APL5610/A/B/C

APL5610/A/B/C
Low Dropout Linear Regulator Controller
Features
General Description
•
Wide Supply Voltage Range from 4.5 to 13.5V
•
High Output Accuracy Over Operating Temperature
The APL5610 serise is a low dropout linear regulator
controller.
The APL5610 serise could drive an external N-Channel
MOSFET and provides an adjustable output by using an
and Loading Ranges
•
Fast Transient Response
•
Power-On-Reset Monitoring on VCC
•
Internal Soft-Start Function
•
Low Shutdown Current: < 5µA
•
Enable Control Function
•
Under-Voltage Protection
•
Power-OK Output with a Delay Time
•
Four Versions of IC Available:
external resistive divider.
The APL5610 serise integrates various functions. For
example, a Power-On-Reset (POR) circuit monitors VCC
supply voltage to prevent wrong operations; the function
of Under-Voltage Protection (UVP) protects the device from
short circuit condition. A POK indicates that the output
status with time delay which is set internally. It can control other converter for power sequence. Moreover, the
APL5610 serise can be enabled by other power system;
namely, holding the EN above 1.6V enables output and
- APL5610: VREF =0.8V, UVP Activated after VOUTis
Ready
- APL5610A: VREF =0.8V, UVP Activated after VCCis
pulling the EN under 0.4 disables output.
The APL5610 serise is available in a SOT-23-6 package.
Supplied
- APL5610B: VREF =0.5V, UVP Activated after VOUTis
Simplified Application Circuit
Ready
- APL5610C: VREF =0.5V, UVP Activated after VCCis
Supplied
•
SOT-23-6 Package
•
Lead Free and Green Devices Available
VCC
VIN
ON
EN
(RoHS Compliant)
OFF
Applications
POK
EN
VCC
DRV
APL5610
APL5610A
APL5610B
APL5610C
VOUT
FB
POK
GND
•
Note Book PC Applications
•
Motherboard Applications
-
Pin Configuration
APL5610/A/B/C
EN 1
GND 2
FB 3
6 VCC
5 DRV
4 POK
SOT-23-6
(Top View)
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
1
www.anpec.com.tw
APL5610/A/B/C
Ordering and Marking Information
APL5610
APL5610A
APL5610B
APL5610C
Package Code
C : SOT-23-6
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
Assembly Material
Handling Code
Temperature Range
Package Code
APL5610 C:
L10X
X - Date Code
APL5610A C:
LA0X
X - Date Code
APL5610B C:
LB0X
X - Date Code
APL5610C C:
LC0X
X - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Absolute Maximum Ratings (Note 1 )
Symbol
VCC
Parameter
Rating
Unit
VCC Input Voltage (VCC to GND)
-0.3 to 15
V
EN, POK, to GND Voltage
-0.3 to 7
V
VFB
FB to GND Voltage
-0.3 to 7
V
VDRV
DRV to GND Voltage
TJ
TSTG
TSDR
-0.3 to VCC+0.3
Maximum Junction Temperature
Storage Temperature
Maximum Lead Soldering Temperature, 10 Seconds
V
150
o
-65 to 150
o
260
o
C
C
C
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability
Thermal Characteristic
Symbol
θJA
Parameter
Junction-to-Ambient Resistance in Free Air
Typical Value
(Note 2)
SOT-23-6
Unit
o
250
C/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
2
www.anpec.com.tw
APL5610/A/B/C
Recommended Operating Conditions (Note 3)
Symbol
Parameter
VCC
VCC Input Voltage (VCC to GND)
VEN
EN to GND Voltage
VOUT
VOUT Output Voltage
TA
Ambient Temperature
TJ
(Note4)
Range
Unit
4.5 to 13.5
V
0 to 5.5
V
0.8/0.5 ~ VIN - VDROP
Junction Temperature
V
-40 to 85
o
-40 to 125
o
C
C
Note 3: Refer to the typical application circuit.
Note 4: VDROP defined as the VIN -VOUT voltage at VOUT = 98% normal VOUT. The linear regulator must provide the output MOSFET with
sufficient Gate-to-Source voltage (VGS = VCC - VOUT) to regulate the output voltage.
