ROHM BA00SFP

BAΟΟST / BAΟΟSFP series
Regulator ICs
Regulator, low drop-out type with ON/OFF
switch
BAΟ
ΟΟST / BAΟ
ΟΟSFP series
The BAΟΟST and BAΟΟSFP series are variable, fixed output low drop-out type voltage regulators with an ON/OFF
switch.
These regulators are used to provide a stabilized output voltage from a fluctuating DC input voltage.
Fixed output voltages are 3.3V, 5V, 6V(SFP), 7V, 8V, 9V, 10V(ST), 12V(ST). The maximum current capacity is 1 A for
each of the above voltages.
!Application
Constant voltage power supply
!Features
1) Built-in overvoltage protection circuit, overcurrent protection circuit and thermal shutdown circuit
2) TO220FP-5, TO252-5 standard packages can be accomodated in wide application.
3) 0µA (design value) circuit current when switch is off
4) Richly diverse lineup.
5) Low minimum I/O voltage differential.
!Product codes
Output voltage (V)
Product No.
Output voltage (V)
Product No.
Variable
BA00AST / ASFP
8.0
BA08ST / SFP
3.3
BA033ST / SFP
9.0
BA09ST / SFP
5.0
BA05ST / SFP
10.0
BA10ST
6.0
BA06SFP
12.0
BA12ST
7.0
BA07ST / SFP
!Absolute maximum ratings (Ta=25°C)
Parameter
Power supply voltage
Power dissipation
TO220FP-5
TO252-5
Symbol
VCC
Pd
Limits
Unit
35
V
2000
*1
1000
*2
mW
Operating temperature
Topr
-40~+85
˚C
Storage temperature
Tstg
-55~+150
˚C
Peak applied voltage
Vsurge
50 *3
V
*1 Reduced by 16mW for each increase in Ta of 1˚C over 25˚C.
*2 Reduced by 8mW for each increase in Ta of 1˚C over 25˚C.
*3 Voltage application time : 200 msec. or less
1/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
!Block diagram
VCC
2
REFERENCE
VOLTAGE
−
+
OUT
4
+
CTL
5
1
C
GND
3
Variable output type (BA00AST / ASFP)
VCC
2
REFERENCE
VOLTAGE
−
+
OUT
4
+
CTL
1
GND
3
Fixed output type
!Pin descriptions
Pin No.
Pin name
1
CTL
Output ON/OFF
2
VCC
Power supply input
3
GND
4
OUT
C
5
N.C.
Function
Ground
Output
Reference power supply pin for setting voltage with
the BA00AST/ASFP.
In the BAOOST/SFP Series, these are NC pins,
except for the BA00AST/ASFP.
2/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
!Recommended operating conditions
BA00AST / ASFP
Parameter
Input voltage
Symbol Min.
VCC
IO
Output current
4
-
Max.
BA08ST / SFP
Unit
Parameter
V
Input voltage
A
Output current
25
1
BA033ST / SFP
Parameter
Symbol Min.
Unit
Max.
Parameter
VCC
4.3
25
V
Input voltage
IO
-
1
A
Output current
Output current
BA05ST / SFP
Parameter
Max.
Unit
VCC
9
25
V
IO
-
1
A
Max.
Unit
BA09ST / SFP
Input voltage
Input voltage
Symbol Min.
Symbol Min.
VCC
10
25
V
IO
-
1
A
BA10ST
Symbol Min.
VCC
Output current
IO
Max.
Unit
6
25
V
Input voltage
-
1
A
Output current
Parameter
BA06SFP
Symbol Min.
Max.
Unit
VCC
11
25
V
IO
-
1
A
Max.
Unit
BA12ST
Parameter
Symbol Min.
Input voltage
Max.
Unit
Parameter
VCC
7
25
V
Input voltage
IO
-
1
A
Output current
Output current
Symbol Min.
VCC
13
25
V
IO
-
1
A
BA07ST / SFP
Parameter
Symbol Min.
Input voltage
Max.
