BAOOT / BAOOFP series Regulator ICs Low saturation voltage type 3-pin regulator BAOOT / BAOOFP series The BAΟΟT and BAΟΟFP series are fixed positive output low drop-out type, 3-pin voltage regulators with positive output. These regulators are used to provide a stabilized output voltage from a fluctuating DC input voltage. There are 10 fixed output voltages, as follows:3V, 3.3V, 5V, 6V*, 7V, 8V, 9V, 10V, 12V and 15V. The maximum current capacity is 1A for each of the above voltages. (Items marked with an asterisk are under development.) !Application Constant voltage power supply !Features 1) Built-in overvoltage protection circuit, overcurrent protection circuit and thermal shutdown circuit. 2) TO220FP and TO252-3 packages are available to cover a wide range of applications. 3) Compatible with the BA178ΟΟ series. 4) Richly diverse lineup. 5) Low minimum I / O voltage differential. !Product codes Output voltage (V) Product No. Output voltage (V) Product No. 3.0 BA03T / FP 8.0 BA08T / FP 3.3 BA033T / FP 9.0 BA09T / FP 5.0 BA05T / FP 10.0 BA10T / FP 12.0 BA12T / FP 15.0 BA15T / FP ∗ 6.0 BA06T / FP 7.0 BA07T / FP ∗ ∗ : Under development. !Block diagram VCC 1 REFERENCE VOLTAGE − + OUT 3 + GND 2 BAOOT / BAOOFP series Regulator ICs !Absolute maximum ratings (Ta=25°C) Parameter Symbol Limits VCC 35 Power supply voltage Power dissipation TO220FP Pd TO252 - 3 Unit V 2000 ∗1 1000 ∗2 mW Operating temperature Topr -40~+85 °C Storage temperature Tstg -55~+150 °C Vsurge Peak applied voltage 50 ∗3 V ∗1 Reduced by 16mW for each increase in Ta of 1°C over 25°C ∗2 Reduced by 8mW for each increase in Ta of 1°C over 25°C ∗3 Voltage application time : 200 msec. or less !Recommended operating conditions BA08T / FP BA03T / FP Parameter Symbol Min. Typ. Max. Unit Parameter Symbol Min. Typ. Max. Unit Input voltage VIN 4 - 25 V Input voltage VIN 9 - 25 V Output current Io - - 1 A Output current Io - - 1 A BA033T / FP Parameter BA09T / FP Typ. Max. Unit Typ. Max. Unit Input voltage Symbol Min. VIN 4.3 - 25 V Input voltage VIN 10 - 25 V Output current Io - - 1 A Output current Io - - 1 A Typ. Max. Unit BA05T / FP Parameter Parameter Symbol Min. BA10T / FP Symbol Min. Typ. Max. Unit Parameter Symbol Min. Input voltage VIN 6 - 25 V Input voltage VIN 11 - 25 V Output current Io - - 1 A Output current Io - - 1 A BA06T / FP (under development) Parameter Symbol Min. BA12T / FP Typ. Max. Unit Typ. Max. Unit Input voltage VIN 7 - 25 V Input voltage VIN 13 - 25 V Output current Io - - 1 A Output current Io - - 1 A Typ. Max. Unit BA07T / FP Parameter Parameter Symbol Min. BA15T / FP Symbol Min. Typ. Max. Unit Parameter Symbol Min. Input voltage VIN 8 - 25 V Input voltage VIN 16 - 25 V Output current Io - - 1 A Output current Io - - 1 A BAOOT / BAOOFP series Regulator ICs !Electrical characteristics BA03T / FP (unless otherwise noted, Ta=25°C, VCC=8V, IO=500mA) VO1 2.85 3.0 3.15 V − Measurement circuit Fig.1 Input stability Reg.I - 20 100 mV VIN = 4→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 Load regulation Reg.L - 50 150 mV Io = 5mA→1A Fig.1 Temperature coefficient of output voltage Tcvo - ±0.02 - Dropout voltage Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 Parameter Output voltage Symbol Min. Typ. Max. Unit Conditions % / °C Io = 5mA, Tj = 0~125°C Vcc = 0.95VO Fig.1 Fig.3 BA033T / FP (unless otherwise noted, Ta=25°C, VCC=8V, IO=500mA) Parameter Symbol Min. Typ. Max. Unit Conditions − Measurement circuit Fig.1 VO1 3.13 3.3 3.47 V Input stability Reg.I - 20 100 mV VIN = 