Electrical Characteristics
Unless otherwise specified, these specifications apply over VCC = 5/12V, TA = -40 to 85 oC. Typical values are at TA =25oC.
Symbol
Parameter
APL5610/A/B/C
Test Conditions
Unit
Min.
Typ.
Max.
VCC = 12V
-
0.8
1.0
VCC = 5V
-
0.8
1.0
VCC = 12V, EN=GND
-
-
5
VCC = 5V, EN=GND
-
-
5
3.8
4.0
4.2
V
-
0.4
-
V
V
SUPPLY CURRENT
ICC
VCC Supply Current
ISD
VCC Shutdown Current
mA
µA
POWER-ON-RESET (POR)
VCC POR Threshold
VCC rising
VCC POR Hysteresis
REFERENCE VOLTAGE
VREF
Reference Voltage
VCC = 12V, TA = 25 oC
Reference Voltage Accuracy
VCC = 12V, TA = 25 oC
Line Regulation
VCC = 4.5V to 13.2V
APL5610/A
APL5610B/C
FB Input Current
-
0.8
-
-
0.5
-
V
-0.5
-
0.5
%
-1.5
-
1.5
%
-100
-
100
nA
-
2
-
MHz
ERROR AMPLIFIER
Unity Gain Bandwidth
PSRR
Open Loop DC Gain
VCC =12V, No Load
60
80
-
dB
Power Supply Rejection Ratio
VCC =12V, 100Hz, No Load
50
-
-
dB
VCC =12V, IDRV (SOURCE) = 5mA, VFB = 0.6V
11.2
11.5
-
VCC =5V, IDRV (SOURCE) = 5mA, VFB = 0.6V
-
4.7
-
VCC =12V, IDRV (SINK) = 5mA, VFB = 1V
-
0.5
1
VCC =5V, IDRV (SINK) = 5mA, VFB = 1V
-
0.8
-
VCC =12V, VDRV =6V, VFB = 0.6V
-
50
-
VCC =5V, VDRV =2.5V, VFB = 0.6V
-
10
-
VCC =12V, VDRV =6V, VFB = 1V
-
40
-
VCC =5V, VDRV =2.5V, VFB = 1V
-
10
-
VDRV (high) DRV High Voltage
VDRV (low) DRV Low Voltage
IDRV (source) DRV Source Current
IDRV (sink)
VCC = 5/12V
DRV Sink Current
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
3
V
V
mA
mA
www.anpec.com.tw
APL5610/A/B/C
Electrical Characteristics (Cont.)
Unless otherwise specified, these specifications apply over VCC = 5/12V, TA = -40 to 85 oC. Typical values are at TA =25oC.
Symbol
Parameter
APL5610/A/B/C
Test Conditions
Unit
Min.
Typ.
Max.
-
0.8
-
V
EN Hysteresis
-
50
-
mV
EN Shutdown Debounce
-
2
-
µs
100
200
300
µs
68
75
82
%
-
5
-
µs
VCC =12V, VFB rising
-
90
-
%
POK Threshold Hysteresis
VCC =12V
-
15
-
%
POK Pull-Low Voltage
VCC =12V, POK sinks 4mA
-
0.2
0.4
V
POK Debounce Interval
VFB<falling POK voltage threshold
-
5
-
µs
POK Delay Time
From VFB =VTHPOK to rising edge of the VPOK
1
2
4
ms
POK Leakage Current
VPOK =5V
-
-
1.0
µA
ENABLE
VEN (TH)
EN Logic High Threshold Voltage
VEN rising
VEN falling
SOFT-START
TSS
Soft-Start Interval
UNDER-VOLTAGE PROTECTION (UVP)
VUV (TH)
Under-Voltage Threshold
VEN =5V, VFB falling
UVP Debounce Interval
POWER-OK AND DELAY
VPOK (TH) Rising POK Threshold Voltage
POWER-OK AND DELAY (CONT.)
