AOT8N65/AOTF8N65 650V, 8A N-Channel MOSFET General Description Product Summary The AOT8N65 & AOTF8N65 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. VDS ID (at VGS=10V) 750V@150℃ 8A RDS(ON) (at VGS=10V) < 1.15Ω 100% UIS Tested 100% Rg Tested For Halogen Free add "L" suffix to part number: AOT8N65L & AOTF8N65L TO-220 G D Top View TO-220F D G S G D AOT8N65 S S AOTF8N65 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol AOT8N65 Drain-Source Voltage VDS VGS Gate-Source Voltage Continuous Drain Current TC=25°C TC=100°C AOTF8N65 650 ±30 V 8 ID Units V 8* 5.2 5.2* A Pulsed Drain Current C IDM Avalanche Current C IAR 3.4 A Repetitive avalanche energy C EAR 173 mJ Single plused avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D EAS dv/dt 347 5 mJ V/ns W 32 PD 50.0 0.3 TJ, TSTG TL Symbol RθJA RθCS -55 to 150 W/ oC °C 300 °C AOT8N65 65 AOTF8N65 65 Units °C/W 0.5 0.6 -2.5 °C/W °C/W Maximum Case-to-sink A Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev 3:Jul 2011 208 1.67 www.aosmd.com Page 1 of 6 AOT8N65/AOTF8N65 Electrical Characteristics (TJ=25°C unless otherwise noted) Parameter Symbol Conditions Min ID=250µA, VGS=0V, TJ=25°C 650 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V ID=250µA ID=250µA, VGS=0V, TJ=150°C 750 ID=250µA, VGS=0V VDS=650V, VGS=0V 0.7 V V/ oC 1 VDS=520V, TJ=125°C µA 10 ±100 3 4 4.5 nΑ V 1.15 Ω RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=4A 0.91 gFS Forward Transconductance VDS=40V, ID=4A 11 VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current 8 A ISM Maximum Body-Diode Pulsed Current 32 A DYNAMIC PARAMETERS Input Capacitance Ciss Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge VGS=10V, VDS=520V, ID=8A S 0.74 1 V 930 1165 1400 pF 80 101 120 pF 7 9 11 pF 1.8 3.7 5.6 Ω 18.5 23.5 28 nC 5 6.2 7.5 nC 7.5 9.5 11.5 nC tD(on) Turn-On DelayTime 26 ns tr Turn-On Rise Time 51 ns tD(off) Turn-Off DelayTime 65 ns tf trr Turn-Off Fall Time 43 ns Qrr Body Diode Reverse Recovery Charge IF=8A,dI/dt=100A/µs,VDS=100V Body Diode Reverse Recovery Time VGS=10V, VDS=325V, ID=8A, RG=25Ω IF=8A,dI/dt=100A/µs,VDS=100V 235 295 355 4 5 6 ns µC A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse ratin g. G. L=60mH, IAS=3.3A, VDD=150V, RG=25Ω, Starting TJ=25°C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev3: Jul 2011 www.aosmd.com Page 2 of 6 AOT8N65/AOTF8N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 14 10V 100 6.5V -55°C VDS=40V 12 10 125°C ID(A) ID (A) 10 6V 8 6 1 4 25°C VGS=5.5V 2 0.1 0 0 5 10 15 20 25 2 30 4 VDS (Volts) Fig 1: On-Region Characteristics 8 10 VGS(Volts) Figure 2: Transfer Characteristics 1.8 3 Normalized On-Resistance 1.5 VGS=10V RDS(ON) (Ω ) 6 1.2 0.9 0.6 2.5 VGS=10V ID=4A 2 1.5 1 0.5 0.3 0 2 4 6 8 10 12 14 16 0 -100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02 1.2 1.0E+01 1.1 125°C 1.0E+00 IS (A) BVDSS (Normalized) 50 1 25°C 1.0E-01 1.0E-02 2.2 1.0E-03 0.9 1.0E-04 0.8 1.0E-05 -100 -50 0 50 100 150 200 TJ (oC) Figure 5: Break Down vs. Junction Temperature Rev3: Jul 2011 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT8N65/AOTF8N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 1000 Capacitance (pF) VGS (Volts) Ciss VDS=520V ID=8A 12 9 6 Coss 100 10 3 Crss 1 0 0 5 10 15 20 25 30 Qg (nC) Figure 7: Gate-Charge Characteristics 0.1 35 100 1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 100 10µs 10µs 100µ RDS(ON) limited 1ms 1 10ms 10 ID (Amps) ID (Amps) 10 RDS(ON) limited 100µs 1ms 10ms 0.1s 1s 1 DC DC 0.1 0.1 TJ(Max)=150°C TC=25°C TJ(Max)=150°C TC=25°C 0.01 0.01 1 10 100 1000 1 10 100 1000 VDS (Volts) VDS (Volts) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF8N65 (Note F) Figure 9: Maximum Forward Biased Safe Operating Area for AOT8N65 (Note F) 10 Current rating ID(A) 8 6 4 2 0 0 25 50 75 100 125 150 TCASE (°C) Figure 11: Current De-rating (Note B) Rev3: Jul 2011 www.aosmd.com Page 4 of 6 AOT8N65/AOTF8N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=Tc+PDM.ZθJC.RθJC RθJC=0.6°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Ton 0.01 T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT8N65 (Note F) Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=Tc+PDM.ZθJC.RθJC RθJC=2.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF8N65 (Note F) Rev3: Jul 2011 www.aosmd.com Page 5 of 6 AOT8N65/AOTF8N65 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC DUT - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs 90% + Vdd VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev3: Jul 2011 L Isd + Vdd trr dI/dt IRM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6