4.3→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 Load regulation Reg.L - 50 150 mV Io = 5mA→1A Fig.1 Temperature coefficient of output voltage Tcvo - ±0.02 - Dropout voltage Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 Output voltage % / °C Io = 5mA, Tj = 0~125°C Vcc = 0.95VO Fig.1 Fig.3 BA05T / FP (unless otherwise noted, Ta=25°C, VCC=10V, IO=500mA) Parameter Symbol Min. Typ. Max. Unit Conditions − Measurement circuit Fig.1 VO1 4.75 5.0 5.25 V Input stability Reg.I - 20 100 mV VIN = 6→25V Ripple rejection ratio R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 Load regulation Reg.L - 50 150 mV Io = 5mA→1A Fig.1 Temperature coefficient of output voltage Tcvo - ±0.02 - Dropout voltage Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 Output voltage Fig.1 % / °C Io = 5mA, Tj = 0~125°C Vcc = 4.75V Fig.1 Fig.3 BA06T / FP (unless otherwise noted, Ta=25°C, VCC =11V, IO= 500mA) (under development) VO1 5.7 6.0 6.3 V − Measurement circuit Fig.1 Input stability Reg.I - 20 100 mV VIN = 7→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 mV Io = 5mA→1A Fig.1 % / °C Io = 5mA, Tj = 0125°C Fig.1 Parameter Output voltage Symbol Min. Typ. Max. Unit Conditions Load regulation Reg.L - 50 150 Temperature coefficient of output voltage Tcvo - ±0.02 - Dropout voltage Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 Vcc = 0.95V Fig.3 BAOOT / BAOOFP series Regulator ICs BA07T / FP (unless otherwise noted, Ta=25°C, VCC=12V, IO=500mA) VO1 6.65 7.0 7.35 V − Measurement circuit Fig.1 Input stability Reg.I - 20 100 mV VIN = 8→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 Load regulation Reg.L - 50 150 mV Io = 5mA→1A Fig.1 Temperature coefficient of output voltage Tcvo - ±0.02 - Dropout voltage Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 Parameter Output voltage Symbol Min. Typ. Max. Unit Conditions % / °C Io = 5mA, Tj = 0~125°C Vcc = 0.95VO Fig.1 Fig.3 BA08T / FP (unless otherwise noted, Ta=25°C, VCC=13V, IO=500mA) Parameter Output voltage Input stability Ripple rejection ratio Symbol Min. Typ. Max. Unit Conditions − Measurement Circuit Fig.1 VO1 7.6 8.0 8.4 V Reg.I - 20 100 mV VIN = 9→25V Fig.1 R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 Load regulation Reg.L - 50 150 mV Io = 5mA→1A Fig.1 Temperature coefficient of output voltage Tcvo - ±0.02 - Vd - 0.3 0.5 V Dropout voltage Bias current % / °C Io = 5mA, Tj = 0~125°C Vcc = 0.95VO Fig.1 Fig.3 Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 BA09T / FP (unless otherwise noted, Ta=25°C, VCC=14V, IO=500mA) (under development) VO1 8.45 9.0 9.45 V − Measurement circuit Fig.1 Input stability Reg.I - 20 100 mV VIN = 10→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 Load regulation Reg.L - 50 150 mV Io = 5mA→1A Fig.1 Temperature coefficient of output voltage Tcvo - ±0.02 - Vd - 0.3 0.5 V Parameter Output voltage Dropout voltage Bias current Symbol Min. Typ. Max. Unit Conditions % / °C Io = 5mA, Tj = 0~125°C Vcc = 0.95VO Fig.1 Fig.3 Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 BA10T / FP (unless otherwise noted, Ta=25°C, VCC=15V, IO=500mA) Parameter Output voltage Input stability Ripple rejection ratio Symbol Min. Typ. Max. Unit VO1 9.5 10 10.5 V Reg.I - 20 100 mV Conditions − Measurement circuit Fig.1 VIN = 11→25V Fig.1 Fig.2 R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Load regulation Reg.L - 50 150 mV Io = 5mA→1A Temperature coefficient of output voltage Tcvo - ±0.02 - Dropout voltage Vd - 0.3 0.5 V Bias current Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 % / °C Io = 