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
4
www.anpec.com.tw
APL5610/A/B/C
Typical Operating Characteristics
Feedback Voltage vs. Junction
Temperature
Supply Current vs. Supply Voltage
0.50
0.900
0.45
Feedback Voltage (V)
Supply Current (mA)
0.875
IC Enabled
0.40
0.35
0.30
0.25
0.20
0.15
IC Disabled
0.10
0.850
0.825
0.800
0.775
0.750
0.725
0.05
0.700
-50
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
25
50
75
100
125
Junction Temperature (oC)
Supply Voltage (V)
DRV Source Current vs. DRV Voltage
DRV Sink Current vs. DRV Voltage
70
45
40
60
35
DRV Sink Current (µA)
DRV Sink Current (µA)
-25
30
25
20
15
10
VIN = 12V, VFB=1V,
TA=25oC
5
50
40
30
20
10
VIN = 12V, VFB=0.75V,
TA=25oC
0
0
0
2
4
6
8
10
0
12
DRV Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
2
4
6
8
10
12
DRV Voltage (V)
5
www.anpec.com.tw
APL5610/A/B/C
Operating Waveforms
The test condition TA= 25oC unless otherwise specified.
Turn On Response
Turn Off Response
V CC
VCC
VDRV
1
1
VDRV
V OUT
2
2
VOUT
3
3
VPOK
VPOK
4
4
VCC=5V, VIN =5V, VOUT =1.5V, CIN =33µF/
Electrolytic,COUT =1µF/Electrolytic,
CH1: VCC, 2V/Div, DC
CH2: VDRV, 2V/Div, DC
CH3: VOUT, 1V/Div, DC
CH4: VPOK, 5V/Div, DC
TIME: 2ms/Div
VCC=5V, VIN =5V, VOUT =1.5V, CIN =33µF/
Electrolytic,COUT =1µF/Electrolytic,
CH1: VCC, 2V/Div, DC
CH2: VDRV, 2V/Div, DC
CH3: VOUT, 1V/Div, DC
CH4: VPOK, 5V/Div, DC
TIME: 0.1s/Div
Load Transient Response-1
Load Transient Response-2
V OUT
VOUT
1
1
I LOA D
ILOA D
2
2
VCC=5V, VIN =5V, VOUT=1.2V,
ILOAD =0-5-0A(rising/falling edge=1A/µs ),
CIN =22µF/MLCC, C OUT =100µF/Electrolytic,
VCC=5V, VIN =5V, VOUT=1.5V,
ILOAD =0-5-0A(rising/falling edge=1A/µs ),
CIN =22µF/MLCC, C OUT =22µF/MLCC,
CH1: VOUT, 50mV/Div, AC
CH2: IOUT, 2A/Div, DC
CH1: VOUT, 50mV/Div, AC
CH2: IOUT, 2A/Div, DC
TIME:100µs/Div
TIME:20µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
6
www.anpec.com.tw
APL5610/A/B/C
Operating Waveforms (Cont.)
The test condition TA= 25oC unless otherwise specified.
Short Circuit Response
(Short-Circuit after Power-up)
Load Transient Response-3
VOUT
1
1
2
3
IOUT
IOUT
VDRV
VOUT
VPOK
2
4
VCC=5V, VIN =5V, VOUT=1.5V,
ILOAD =0-0.2-0A(rising/falling edge=1A/µs ),
CIN =22µF/MLCC, C OUT =22µF/MLCC,
VCC=5V, VIN =5V, VOUT =1.5V,
CIN =22µF/MLCC,COUT =22µF/MLCC,
CH1: IOUT, 20A/Div, DC
CH2: VDRV, 2V/Div, DC
CH3: VOUT (Short to GND after power-up),1V/Div, DC
CH4: VPOK, 5V/Div, DC
TIME: 20µs/Div
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 100mA/Div, DC
TIME:100µs/Div
Short Circuit Response
(Short-Circuit before Power-up)
(APL5610A)
VOCB
VCC
VOUT
1
2
3
IOUT
VOUT
IOUT
VPOK
4
VCC=5V, VIN =5V, VOUT =1.5V,
CIN =22µF/MLCC,COUT =22µF/MLCC,
CH1: VCC, 2V/Div, DC
CH2: IOUT, 20A/Div, DC
CH3: VOUT (Short to GND before power-up),1V/Div, DC
CH4: VPOK, 5V/Div, DC
TIME: 20µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
7
www.anpec.com.tw
APL5610/A/B/C
Pin Description
PIN
FUNCTION
NO.
