AOT3N100/AOTF3N100 1000V,2.8A N-Channel MOSFET General Description Product Summary The AOT3N100 & AOTF3N100 are fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. VDS ID (at VGS=10V) 1100@150℃ 2.8A RDS(ON) (at VGS=10V) < 6Ω 100% UIS Tested 100% Rg Tested For Halogen Free add "L" suffix to part number: AOT3N100 & AOTF3N100L Top View D TO-220F TO-220 G AOT3N100 D G S AOTF3N100 G D S S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter AOT3N100 AOTF3N100 Symbol Drain-Source Voltage VDS 1000 Gate-Source Voltage Continuous Drain Current VGS TC=25°C TC=100°C ±30 V 2.8 ID Units V 2.8* 1.8 1.8* A Pulsed Drain Current C IDM 10 Avalanche Current C IAR 2.2 A Repetitive avalanche energy C EAR 72 mJ 145 5 mJ V/ns W Single pulsed avalanche energy G EAS Peak diode recovery dv/dt dv/dt TC=25°C PD Power Dissipation B Derate above 25oC TJ, TSTG Junction and Storage Temperature Range Maximum lead temperature for soldering TL purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Symbol Maximum Junction-to-Ambient A,D RθJA Maximum Case-to-sink A RθCS Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev. 1.0 January 2013 132 38 1.1 0.3 -55 to 150 W/ oC °C 300 °C AOT3N100 65 0.5 0.95 www.aosmd.com AOTF3N100 65 -3.3 Units °C/W °C/W °C/W Page 1 of 6 AOT3N100/AOTF3N100 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 1000 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current ID=250µA, VGS=0V, TJ=150°C 1100 V ID=250µA, VGS=0V 1.07 V/ oC VDS=1000V, VGS=0V 1 VDS=800V, TJ=125°C 10 IGSS Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V, ID=250µA ±100 3.3 µA 4 4.5 nΑ V 6 Ω 1 V RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=1.5A 4.8 gFS Forward Transconductance VDS=40V, ID=1.5A 4 VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current 2.8 A ISM Maximum Body-Diode Pulsed Current 10 A DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd S 0.76 550 690 830 pF 30 44 60 pF 2 5 8 pF 1.6 3.5 5.2 Ω 15 20 nC 10 VGS=10V, VDS=800V, ID=3A 3.8 nC Gate Drain Charge 4.7 nC tD(on) Turn-On DelayTime 22 ns tr Turn-On Rise Time 25 ns tD(off) Turn-Off DelayTime 40 ns tf trr Turn-Off Fall Time IF=3A,dI/dt=100A/µs,VDS=100V 300 400 500 Qrr Body Diode Reverse Recovery Charge IF=3A,dI/dt=100A/µs,VDS=100V 2.7 3.7 4.7 Body Diode Reverse Recovery Time VGS=10V, VDS=500V, ID=3A, RG=25Ω 24 ns ns µC A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=2.2A, VDD=150V, RG=25Ω, Starting TJ=25°C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1.0 January 2013 www.aosmd.com Page 2 of 6 AOT3N100/AOTF3N100 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 5 VDS=40V 10V 4 -55°C 10 6V ID(A) ID (A) 3 5.5V 2 125°C 1 1 VGS=5V 25°C 0 0 5 10 15 20 25 VDS (Volts) Fig 1: On-Region Characteristics 0.1 30 2 15 6 8 VGS(Volts) Figure 2: Transfer Characteristics 10 Normalized On-Resistance 3 12 RDS(ON) (Ω Ω) 4 9 VGS=10V 6 3 2.5 VGS=10V ID=1.5A 2 1.5 1 0.5 0 0 0 1 2 3 4 5 6 -100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1E+02 1.2 1E+00 40 125°C IS (A) BVDSS (Normalized) 1E+01 1.1 1 1E-01 1E-02 25°C 0.9 1E-03 1E-04 0.8 -100 -50 50 100 150 200 TJ (°C) Figure 5:Break Down vs. Junction Temparature Rev.1.0 January 2013 0 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT3N100/AOTF3N100 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 VDS=800V ID=3A 1000 Ciss 100 Coss 10 Crss Capacitance (pF) VGS (Volts) 12 9 6 3 1 0 0 5 10 15 20 Qg (nC) Figure 7: Gate-Charge Characteristics 0.1 25 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 100 100.0 10.0 10 10µs RDS(ON) limited 100µs 1.0 DC 1ms 10ms 0.1 10µs RDS(ON) limited ID (Amps) ID (Amps) 1 100µs 1 1ms DC 0.1 TJ(Max)=150°C TC=25°C 0.1s 1s TJ(Max)=150°C TC=25°C 0.0 10ms 0.01 1 10 100 VDS (Volts) 1000 10000 1 10 100 1000 10000 VDS (Volts) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF3N100 (Note F) Figure 9: Maximum Forward Biased Safe Operating Area for AOT3N100 (Note F) Current rating ID(A) 5 4 3 2 1 0 0 25 75 100 125 TCASE (°C) Figure 11: Current De-rating (Note B) Rev.1.0 January 2013 50 150 www.aosmd.com Page 4 of 6 AOT3N100/AOTF3N100 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=0.95°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Single Pulse 0.01 Ton T 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT3N100 (Note F) Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=3.3°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Single Pulse Ton T 0.001 0.00001 0.01 0.1 1 10 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF3N100 (Note F) Rev.1.0 January 2013 0.0001 0.001 www.aosmd.com 100 Page 5 of 6 AOT3N100/AOTF3N100 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC DUT - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs + VDC 90% Vdd - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev.1.0 January 2013 L Isd + VDC - IF trr dI/dt IRM Vdd Vdd Vds www.aosmd.com Page 6 of 6