Unit
VCC
8
25
V
IO
-
1
A
Output current
!Electrical characteristics
BA00AST / ASFP (unless otherwise noted, Ta=25°C, Vcc=10V, Io=500mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Reference voltage
Vref
1.200
1.225
1.250
V
Power save current
Ist
-
0
10
µA
Output voltage
VO
-
5.0
-
V
Conditions
Measurement
circuit
Fig.1
OFF mode
Fig.4
Fig.1
Input stability
Reg.I
-
20
100
mV
VCC=6→25V
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO =5mA→1A
Fig.1
TCVO
-
±0.01
-
% / ˚C
Vd
-
0.3
0.5
V
Load regulation
Temperature coefficient of output voltage
Minimum I/O voltage differential
Fig.1
IO =5mA, Tj=0~125˚C
Fig.1
VCC=0.95VO
Fig.3
Bias current
Ib
-
2.5
5.0
mA
IO=0mA
Fig.4
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Fig.5
IOS
-
0.4
-
A
VCC=25V
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Output short-circuit current
Input high level current
3/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
BA033ST / SFP (unless otherwise noted, Ta=25°C, Vcc=8 V, Io=500 mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.4
Power save current
IST
-
0
10
µA
Output voltage
VO1
3.13
3.3
3.47
V
Input stability
Reg.I
-
20
100
mV
VCC=4=.3→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO =5mA→1A
Fig.1
TCVO
-
±0.02
-
% / ˚C
IO =5mA, Tj=0~125˚C
Fig.1
Minimum I/O voltage differential
Vd
-
0.3
0.5
V
Bias current
Ib
-
2.5
5.0
mA
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Output short-circuit current
IOS
-
0.4
-
A
VCC=25V
Fig.5
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Load regulation
Temperature coefficient of output voltage
Input high level current
OFF mode
Fig.1
VCC=0.95VO
Fig.3
IO=0mA
Fig.4
BA05ST / SFP (unless otherwise noted, Ta=25°C, Vcc=10 V, Io=500 mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Power save current
IST
-
0
10
µA
Output voltage
VO1
4.75
5.0
5.25
V
Input stability
Reg.I
-
20
100
mV
VCC=6→2=5V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO=5mA→1A
Fig.1
TCVO
-
±0.02
-
% / ˚C
IO=5mA, Tj=0~125˚C
Fig.1
Minimum I/O voltage differential
Vd
-
0.3
0.5
V
VCC=4.75V
Fig.3
Bias current
Ib
-
2.5
5.0
mA
IO=0mA
Fig.4
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Output short-circuit current
IOS
-
0.4
-
A
VCC=25V
Fig.5
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Load regulation
Temperature coefficient of output voltage
Input high level current
OFF mode
Fig.4
Fig.1
BA06SFP ( unless otherwise noted, Ta=25°C, Vcc=11 V, Io=500 mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.4
Power save current
IST
-
0
10
µA
Output voltage
VO1
5.7
6.0
6.3
V
Input stability
Reg.I
-
20
100
mV
VCC=7→25V
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO=5mA→1A
Fig.1
TCVO
-
±0.02
-
% / ˚C
Vd
-
0.3
0.5
V
Load regulation
Temperature coefficient of output voltage
Minimum I/O voltage differential
OFF mode
Fig.1
Fig.1
IO=5mA, Tj=0~125˚C
Fig.1
VCC=5.7V
Fig.3
Fig.4
Bias current
Ib
-
2.5
5.0
mA
IO=0mA
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Output short-circuit current
IOS
-
0.4
-
A
VCC=25V
Fig.5
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Input high level current
4/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
BA07ST / SFP (unless otherwise noted, Ta=25°C, Vcc=12 V, Io=500 mA) (under development)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.4
Power save current
IST
-
0
10
µA
Output voltage
VO1
6.65
7.0
7.35
V
Input stability
Reg.I
-
20
100
mV
VCC=8→25V
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO=5mA→1A
Fig.1
TCVO
-
±0.02
-
% / ˚C
Vd
-
0.3
0.5
V
Load regulation
Temperature coefficient of output voltage
Minimum I/O voltage differential
OFF mode
Fig.1
Fig.1
IO=5mA, Tj=0~125˚C
Fig.1
VCC=6.65V