NAME
1
EN
2
GND
3
FB
4
POK
5
DRV
Voltage Feedback Pin. Connecting this pin to an external resistor divider receives the feedback voltage
of the regulator.
Power-OK signal output pin. This pin is an open-drain output used to indicate the status of output
voltage by sensing FB voltage. This pin is pulled low when output voltage is not within the Power-OK
voltage window.
This pin drives the gate of an external N-channel MOSFET for linear regulator.
6
VCC
Power input pin of the device. The voltage at this pin is monitored for Power-On-Reset purpose.
Enable control pin. Pulling the EN high (VEN>1.6) enables the VOUT; forcing the EN low (VEN<0.4V)
disables the VOUT. When re-enabled, the IC undergoes a new soft-start process.
Ground pin of the circuitry. All voltage levels are measured with respect to this pin.
Block Diagram
Power-On
Reset
VCC
Internal
Regulator
Enable_EA
POR
SoftStart
DRV
VREF
0.8V
Error
Amplifier
UVP
Comparator
EN
Enable
FB
Control Logic
UV
75%VREF
0.8V
POK
Power-OK
Comparator
Enable_EA
PWOK
Delay
GND
90%VREF
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
8
www.anpec.com.tw
APL5610/A/B/C
Typical Application Circuit
VCC
CCC
5V or 12V
1µF
VIN
1.5V
ON
EN
VCC
EN
CIN
100µF
DRV
OFF
APM4354KP
APL5610
APL5610A
APL5610B
APL5610C
POK
R1
10kΩ
GND
100µF
R2
20kΩ
100kΩ
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
1.2V
COUT
FB
POK
R3
VOUT
9
www.anpec.com.tw
APL5610/A/B/C
Function Description
Power-On-Reset (POR)
Power-OK and Delay
The APL5610 series monitors the VCC pin voltage (VCC)
for power-on-reset function to prevent wrong operation.
The APL5610 series indicates the status of the output
voltage by monitoring the feedback voltage (VFB) on FB
pin. As the VFB rises and reaches the rising Power-OK
The built-in POR circuit keeps the output shutting off until
internal circuit is operating properly. Typical POR thresh-
voltage threshold (VPOKTH), an internal delay function starts
to work. At the end of the delay time, the IC turns off the
old is 4.0V with 0.4V hysteresis.
internal NMOS of the POK to indicate that the output is ok.
As the VFB falls and reaches the falling Power-OK voltage
Soft-Start
The APL5610 series provides an internal soft-start cir-
threshold, the IC turns on the NMOS of the POK (after a
debounce time of 5µs typical).
cuitry to control rise rate of the output voltage and limit the
current surge during start-up. Typical soft-start interval is
about 0.3ms.
Output Voltage Regulation
Under-Voltage Protection (UVP)
The APL5610 series is a linear regulator controller. An
external N-channel MOSFET should be connected to DRV
The APL5610 series monitors the voltage on FB. When
the voltage on FB falls below the under-voltage threshold,
as the pass element. The output voltage set by the resistor divider is determined by:
the UVP circuit shuts off the output voltage immediately
by pulling down DRV to 0V and latches APL5610 series

VOUT = 0 . 8 x  1 +


VOUT = 0 . 5 x  1 +

off, requiring either a VCC POR or EN re-enable again to
restart.
The UVP activation timing is different in these 4 variants
R1 

R 2 
for APL5610, APL5610A
R1 

R 2 
for APL5610B, APL5610C
of IC, the APL5610,APL5610A, APL5610B, APL5610C. The
Where R1 is connected from VOUT to FB and R2 is con-
APL5610 and APL5610B UVP is activated after VOUT voltage has reached 90% POK threshold while the APL5610A
nected from FB to GND.
and APL5610C UVP is activated after VCC has been applied to VCC pin. In order to avoid erroneous UVP latchoff in APL5610A and APL5610C, please make sure the
power sequence is a proper one when you use the
APL5610A and APL5610C. For the suggested power sequence of APL5610A and APL5610C, you can refer to the
Power Sequencing in Application Information.
