BAΟΟST / BAΟΟSFP series Regulator ICs Regulator, low drop-out type with ON/OFF switch BAΟ ΟΟST / BAΟ ΟΟSFP series The BAΟΟST and BAΟΟSFP series are variable, fixed output low drop-out type voltage regulators with an ON/OFF switch. These regulators are used to provide a stabilized output voltage from a fluctuating DC input voltage. Fixed output voltages are 3.3V, 5V, 6V(SFP), 7V, 8V, 9V, 10V(ST), 12V(ST). The maximum current capacity is 1 A for each of the above voltages. !Application Constant voltage power supply !Features 1) Built-in overvoltage protection circuit, overcurrent protection circuit and thermal shutdown circuit 2) TO220FP-5, TO252-5 standard packages can be accomodated in wide application. 3) 0µA (design value) circuit current when switch is off 4) Richly diverse lineup. 5) Low minimum I/O voltage differential. !Product codes Output voltage (V) Product No. Output voltage (V) Product No. Variable BA00AST / ASFP 8.0 BA08ST / SFP 3.3 BA033ST / SFP 9.0 BA09ST / SFP 5.0 BA05ST / SFP 10.0 BA10ST 6.0 BA06SFP 12.0 BA12ST 7.0 BA07ST / SFP !Absolute maximum ratings (Ta=25°C) Parameter Power supply voltage Power dissipation TO220FP-5 TO252-5 Symbol VCC Pd Limits Unit 35 V 2000 *1 1000 *2 mW Operating temperature Topr -40~+85 ˚C Storage temperature Tstg -55~+150 ˚C Peak applied voltage Vsurge 50 *3 V *1 Reduced by 16mW for each increase in Ta of 1˚C over 25˚C. *2 Reduced by 8mW for each increase in Ta of 1˚C over 25˚C. *3 Voltage application time : 200 msec. or less 1/11 BAΟΟST / BAΟΟSFP series Regulator ICs !Block diagram VCC 2 REFERENCE VOLTAGE − + OUT 4 + CTL 5 1 C GND 3 Variable output type (BA00AST / ASFP) VCC 2 REFERENCE VOLTAGE − + OUT 4 + CTL 1 GND 3 Fixed output type !Pin descriptions Pin No. Pin name 1 CTL Output ON/OFF 2 VCC Power supply input 3 GND 4 OUT C 5 N.C. Function Ground Output Reference power supply pin for setting voltage with the BA00AST/ASFP. In the BAOOST/SFP Series, these are NC pins, except for the BA00AST/ASFP. 2/11 BAΟΟST / BAΟΟSFP series Regulator ICs !Recommended operating conditions BA00AST / ASFP Parameter Input voltage Symbol Min. VCC IO Output current 4 - Max. BA08ST / SFP Unit Parameter V Input voltage A Output current 25 1 BA033ST / SFP Parameter Symbol Min. Unit Max. Parameter VCC 4.3 25 V Input voltage IO - 1 A Output current Output current BA05ST / SFP Parameter Max. Unit VCC 9 25 V IO - 1 A Max. Unit BA09ST / SFP Input voltage Input voltage Symbol Min. Symbol Min. VCC 10 25 V IO - 1 A BA10ST Symbol Min. VCC Output current IO Max. Unit 6 25 V Input voltage - 1 A Output current Parameter BA06SFP Symbol Min. Max. Unit VCC 11 25 V IO - 1 A Max. Unit BA12ST Parameter Symbol Min. Input voltage Max. Unit Parameter VCC 7 25 V Input voltage IO - 1 A Output current Output current Symbol Min. VCC 13 25 V IO - 1 A BA07ST / SFP Parameter Symbol Min. Input voltage Max. Unit VCC 8 25 V IO - 1 A Output current !Electrical characteristics BA00AST / ASFP (unless otherwise noted, Ta=25°C, Vcc=10V, Io=500mA) Parameter Symbol Min. Typ. Max. Unit Reference voltage Vref 1.200 1.225 1.250 V Power save current Ist - 0 10 µA Output voltage VO - 5.0 - V Conditions Measurement circuit Fig.1 OFF mode Fig.4 Fig.1 Input stability Reg.I - 20 100 mV VCC=6→25V Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO =5mA→1A Fig.1 TCVO - ±0.01 - % / ˚C Vd - 0.3 0.5 V Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Fig.1 IO =5mA, Tj=0~125˚C Fig.1 VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Fig.5 IOS - 0.4 - A VCC=25V ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Output short-circuit current Input high level current 3/11 BAΟΟST / BAΟΟSFP series Regulator ICs BA033ST / SFP (unless otherwise noted, Ta=25°C, Vcc=8 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Fig.4 Power save current IST - 0 10 µA Output voltage VO1 3.13 3.3 3.47 V Input stability Reg.I - 20 100 mV VCC=4=.3→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO =5mA→1A Fig.1 TCVO - ±0.02 - % / ˚C IO =5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 mA Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Load regulation Temperature coefficient of output