Fig.3
Fig.4
Bias current
Ib
-
2.5
5.0
mA
IO=0mA
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Output short-circuit current
IOS
-
0.4
-
A
VCC=25V
Fig.5
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Input high level current
BA08ST / SFP (unless otherwise noted, Ta=25°C, Vcc=13 V, Io=500 mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.4
Power save current
IST
-
0
10
µA
Output voltage
VO1
7.6
8.0
8.4
V
Input stability
Reg.I
-
20
100
mV
VCC9→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO=5mA→1A
Fig.1
TCVO
-
±0.02
-
% / ˚C
IO=5mA, Tj=0~125˚C
Fig.1
Minimum I/O voltage differential
Vd
-
0.3
0.5
V
VCC=0.95VO
Fig.3
Bias current
Ib
-
2.5
5.0
mA
IO=0mA
Fig.4
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Load regulation
Temperature coefficient of output voltage
Output short-circuit current
OFF mode
Fig.1
IOS
-
0.4
-
A
VCC=25V
Fig.5
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Input high level current
BA09ST / SFP (unless otherwise noted, Ta=25°C, Vcc=14 V, Io=500 mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.4
Power save current
IST
-
0
10
µA
Output voltage
VO1
8.55
9.0
9.45
V
Input stability
Reg.I
-
20
100
mV
VCC=10→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO=5mA→1A
Fig.1
TCVO
-
±0.02
-
% / ˚C
IO=5mA, Tj=0~125˚C
Fig.1
Minimum I/O voltage differential
Vd
-
0.3
0.5
V
VCC=0.95VO
Fig.3
Bias current
Ib
-
2.5
5.0
mA
IO=0mA
Fig.4
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Output short-circuit current
IOS
-
0.4
-
A
VCC=25V
Fig.5
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Load regulation
Temperature coefficient of output voltage
Input high level current
OFF mode
Fig.1
5/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
BA10ST (unless otherwise noted, Ta=25°C, Vcc=15 V, Io=500 mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.4
Power save current
IST
-
0
10
µA
Output voltage
VO1
9.5
10
10.5
V
Input stability
Reg.I
-
20
100
mV
VCC=11→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO=5mA→1A
Fig.1
TCVO
-
±0.02
-
% / ˚C
IO=5mA, Tj=0~125˚C
Fig.1
Minimum I/O voltage differential
Vd
-
0.3
0.5
V
VCC=0.95VO
Fig.3
Bias current
Ib
-
2.5
5.0
mA
IO=0mA
Fig.4
Peak output current
IO
1.0
1.5
-
A
Tj=25˚C
Fig.1
Load regulation
Temperature coefficient of output voltage
Output short-circuit current
OFF mode
Fig.1
IOS
-
0.4
-
A
VCC=25V
Fig.5
ON mode voltage
Vth1
2.0
-
-
V
Output Active mode, IO=0mA
Fig.6
OFF mode voltage
Vth2
-
-
0.8
V
Output OFF mode, IO=0mA
Fig.6
IIN
100
200
300
µA
CTL=5V, IO=0mA
Fig.6
Input high level current
BA12ST (unless otherwise noted, Ta=25°C, Vcc=17 V, Io=500 mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.4
Power save current
IST
-
0
10
µA
Output voltage
VO1
11.4
12
12.6
V
Input stability
Reg.I
-
20
100
mV
VCC=13→25V
Ripple rejection ratio
R.R.
45
55
-
dB
eIN=1Vrms, f=120Hz, IO=100mA
Fig.2
Reg.L
-
50
150
mV
IO=5mA→1A
Fig.1
IO=5mA, Tj=0~125˚C
Fig.1
Load regulation
Temperature coefficient of output voltage
TCVO
-
±0.02
-
% / ˚C
Minimum I/O voltage differential
Vd
-
0.3
0.5
V
Bias current
Ib
-
2.5
5.0
Peak output current
IO
1.0
1.5
Output short-circuit current
IOS
-
0.4
ON mode voltage
Vth1
2.0
-
-
OFF mode voltage
Vth2
-
-
0.8
IIN
100
200
300
µA
Input high level current
OFF mode
Fig.1
Fig.1
VCC=0.95VO
Fig.3
mA
IO=0mA
Fig.4
-
A
Tj=25˚C
Fig.1
-
A
VCC=25V
Fig.5
V
Output Active mode, IO=0mA
Fig.6
V
Output OFF mode, IO=0mA
Fig.6
CTL=5V, IO=0mA
Fig.6
6/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
!Measurement circuits
( The C pin only exists on the BA00AST / ASFP, for the BA00AST / ASFP, place a 6.8kΩ resistor between the OUT and
C pins, and a 2.2kΩ resisitor between the C and pins.)