Enable Control
The APL5610 series has a dedicated enable pin (EN). A
logic low signal applied to this pin shuts down the output.
Following a shutdown, a logic high signal re-enables the
output through initiation of a new soft-start cycle. It’s not
necessary to use an external transistor to save cost.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
10
www.anpec.com.tw
APL5610/A/B/C
Application Information
2. RDS(on) : Select the MOSFET RDS(on) to ensure that the
output voltage will never enter dropout:
Input Capacitor
The APL5610 series requires proper input capacitor of
RDS(on )(max) < (VIN(min) –VOUT(max))/ IOUT(max)
VIN (connected to the external MOSFET’s drain) to supply
surge current during stepping load transients to prevent
(Note: RDS(on)(max) must be met at all temperatures and at the minimum VGS
condition)
the input rail from dropping. Because the parasitic inductor from the voltage sources or other bulk capacitors to
3. Continuous IDS(max): Select the IDS(max) that can support
the output current:
the VIN limits the slew rate of the surge current, it is necessary to place the input capacitor near the MOSFET’s
Continuous IDS(max) > IOUT(max)
4. Package Thermal Resistance θ(JA): Select a package
of MOSFET that can dissipate the heat, θ(JA) < (TJ –TA)/PD,
drain as close as possible. If the MOSFET is located
near the bulk capacitor for upstream voltage regulator,
where TJ is the maximum allowable Junction temperature of MOSFET, TA is the ambient temperature, PD is the
this input capacitor may not be required. The Input capacitor for VIN should be larger than 1µF. Higher capaci-
maximum power dissipation on MOSFET, calculated as
below:
tance of this VIN input capacitor is needed if the stepping
load transients are large and fast.
PD =(VIN(max) –VOUT(min)) x IOUT(max)
Another input capacitor for VCC is recommended. Placing
the input capacitor of VCC as close to VCC pin as possible
Power Sequencing (Only for APL5610A and
prevents outside noise from entering APL5610’s control
circuitry. The recommended capacitance of VCC input
APL5610C)
At start-up, it is necessary to ensure that the VIN (the volt-
capacitor is 1µF.
age supplied to MOSFET drain), VCC and V EN are sequenced correctly to avoid erroneous latch-off. To avoid
Output Capacitor
UVP latch-off happened at start-up due to sequencing
issues, the key method is the VIN should be larger than
The APL5610 series needs a proper output capacitor to
maintain circuit stability and to improve transient response
over temperature and current. In order to insure the cir-
the output under-voltage threshold plus the drop through
the pass MOSFET when that output is enabled.
cuit stability, the proper output capacitor value should be
larger than 10µF. With X5R and X7R dielectrics, 22µF is
Figure 1 and 2 show the two types of power on sequence.
Figure 1 shows the VCC comes up before the VIN, and then
sufficient at all operating temperatures.
POK Pull High
the output would be enabled when the VEN is applied.
Figure 2 shows the VIN comes up before the VCC, and then
The POK is an open-drain output that needs to be pulled
high to a proper voltage (not greater than 5.5V) via a pull-
the output can either be enabled with the VCC or VEN. Recommended power on sequence is shown in Figure1 and
up resistor. The pull-up resistor can be 20kΩ~100kΩ.
2.
MOSFET Selection
VCC
APL5610 series requires an N-channel MOSFET as a
pass element. There are some parameters must be considered in selecting a MOFSET, including: Threshold Volt-
VIN
age VTH, RDS(on ), Continuous IDS current and Package Thermal Resistance. The MOSFET selection guidelines are
VEN
listed as below:
1. Threshold Voltage VTH: Select the MOSFET VTH rating to
VOUT
VUV(TH)
VEN(TH)
VEN(TH) occurs after
VUV(TH) is reached
meet the following equation:
VTH < VCC(min) –VOUT(max)
Figure 1. APL5610A/C supply comes up before MOSFET
drain supply
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
11
www.anpec.com.tw
APL5610/A/B/C
Application Information (Cont.)