5mA, Tj = 0~125°C Vcc = 0.95VO Fig.1 Fig.1 Fig.3 BAOOT / BAOOFP series Regulator ICs BA12T / FP (unless otherwise noted, Ta=25°C, VCC=17V, IO=500mA) Parameter Output voltage Input stability Ripple rejection ratio Symbol Min. Typ. Max. Unit Conditions − Measurement circuit Fig.1 VO1 11.4 12 12.6 V Reg.I - 20 100 mV VIN = 13→25V Fig.1 R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 Load regulation Reg.L - 50 150 mV Io = 5mA→1A Fig.1 Temperature coefficient of output voltage Tcvo - ±0.02 - Vd - 0.3 0.5 V Dropout voltage % / °C Io = 5mA, Tj = 0~125°C Vcc = 0.95VO Fig.1 Fig.3 Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 25V Fig.5 Bias current BA15T / FP (unless otherwise noted, Ta=25°C, VCC=20V, IO=500mA) VO1 14.25 15 15.75 V − Measurement circuit Fig.1 Input stability Reg.I - 20 100 mV VIN = 6→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN = 1Vrms, f = 120Hz, Io = 100mA Fig.2 mV Io = 5mA→1A Parameter Output voltage Symbol Min. Typ. Max. Unit Conditions Load regulation Reg.L - 90 200 Temperature coefficient of output voltage Tcvo - ±0.02 - Dropout voltage Vd - 0.3 0.5 V Vcc = 0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA Io = 0mA Fig.4 Peak output current IO-P 1.0 1.5 - A Tj = 25°C Fig.1 Output short-circuit current Ios - 0.4 - A Vcc = 30V Fig.5 % / °C Io = 5mA, Tj = 0~125°C Fig.1 Fig.1 BAOOT / BAOOFP series Regulator ICs !Measurement circuits V ein 10Ω5W OUT VCC 0.33µF VCC OUT VCC 22µF 100µF V IO GND VCC 22µF 0.33µF eOUT V GND eIN = 1Vrms f = 120Hz IN Ripple rejection ratio R.R. = 20 log ( eeOUT ) Fig. 2 Measurement circuit for ripple rejection ratio Fig. 1 Measurement circuit for output voltage, input stability, load regulation, temperature coefficient of output voltage V 0.33µF VCC OUT VCC 0.33µF IO = 500mA GND Fig. 3 Measurement circuit for minimum I/O voltage differential VCC 22µF GND 22µF VCC = 0.95VO 0.33µF OUT VCC OUT VCC 22µF GND IOS Fig. 5 Measurement circuit for output short-circuit current A A Fig. 4 Measurement circuit for bias current IO = 100mA BAOOT / BAOOFP series Regulator ICs !Operation notes (1) Operating power supply voltage When operating within the normal voltage range and within the ambient operating temperature range, most circuit functions are guaranteed. The rated values cannot be guaranteed for the electrical characteristics, but there are no sudden changes of the characteristics within these ranges. (2) Power dissipation Heat attenuation characteristics are noted on a separate page and can be used as a guide in judging power dissipation. If these ICs are used in such a way that the allowable power dissipation level is exceeded, an increase in the chip temperature could cause a reduction in the current capability or could otherwise adversely affect the performance of the IC. Make sure a sufficient margin is allowed so that the allowable power dissipation value is not exceeded. (3) Output oscillation prevention and bypass capacitor Be sure to connect a capacitor between the output pin and GND to prevent oscillation. Since fluctuations in the valve of the capacitor due to temperature changes may cause oscillations, a tantalum electrolytic capacitor with a small internal series resistance (ESR) is recommended. A 22µF capacitor is recommended; however, be aware that if an extremely large capacitance is used (1000µ F or greater), then oscillations may occur at low frequencies. Therefore, be sure to perform the appropriate verifications before selecting the capacitor. Also, we recommend connecting a 0.33µF bypass