voltage Input high level current OFF mode Fig.1 VCC=0.95VO Fig.3 IO=0mA Fig.4 BA05ST / SFP (unless otherwise noted, Ta=25°C, Vcc=10 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Power save current IST - 0 10 µA Output voltage VO1 4.75 5.0 5.25 V Input stability Reg.I - 20 100 mV VCC=6→2=5V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO=5mA→1A Fig.1 TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=4.75V Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Load regulation Temperature coefficient of output voltage Input high level current OFF mode Fig.4 Fig.1 BA06SFP ( unless otherwise noted, Ta=25°C, Vcc=11 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Fig.4 Power save current IST - 0 10 µA Output voltage VO1 5.7 6.0 6.3 V Input stability Reg.I - 20 100 mV VCC=7→25V Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO=5mA→1A Fig.1 TCVO - ±0.02 - % / ˚C Vd - 0.3 0.5 V Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential OFF mode Fig.1 Fig.1 IO=5mA, Tj=0~125˚C Fig.1 VCC=5.7V Fig.3 Fig.4 Bias current Ib - 2.5 5.0 mA IO=0mA Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Input high level current 4/11 BAΟΟST / BAΟΟSFP series Regulator ICs BA07ST / SFP (unless otherwise noted, Ta=25°C, Vcc=12 V, Io=500 mA) (under development) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Fig.4 Power save current IST - 0 10 µA Output voltage VO1 6.65 7.0 7.35 V Input stability Reg.I - 20 100 mV VCC=8→25V Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO=5mA→1A Fig.1 TCVO - ±0.02 - % / ˚C Vd - 0.3 0.5 V Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential OFF mode Fig.1 Fig.1 IO=5mA, Tj=0~125˚C Fig.1 VCC=6.65V Fig.3 Fig.4 Bias current Ib - 2.5 5.0 mA IO=0mA Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Input high level current BA08ST / SFP (unless otherwise noted, Ta=25°C, Vcc=13 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Fig.4 Power save current IST - 0 10 µA Output voltage VO1 7.6 8.0 8.4 V Input stability Reg.I - 20 100 mV VCC9→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO=5mA→1A Fig.1 TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Load regulation Temperature coefficient of output voltage Output short-circuit current OFF mode Fig.1 IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Input high level current BA09ST / SFP (unless otherwise noted, Ta=25°C, Vcc=14 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Fig.4 Power save current IST - 0 10 µA Output voltage VO1 8.55 9.0 9.45 V Input stability Reg.I - 20 100 mV VCC=10→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO=5mA→1A Fig.1 TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Load regulation Temperature coefficient of output voltage Input high level current OFF mode Fig.1 5/11 BAΟΟST / BAΟΟSFP series Regulator ICs BA10ST (unless otherwise noted, Ta=25°C, Vcc=15 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Fig.4 Power save current IST - 0 10 µA Output voltage VO1 9.5 10 10.5 V Input stability Reg.I - 20 100 mV VCC=11→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO=5mA→1A Fig.1 TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Load regulation Temperature coefficient of output voltage Output short-circuit current OFF mode Fig.1 IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 Input high level current BA12ST (unless otherwise noted, Ta=25°C, Vcc=17 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit Fig.4 Power save current IST - 0 10 µA Output voltage VO1 11.4 12 12.6 V Input stability Reg.I - 20 100 mV VCC=13→25V Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Reg.L - 50 150 mV IO=5mA→1A Fig.1 IO=5mA, Tj=0~125˚C Fig.1 Load regulation Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C Minimum I/O voltage differential Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 Peak output current IO 1.0 1.5 Output short-circuit current IOS - 0.4 ON mode voltage Vth1 2.0 - - OFF mode voltage Vth2 - - 0.8 IIN 100 200 300 µA Input high level current OFF mode Fig.1 Fig.1 VCC=0.95VO Fig.3 mA IO=0mA Fig.4 - A Tj=25˚C Fig.1 - A VCC=25V Fig.5 V Output Active mode, IO=0mA Fig.6 V Output OFF mode, IO=0mA