5. Large current paths, the bold lines in figure 3, must
Power Sequencing (Only for APL5610A and
have wide tracks.
APL5610C) (Cont.)
VCC
VCC
VIN
VIN
VUV(TH)
VEN
CVCC
VEN(TH)
VOUT
CVIN
VCC
VEN(TH) occurs after
VUV(TH) is reached
DRV
Figure 2. MOSFET drain supply comes up before
APL5610A/C supply
Short-Circuit Concerns (Only for APL5610 and
APL5610B)
APL5610
APL5610A
APL5610B
APL5610C
GND
Since the APL5610 and APL5610B UVP function is activated after the VOUT reaches 90% level, any combinations
R1
FB
R2
COUT
Load
Figure 3
of sequence among V IN, VCC, and V EN are allowable.
However, please note that the advantage of none-powersequencing brings a drawback. If and only if a short-cir-
1.90
cuit condition of output voltage occurs before VIN supply,
the UVP won’t be activated. Thus, the short-circuit current
2.20
persists to flow and could impair the MOSFET. If in your
application the short-circuit is most likely to be encountered before VIN supply, we suggest you use the APL5610A
or APL5610C instead of the APL5610 or APL5610B, who
1.27
can provide this short-circuit protection. Nevertheless, if
the VIN supply can provide the OCP protection, this shortcircuit won’t be an issue in APL5610.
0.95
0.65
Unit : mm
Layout Consideration
Figure 3 illustrates the layout. Below is a checklist for
SOT-23-6
your layout:
1. Please place the input capacitor CVCC close to the VCC
Figure 4. Recommended Minimum Footprint
pin.
2. Please place the CVIN close to the MOSFET’s drain.
3. Layout a copper plane for N-channel MOSFET’s drain
to improve the heat dissipation.
4. Output capacitor COUT for load must be placed near the
load as close as possible..
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
12
www.anpec.com.tw
APL5610/A/B/C
Package Information
SOT-23-6
-T-
D
SEATING PLANE < 4 mils
e
E
E1
SEE VIEW A
b
c
0.25
A
L
0
GAUGE PLANE
SEATING PLANE
A1
A2
e1
VIEW A
S
Y
M
B
O
L
SOT-23-6
MILLIMETERS
MIN.
INCHES
MAX.
MAX.
MIN.
A
1.45
A1
0.00
0.15
0.000
0.057
0.006
A2
0.90
1.30
0.035
0.051
0.020
b
0.30
0.50
0.012
c
0.08
0.22
0.003
0.009
D
2.70
3.10
0.106
0.122
E
2.60
3.00
0.102
0.118
E1
1.40
1.80
0.055
0.071
e
0.95 BSC
e1
1.90 BSC
0.037 BSC
0.075 BSC
L
0.30
0.60
0.012
0
0°
8°
0°
0.024
8°
Note : 1. Follow JEDEC TO-178 AB.
2. Dimension D and E1 do not include mold flash, protrusions or
gate burrs. Mold flash, protrusion or gate burrs shall not exceed
10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
13
www.anpec.com.tw
APL5610/A/B/C
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
SOT-23-6
A
H
T1
C
d
D
W
E1
F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.05
1.5+0.10
-0.00
1.0 MIN.
0.6+0.00
-0.40
3.20±0.20
3.10±0.20
1.50±0.20
4.0±0.10
4.0±0.10
(mm)
Devices Per Unit
Package Type
Unit
Quantity
SOT-23-6
Tape & Reel
3000
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
14
www.anpec.com.tw
APL5610/A/B/C
Taping Direction Information
SOT-23-6
USER DIRECTION OF FEED
AAAX
AAAX
AAAX
AAAX
AAAX
AAAX
AAAX
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
15
www.anpec.com.tw
APL5610/A/B/C
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
Package
Thickness
<2.5 mm
≥2.5 mm
Volume mm
<350
235 °C
220 °C
3
Volume mm
≥350
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
16
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APL5610/A/B/C
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.7 - May., 2011
17
www.anpec.com.tw