capacitor as close as possible between the input pin and GND. (4) Overcurrent protection circuit An overcurrent protection circuit is built into the outputs, to prevent destruction of the IC in the even the load is shorted. This protection circuit limits the current in the shape of a ’7’. This circuit is designed with a high margin, so that that current is restricted and latching is prevented, even if a high-capacitance capacitator causes a large amount of current to temporary flow through the IC. However, these protection circuits are only good for pre-venting damage from sudden accidents and should not be used for continuous protection (for instance, clamping at an output of 1VF or greater; below 1VF , the short mode circuit operates). Note that the capacitor has negative temperature characteristics, and the design should take this into consideration. (5) Thermal overload circuit A built-in thermal overload circuit prevents damage from overheating. When the thermal circuit is activated, the outputs are turned OFF. When the temperature drops back to a constant level, the circuit is restored. (6) Internal circuits could be damaged if there are modes in which the electric potential of the application’s input (VCC ) and GND are the opposite of the electric potential normally used by each of the outputs. Use of a diode or other such bypass path is recommended. (7) Although the manufacture of this product includes rigorous quality assurance procedures, the product may be damaged if absolute maximum ratings for voltage or operating temperature are exceeded. If damage has occurred, special modes (such as short circuit mode or open circuit mode) cannot be specified. If it is possible that such special modes may be needed, please consider using a fuse or some other mechanical safety mea-sure. (8) When used within a strong magnetic field, be aware that the possibility of malfunction exists. BAOOT / BAOOFP series Regulator ICs !Electrical characteristic curves 15 (2) 11.0 10 (3) 6.5 5 (1) 10.0 10 7.5 5 2.5 (4) 2.0 0 5 4 3 2 1 (2) 1.0 25 50 75 100 125 0 0 150 25 10 75 100 125 0 25 150 50 75 100 125 150 Fig. 7 Ta - power dissipation characteristics (TO 252-3) Fig. 8 Thermal cutoff circuit characteristics 6 VCC = 10V BA05T BA05T 5 OUTPUT VOLTAGE : VOUT (V) 8 6 4 2 0 0 1.0 4 3 2 1 0 0 2.0 10 20 30 40 50 OUTPUT CURRENT : IOUT (A) INPUT VOLTAGE : VCC (V) Fig. 9 Current limit characteristics Fig. 10 Over voltage protection characteristics !External dimensions (Units : mm) BA T series 4.5 φ3.1±0.1 +0.3 −0.1 2.8 +0.2 −0.1 6.5±0.2 0.2 5.0 + −0.1 (2) 2.3±0.2 0.5±0.1 1.5 2.5 0.8 9.5±0.5 +0.3 −0.1 +0.3 −0.1 7.0±0.3 7.0 5.0±0.2 8.0±0.2 +0.4 −0.2 17.0 13.5Min. 12.0±0.2 1.8±0.2 10.0 FP series 5.5±0.2 BA 1.3 0.65 2.3±0.2 0.8 2.54±0.5 2.54±0.5 (1) 0.55 (1) (2) (3) TO220FP +0.1 −0.05 175 JUNCTION TEMPERATURE : Tj (°C) (Note) When Al thermal plate is used: Tightening torque: 6 (kg-cm) Apply silicon grease Fig.6 Ta - power dissipation characteristics (TO220FP) 50 AMBIENT TEMPERATURE : Ta ( °C ) AMBIENT TEMPERATURE : Ta (°C) OUTPUT VOLTAGE : VOUT (V) VCC = 10V IOUT = 0 BA05T (1) Infinite heat sink θ j-c=12.5 (°C/W) (2) IC alone θ j-c=125.0 (°C/W) OUTPUT VOLTAGE : VOUT (V) 20 POWER DISSIPATION : Pd (W) (1) Infinite heat sink, θ j-c = 5.7 (°C/W) (2) 100 × 100 × 2 (mm3), with Al heat sink (3) 50 × 50 × 2 (mm3), with Al heat sink (4) No heat sink θ j-a = 62.5 (°C/W) (1) 22.0 POWER DISSIPATION : Pd (W) 6 12.5 25 0.65 2.3±0.2 0.5±0.1 (3) 2.6±0.5 (1) VCC (2) GND (3) OUT (1) VCC (2) GND (3) OUT TO252-3 200