Fig.6 CTL=5V, IO=0mA Fig.6 6/11 BAΟΟST / BAΟΟSFP series Regulator ICs !Measurement circuits ( The C pin only exists on the BA00AST / ASFP, for the BA00AST / ASFP, place a 6.8kΩ resistor between the OUT and C pins, and a 2.2kΩ resisitor between the C and pins.) V eIN 10Ω5W OUT VCC 0.33µF VCC CTL V 0.33µF VCC CTL eIN=1Vrms f=120Hz 5V Fig.1 Measurement circuit for output voltage, input stability, load regulation, and temperature coefficient of output voltage OUT VCC=0.95VO CTL GND IO=100mA 5V ( ee ) IN OUT Fig.2 Measurement circuit for ripple rejection ratio 0.33µF VCC eOUT V GND *C Ripple rejection ratio R.R. = 20 log V 0.33µF 22µF + 100µF IO GND *C OUT VCC 22µF + VCC CTL 22µF + OUT VCC GND 22µF + *C IO=500mA *C A 5V Fig.3 Measurement circuit for minimum I/O voltage differential 0.33µF OUT VCC VCC CTL GND *C Fig.4 Measurement circuit for bias current, power save current measurement circuit 0.33µF 22µF + IOS OUT + VCC A CTL GND *C 22µF V A 5V Fig.5 Measurement circuit for output short-circuit current VCC Fig.6 Measurement circuit for ON/OFF mode voltage, input high level current 7/11 BAΟΟST / BAΟΟSFP series Regulator ICs !Operation notes (1) Operating power supply voltage When operating within the normal voltage range and within the ambient operating temperature range, most circuit functions are guaranteed. The rated values cannot be guaranteed for the electrical characteristics, but there are no sudden changes of the characteristics within these ranges. (2) Power dissipation Heat attenuation characteristics are noted on a separate page and can be used as a guide in judging power dissipation. If these ICs are used in such a way that the allowable power dissipation level is exceeded, an increase in the chip temperature could cause a reduction in the current capability or could otherwise adversely affect the performance of the IC. Make sure a sufficient margin is allowed so that the allowable power dissipation value is not exceeded. (3) Output oscillation prevention and bypass capacitor Be sure to connect a capacitor between the output pin and GND to prevent oscillation. Since fluctuations in the valve of the capacitor due to temperature changes may cause oscillations, a tantalum electrolytic capacitor with a small internal series resistance (ESR) is recommended. A 22µF capacitor is recommended; however, be aware that if an extremely large capacitance is used (1000µF or greater), then oscillations may occur at low frequencies. Therefore, be sure to perform the appropriate verifications before selecting the capacitor. Also, we recommend connecting a 0.33µF bypass capacitor as close as possible between the input pin and GND. (4) Current overload protection circuit A current overload protection circuit is built into the outputs, to prevent IC destruction if the load is shorted. This protection circuit limits the current in the shape of a fall back characteristics. It is designed with a high margin, so that even if a large current suddenly flows through the large capacitor in the IC, the current is restricted and latching is prevented. However, these protection circuits are only good for pre-venting damage from sudden accidents. The design should take this into consideration, so that the protection circuit is not made to operate continuously (for instance, clamping at an output of 1VF or greater; below 1VF, the short mode circuit operates). Note that the capacitor has negative temperature characteristics, and the design should take this into consideration. (5) Thermal overload circuit A built-in thermal overload circuit prevents damage from overheating. When the thermal circuit is activated, the various outputs are in the OFF state. When the temperature drops back to a constant level, the circuit is restored. (6) Internal circuits could be damaged if there are modes in which the electric potential of the application’s input (VCC) and GND are the opposite of the electric potential of the various outputs. Use of a diode or other such bypass path is recommended. (7) Although the manufacture of this product includes rigorous quality assurance procedures, the product may be damaged if absolute maximum ratings for voltage or operating temperature are exceeded. If damage has occurred, special modes (such as short circuit mode or open circuit mode) cannot be specified. If it is possible that such special modes may be needed, please consider using a fuse or some other mechanical safety measure. (8) When used within a strong magnetic field, be aware that there is a slight possibility of malfunction. 