AOW10N65/AOWF10N65 650V,10A N-Channel MOSFET General Description Product Summary The AOW10N65/AOWF10N65 is fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability this device can be adopted quickly into new and existing offline power supply designs. VDS ID (at VGS=10V) 750V@150℃ 10A RDS(ON) (at VGS=10V) < 1Ω 100% UIS Tested 100% Rg Tested TO-262 TO-262F Bottom View Top View G D Top View S S D Bottom View G G AOW10N65 D S D S D G G S AOWF10N65 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter AOW10N65 AOWF10N65 Symbol Drain-Source Voltage VDS 650 Gate-Source Voltage Continuous Drain Current VGS TC=25°C TC=100°C ±30 V 10 ID Units V 10* 6.2* 6.2 A Pulsed Drain Current C IDM Avalanche Current C IAR 3.4 A Repetitive avalanche energy C EAR 173 mJ Single plused avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D EAS dv/dt 347 5 mJ V/ns W 36 PD 28 2 0.22 TJ, TSTG -55 to 150 W/ oC °C 300 °C TL Symbol RθJA RθCS AOW10N65 65 AOWF10N65 65 Units °C/W 0.5 0.5 -4.5 °C/W °C/W Maximum Case-to-sink A Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev1: Nov 2011 250 www.aosmd.com Page 1 of 6 AOW10N65 /AOWF10N65 Electrical Characteristics (TJ=25°C unless otherwise noted) Parameter Symbol Conditions Min ID=250µA, VGS=0V, TJ=25°C 650 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V ID=250µA ID=250µA, VGS=0V, TJ=150°C 750 V ID=250µA, VGS=0V 0.75 V/ oC VDS=650V, VGS=0V 1 VDS=520V, TJ=125°C 10 ±100 3 µA 4 4.5 nΑ V 1 Ω RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=5A 0.77 gFS Forward Transconductance VDS=40V, ID=5A 13 VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current 10 A ISM Maximum Body-Diode Pulsed Current 36 A pF DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge VGS=10V, VDS=520V, ID=10A S 0.73 V 1095 1369 1645 80 118 154 pF 6 10 14 pF 1.7 3.5 5.5 Ω 22 27.7 33 nC 6 7.4 9 nC 5.5 11.3 17 nC tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time IF=10A,dI/dt=100A/µs,VDS=100V 255 320 385 Qrr Body Diode Reverse Recovery Charge IF=10A,dI/dt=100A/µs,VDS=100V 4.8 6 7.2 Body Diode Reverse Recovery Time VGS=10V, VDS=325V, ID=10A, RG=25Ω 30 ns 61 ns 74 ns 53 ns ns µC A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=3.4A, VDD=150V, RG=25Ω, Starting TJ=25°C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev1: Nov 2011 www.aosmd.com Page 2 of 6 AOW10N65/AOWF10N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 18 10V 15 -55°C VDS=40V 6.5V 10 12 125°C ID(A) ID (A) 6V 9 VGS=5.5V 6 1 25°C 3 0.1 0 0 5 10 15 20 25 VDS (Volts) Fig 1: On-Region Characteristics 2 30 6 8 VGS(Volts) Figure 2: Transfer Characteristics Normalized On-Resistance 1.4 VGS=10V 1.2 1.0 0.8 0.6 2.5 VGS=10V ID=5A 2 1.5 1 0.5 0 0.4 0 4 8 12 16 -100 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 20 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 1.0E+02 1.2 1.0E+01 1.1 125°C 1.0E+00 IS (A) BVDSS (Normalized) 10 3 1.6 RDS(ON) (Ω Ω) 4 1 25°C 1.0E-01 1.0E-02 2.2 1.0E-03 0.9 1.0E-04 1.0E-05 0.8 -100 50 100 150 200 TJ (oC) Figure 5: Break Down vs. Junction Temperature Rev1: Nov 2011 -50 0 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOW10N65/AOWF10N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10000 15 1000 Capacitance (pF) VGS (Volts) Ciss VDS=520V ID=10A 12 9 6 Coss 100 10 3 Crss 1 0 0 5 10 15 20 25 30 35 Qg (nC) Figure 7: Gate-Charge Characteristics 0.1 40 100 1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 100 10µs 10µs RDS(ON) limited 10 RDS(ON) limited 100µs 1ms 1 DC 10ms ID (Amps) ID (Amps) 10 100µs 1ms 1 10ms DC 0.1s 0.1 0.1 1s TJ(Max)=150°C TC=25°C TJ(Max)=150°C TC=25°C 0.01 0.01 1 10 100 1000 1 10 100 1000 VDS (Volts) VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOW10N65 (Note F) Figure 10: Maximum Forward Biased Safe Operating Area for AOWF10N65 (Note F) 12 Current rating ID(A) 10 8 6 4 2 0 0 25 50 75 100 125 150 TCASE (°°C) Figure 11: Current De-rating (Note B) Rev1: Nov 2011 www.aosmd.com Page 4 of 6 AOW10N65/AOWF10N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=Tc+PDM.ZθJC.RθJC RθJC=0.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Single Pulse Ton 0.01 T 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOW10N65 (Note F) Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=Tc+PDM.ZθJC.RθJC RθJC=4.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOWF10N65 (Note F) Rev1: Nov 2011 www.aosmd.com Page 5 of 6 AOW10N65/AOWF10N65 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC DUT - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs 90% + Vdd VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 BVDSS AR Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev1: Nov 2011 L Isd + Vdd trr dI/dt IRM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6