V
eIN
10Ω5W
OUT
VCC
0.33µF
VCC
CTL
V
0.33µF
VCC
CTL
eIN=1Vrms
f=120Hz
5V
Fig.1 Measurement circuit for output voltage, input
stability, load regulation, and temperature
coefficient of output voltage
OUT
VCC=0.95VO
CTL
GND
IO=100mA
5V
( ee )
IN
OUT
Fig.2 Measurement circuit for ripple rejection ratio
0.33µF
VCC
eOUT
V
GND *C
Ripple rejection ratio R.R. = 20 log
V
0.33µF
22µF
+
100µF
IO
GND *C
OUT
VCC
22µF
+
VCC
CTL
22µF
+
OUT
VCC
GND
22µF +
*C
IO=500mA
*C
A
5V
Fig.3 Measurement circuit for minimum I/O
voltage differential
0.33µF
OUT
VCC
VCC
CTL
GND
*C
Fig.4 Measurement circuit for bias current,
power save current measurement circuit
0.33µF
22µF
+
IOS
OUT
+
VCC
A
CTL
GND *C
22µF
V
A
5V
Fig.5 Measurement circuit for output
short-circuit current
VCC
Fig.6
Measurement circuit for ON/OFF mode voltage,
input high level current
7/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
!Operation notes
(1) Operating power supply voltage
When operating within the normal voltage range and within the ambient operating temperature range, most circuit
functions are guaranteed. The rated values cannot be guaranteed for the electrical characteristics, but there are no
sudden changes of the characteristics within these ranges.
(2) Power dissipation
Heat attenuation characteristics are noted on a separate page and can be used as a guide in judging power dissipation.
If these ICs are used in such a way that the allowable power dissipation level is exceeded, an increase in the chip
temperature could cause a reduction in the current capability or could otherwise adversely affect the performance of the
IC. Make sure a sufficient margin is allowed so that the allowable power dissipation value is not exceeded.
(3) Output oscillation prevention and bypass capacitor
Be sure to connect a capacitor between the output pin and GND to prevent oscillation. Since fluctuations in the valve of
the capacitor due to temperature changes may cause oscillations, a tantalum electrolytic capacitor with a small internal
series resistance (ESR) is recommended.
A 22µF capacitor is recommended; however, be aware that if an extremely large capacitance is used (1000µF or greater),
then oscillations may occur at low frequencies. Therefore, be sure to perform the appropriate verifications before selecting
the capacitor.
Also, we recommend connecting a 0.33µF bypass capacitor as close as possible between the input pin and GND.
(4) Current overload protection circuit
A current overload protection circuit is built into the outputs, to prevent IC destruction if the load is shorted.
This protection circuit limits the current in the shape of a fall back characteristics. It is designed with a high margin, so that
even if a large current suddenly flows through the large capacitor in the IC, the current is restricted and latching is
prevented.
However, these protection circuits are only good for pre-venting damage from sudden accidents. The design should take
this into consideration, so that the protection circuit is not made to operate continuously (for instance, clamping at an
output of 1VF or greater; below 1VF, the short mode circuit operates). Note that the capacitor has negative temperature
characteristics, and the design should take this into consideration.
(5) Thermal overload circuit
A built-in thermal overload circuit prevents damage from overheating. When the thermal circuit is activated, the various
outputs are in the OFF state. When the temperature drops back to a constant level, the circuit is restored.
(6) Internal circuits could be damaged if there are modes in which the electric potential of the application’s input (VCC) and
GND are the opposite of the electric potential of the various outputs. Use of a diode or other such bypass path is
recommended.
(7) Although the manufacture of this product includes rigorous quality assurance procedures, the product may be
damaged if absolute maximum ratings for voltage or operating temperature are exceeded. If damage has occurred,
special modes (such as short circuit mode or open circuit mode) cannot be specified. If it is possible that such special
modes may be needed, please consider using a fuse or some other mechanical safety measure.
(8) When used within a strong magnetic field, be aware that there is a slight possibility of malfunction.
8/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
(9) When the connected load which contains a big inductance component in an output terminal is connected and the
occurrence of a reverse electromotive force can be considered at the time of and power-output OFF at the time of starting,
I ask the insertion of protection diode of you.