8/11 BAΟΟST / BAΟΟSFP series Regulator ICs (9) When the connected load which contains a big inductance component in an output terminal is connected and the occurrence of a reverse electromotive force can be considered at the time of and power-output OFF at the time of starting, I ask the insertion of protection diode of you. (Example) Output pin (10) Although it is sure that the example of an application circuit should be recommended, in a usage, I fully ask the validation of a property of you. In addition, when you alter the circuit constant with outside and you become a usage, please see and decide sufficient margin in consideration of the dispersion in an external component and IC of our company etc. not only including the static characteristic but including a transient characteristic. This IC is monolithic IC and has P+ isolation and P substrate for an isolation between each element. A P-N junction is formed by these P layers and N layers of each element, and various kinds of parasitic elements are formed. For example, when the resistor and the transistor are connected with the pin like the example of a simple architecture, •At a resistor, it is at the time of GND > (PIN A), at a transistor (NPN), it is at the time of GND > (PIN B), A P-N junction operates as parasitism diode. •At a transistor (NPN), it is at the time of GND > (PIN B), The NPN transistor of a parasitic element operates by N layers of other elements which approach with the above-mentioned parasitism diode. A parasitic element is inevitably made according to a potential relation on the architecture of IC. When a parasitic element operates, the interference of a circuit operation is caused and the cause of a malfunction, as a result a destructive is obtained. Therefore, please be fully careful of impressing a voltage lower than GND(P substrate) to an input/output terminal etc. not to carry out usage with which a parasitic element operates. 9/11 BAΟΟST / BAΟΟSFP series Regulator ICs Transistor (NPN) Resistor B (Pin B) (Pin A) C E GND N P + P P P substrate + P N N N N P + + P N N P substrate Parasitic elements Parasitic elements GND GND (Pin B) (Pin A) C B Parasitic elements E GND Other approaching elements GND Parasitic elements The example of a simple architecture of bipolar IC !Electrical characteristic curves POWER DISSIPATION : Pd(W) 20 (1)10.0 15 (2)11.0 10 (3)6.5 5 10 7.5 5 2.5 25 VCC=10V IOUT=0 BA05ST 5 4 3 2 1 (2)1.0 (4)2.0 0 (1) Infinite heat sink is used θj-c=12.5 (ºC/W) (2) IC simple substance θj-a=125.0 (ºC/W) OUTPUT VOLTAGE : VOUT (V) (1) Infinite heat sink 2 (2) Alumina PCB, 100×100×2 mm 2 (3) Alumina PCB, 50×50×2 mm (4) IC alone (1)22.0 POWER DISSIPATION : Pd (W) 6 12.5 25 50 75 100 125 150 AMBIENT TEMPERATURE : Ta(˚C) Fig. 7 Thermal derating curves (TO220FP-5) 0 25 50 75 100 125 AMBIENT TEMPERATURE : Ta (ºC) Fig.8 Thermal derating curves (TO252-5) 150 0 25 50 75 100 125 150 175 200 JUNCTION TEMPERATURE : Tj (˚C) Fig.9 Thermal cutoff circuit characteristics 10/11 BAΟΟST / BAΟΟSFP series Regulator ICs 6 Vcc=10V BA05ST BA05ST OUTPUT VOLTAGE : VOUT (V) OUTPUT VOLTAGE : VOUT (V) 10 8 6 4 2 0 0 1.0 2.0 5 4 3 2 1 0 0 10 OUTPUT CURRENT : IOUT (A) 20 30 40 50 INPUT VOLTAGE : VCC (V) Fig.10 Current limit characteristics Fig.11 Over voltage protection characteristics 4.5 +0.3 −0.1 10.0 +0.3 −0.1 7.0 +0.3 −0.1 2.8 +0.2 −0.1 φ3.2±0.1 6.5±0.2 2.3±0.2 0.5±0.1 5.1 +0.2 −0.1 0.85±0.2 13.5Min. 9.5±0.5 0.5 4 5 1.27 0.5±0.1 1.5 2 0.8 1 1.2 2.5 7.0±0.2 5.5±0.2 3 8.0±0.2 12.0±0.2 17.0 +0.4 −0.2 1.8±0.2 !External Dimensions (Units: mm) 1.0±0.2 0.8 1 2 3 4 5 0.5+0.1 1pin : CTL 2pin : VCC 3pin : GND 4pin : OUT 5pin : N.C. 1.778 TO220FP-5 2.85 TO252-5 11/11