10 FPT_DIN_06 I AM2 VDD15 P AN11 FPT_DIN_07 I AM3 FPT_DIN_32 I AN12 FPT_ADDR_14 O AM4 FPT_DIN_27 I AN13 FPT_ADDR_13 O AM5 FPT_DIN_28 I AN14 VDD15 P AM6 FPT_DIN_24 I AN15 GND P AM7 FPT_DIN_23 I AN16 FPT_ADDR_10 O AM8 VDD15 P AN17 FPT_CLK_KP O AM9 GND P AN18 FPT_DOUT_27 O AM10 FPT_DIN_09 I AN19 FPT_DOUT_12 O AM11 FPT_DIN_08 I AN20 GND P AM12 FPT_ADDR_17 O AN21 VDD15 P AM13 FPT_ADDR_18 O AN22 FPT_DOUT_07 O AM14 VDD15 P AN23 FPT_DOUT_08 O AM15 GND P AN24 GPT_ADDR_16 O AM16 FPT_ADDR_06 O AN25 GPT_ADDR_17 O AM17 FPT_DOUT_31 O AN26 GND P AM18 FPT_DOUT_26 O AN27 VDD15 P AM19 FPT_DOUT_16 O AN28 GPT_DOUT_17 O AM20 GND P AN29 GPT_DOUT_16 O AM21 VDD15 P AN30 GPT_DOUT_15 O AM22 FPT_DOUT_04 O AN31 GPT_DOUT_14 O AM23 FPT_DOUT_03 O AN32 VDD15 P AM24 GPT_ADDR_13 O AN33 GND P AM25 GPT_ADDR_12 O AN34 GND P AM26 GND P AP2 GND P AM27 VDD15 P AP3 VDD15 P AM28 GPT_DOUT_12 O AP4 FPT_CLK_CN I AM29 GPT_DOUT_13 O AP5 FPT_CLK_CP I AM30 GPT_DOUT_09 O AP6 FPT_DIN_16 I AM31 GPT_DOUT_08 O AP7 FPT_DIN_15 I AM32 GPT_DOUT_03 O AP8 VDD15 P AM33 VDD15 P AP9 GND P AM34 VDD15 P AP10 FPT_DIN_03 I AN1 GND P AP11 FPT_DIN_02 I AN2 GND P AP12 FPT_ADDR_12 O AN3 VDD15 P AP13 FPT_ADDR_11 O AN4 FPT_DIN_22 I AP14 VDD15 P AN5 FPT_DIN_21 I AP15 GND P AN6 FPT_DIN_19 I AP16 FPT_ADDR_09 O AN7 FPT_DIN_20 I AP17 FPT_CLK_KN O AN8 VDD15 P AP18 FPT_DOUT_28 O 27 of 30 *Notice: The information in this document is subject to change without notice March 3, 2005 IDT 89TTM553 Pin Signal Type AP19 FPT_DOUT_11 O AP20 GND P AP21 VDD15 P AP22 FPT_DOUT_10 O AP23 FPT_DOUT_09 O AP24 GPT_ADDR_19 O AP25 GPT_ADDR_18 O AP26 GND P AP27 VDD15 P AP28 GPT_ADDR_05 O AP29 GPT_ADDR_04 O AP30 GPT_ADDR_02 O AP31 GPT_ADDR_03 O AP32 VDD15 P AP33 GND P 28 of 30 March 3, 2005 IDT 89TTM553 89TTM553 Package The package is an LSI Logic FPBGA-HP, having 960 pins, with 1 mm pitch; a 34 ×34 pin array; and a 35 × 35 mm enclosure. Figure 5 shows the package geometry. Figure 5 89TTM553 Package Diagram 29 of 30 March 3, 2005 IDT 89TTM553 Ordering Information Information NN A AA 55x Product Family Operating Voltage Device Family Product Detail Legend A = Alpha Character N = Numeric Character A A Package Temp range Blank Commercial Temperature (See Thermal Considerations section) BL 960-pin FCBGA 552 553 Aggregate flow device Per flow device TM SF Traffic Manager Switch Fabric T 1.8V ±5% Core Voltage 89 Serial Switching Product Valid Combinations 89TTM553BL 960-pin FCBGA package, Commercial Temperature Revision History November 23, 2004: Initial publication by IDT. January 12, 2005: On page 14, deleted reference to LVDS in the Core PLL Frequency Setting heading. March 3, 2005: In Table 11, changed frequency for PLL_SYS_REFCLK from 125 to 100 MHz. CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com 30 of 30 for Tech Support: email: [email protected] phone: 408-284-8208 March 3, 2005