(Example) Output
pin
(10) Although it is sure that the example of an application circuit should be recommended, in a usage, I fully ask the
validation of a property of you.
In addition, when you alter the circuit constant with outside and you become a usage, please see and decide sufficient
margin in consideration of the dispersion in an external component and IC of our company etc. not only including the static
characteristic but including a transient characteristic.
This IC is monolithic IC and has P+ isolation and P substrate for an isolation between each element.
A P-N junction is formed by these P layers and N layers of each element, and various kinds of parasitic elements are
formed. For example, when the resistor and the transistor are connected with the pin like the example of a simple
architecture,
•At a resistor, it is at the time of GND > (PIN A), at a transistor (NPN), it is at the time of GND > (PIN B),
A P-N junction operates as parasitism diode.
•At a transistor (NPN), it is at the time of GND > (PIN B),
The NPN transistor of a parasitic element operates by N layers of other elements which approach with the
above-mentioned parasitism diode.
A parasitic element is inevitably made according to a potential relation on the architecture of IC.
When a parasitic element operates, the interference of a circuit operation is caused and the cause of a malfunction, as a
result a destructive is obtained.
Therefore, please be fully careful of impressing a voltage lower than GND(P substrate) to an input/output terminal etc. not
to carry out usage with which a parasitic element operates.
9/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
Transistor (NPN)
Resistor
B
(Pin B)
(Pin A)
C
E
GND
N
P
+
P
P
P substrate
+
P
N
N
N
N
P
+
+
P
N
N
P substrate
Parasitic elements
Parasitic elements
GND
GND
(Pin B)
(Pin A)
C
B
Parasitic elements
E
GND
Other approaching
elements
GND
Parasitic elements
The example of a simple architecture of bipolar IC
!Electrical characteristic curves
POWER DISSIPATION : Pd(W)
20
(1)10.0
15
(2)11.0
10
(3)6.5
5
10
7.5
5
2.5
25
VCC=10V IOUT=0
BA05ST
5
4
3
2
1
(2)1.0
(4)2.0
0
(1) Infinite heat sink is used θj-c=12.5 (ºC/W)
(2) IC simple substance θj-a=125.0 (ºC/W)
OUTPUT VOLTAGE : VOUT (V)
(1) Infinite heat sink
2
(2) Alumina PCB, 100×100×2 mm
2
(3) Alumina PCB, 50×50×2 mm
(4) IC alone
(1)22.0
POWER DISSIPATION : Pd (W)
6
12.5
25
50
75
100
125
150
AMBIENT TEMPERATURE : Ta(˚C)
Fig. 7 Thermal derating curves
(TO220FP-5)
0
25
50
75
100
125
AMBIENT TEMPERATURE : Ta (ºC)
Fig.8 Thermal derating curves
(TO252-5)
150
0
25
50
75
100
125
150
175
200
JUNCTION TEMPERATURE : Tj (˚C)
Fig.9 Thermal cutoff circuit
characteristics
10/11
BAΟΟST / BAΟΟSFP series
Regulator ICs
6
Vcc=10V
BA05ST
BA05ST
OUTPUT VOLTAGE : VOUT (V)
OUTPUT VOLTAGE : VOUT (V)
10
8
6
4
2
0
0
1.0
2.0
5
4
3
2
1
0
0
10
OUTPUT CURRENT : IOUT (A)
20
30
40
50
INPUT VOLTAGE : VCC (V)
Fig.10 Current limit characteristics
Fig.11 Over voltage protection
characteristics
4.5 +0.3
−0.1
10.0 +0.3
−0.1
7.0
+0.3
−0.1
2.8 +0.2
−0.1
φ3.2±0.1
6.5±0.2
2.3±0.2
0.5±0.1
5.1 +0.2
−0.1
0.85±0.2
13.5Min.
9.5±0.5
0.5
4
5
1.27 0.5±0.1
1.5
2
0.8
1
1.2
2.5
7.0±0.2
5.5±0.2
3
8.0±0.2
12.0±0.2
17.0 +0.4
−0.2
1.8±0.2
!External Dimensions (Units: mm)
1.0±0.2
0.8
1 2 3 4 5
0.5+0.1
1pin : CTL
2pin : VCC
3pin : GND
4pin : OUT
5pin : N.C.
1.778
TO220FP-5
2.85
TO252-5
11/11