Datasheet

AOW10N65/AOWF10N65
650V,10A N-Channel MOSFET
General Description
Product Summary
The AOW10N65/AOWF10N65 is fabricated using an
advanced high voltage MOSFET process that is designed
to deliver high levels of performance and robustness in
popular AC-DC applications.By providing low RDS(on), Ciss
and Crss along with guaranteed avalanche capability this
device can be adopted quickly into new and existing offline
power supply designs.
VDS
ID (at VGS=10V)
750V@150℃
10A
RDS(ON) (at VGS=10V)
< 1Ω
100% UIS Tested
100% Rg Tested
TO-262
TO-262F
Bottom View
Top View
G
D
Top View
S
S
D
Bottom View
G
G
AOW10N65
D
S
D
S
D
G
G
S
AOWF10N65
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
AOW10N65
AOWF10N65
Symbol
Drain-Source Voltage
VDS
650
Gate-Source Voltage
Continuous Drain
Current
VGS
TC=25°C
TC=100°C
±30
V
10
ID
Units
V
10*
6.2*
6.2
A
Pulsed Drain Current C
IDM
Avalanche Current C
IAR
3.4
A
Repetitive avalanche energy C
EAR
173
mJ
Single plused avalanche energy G
Peak diode recovery dv/dt
TC=25°C
Power Dissipation B Derate above 25oC
Junction and Storage Temperature Range
Maximum lead temperature for soldering
purpose, 1/8" from case for 5 seconds
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A,D
EAS
dv/dt
347
5
mJ
V/ns
W
36
PD
28
2
0.22
TJ, TSTG
-55 to 150
W/ oC
°C
300
°C
TL
Symbol
RθJA
RθCS
AOW10N65
65
AOWF10N65
65
Units
°C/W
0.5
0.5
-4.5
°C/W
°C/W
Maximum Case-to-sink A
Maximum Junction-to-Case
RθJC
* Drain current limited by maximum junction temperature.
Rev1: Nov 2011
250
www.aosmd.com
Page 1 of 6
AOW10N65 /AOWF10N65
Electrical Characteristics (TJ=25°C unless otherwise noted)
Parameter
Symbol
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
650
Typ
Max
Units
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
BVDSS
/∆TJ
Zero Gate Voltage Drain Current
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±30V
VGS(th)
Gate Threshold Voltage
VDS=5V ID=250µA
ID=250µA, VGS=0V, TJ=150°C
750
V
ID=250µA, VGS=0V
0.75
V/ oC
VDS=650V, VGS=0V
1
VDS=520V, TJ=125°C
10
±100
3
µA
4
4.5
nΑ
V
1
Ω
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=5A
0.77
gFS
Forward Transconductance
VDS=40V, ID=5A
13
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current
10
A
ISM
Maximum Body-Diode Pulsed Current
36
A
pF
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=25V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS
Qg
Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
VGS=10V, VDS=520V, ID=10A
S
0.73
V
1095
1369
1645
80
118
154
pF
6
10
14
pF
1.7
3.5
5.5
Ω
22
27.7
33
nC
6
7.4
9
nC
5.5
11.3
17
nC
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
IF=10A,dI/dt=100A/µs,VDS=100V
255
320
385
Qrr
Body Diode Reverse Recovery Charge IF=10A,dI/dt=100A/µs,VDS=100V
4.8
6
7.2
Body Diode Reverse Recovery Time
VGS=10V, VDS=325V, ID=10A,
RG=25Ω
30
ns
61
ns
74
ns
53
ns
ns
µC
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation
limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ
=25°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, IAS=3.4A, VDD=150V, RG=25Ω, Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev1: Nov 2011
www.aosmd.com
Page 2 of 6
AOW10N65/AOWF10N65
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
18
10V
15
-55°C
VDS=40V
6.5V
10
12
125°C
ID(A)
ID (A)
6V
9
VGS=5.5V
6
1
25°C
3
0.1
0
0
5
10
15
20
25
VDS (Volts)
Fig 1: On-Region Characteristics
2
30
6
8
VGS(Volts)
Figure 2: Transfer Characteristics
Normalized On-Resistance
1.4
VGS=10V
1.2
1.0
0.8
0.6
2.5
VGS=10V
ID=5A
2
1.5
1
0.5
0
0.4
0
4
8
12
16
-100
50
100
150
200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
20
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
-50
0
1.0E+02
1.2
1.0E+01
1.1
125°C
1.0E+00
IS (A)
BVDSS (Normalized)
10
3
1.6
RDS(ON) (Ω
Ω)
4
1
25°C
1.0E-01
1.0E-02
2.2
1.0E-03
0.9
1.0E-04
1.0E-05
0.8
-100
50
100
150
200
TJ (oC)
Figure 5: Break Down vs. Junction Temperature
Rev1: Nov 2011
-50
0
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOW10N65/AOWF10N65
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10000
15
1000
Capacitance (pF)
VGS (Volts)
Ciss
VDS=520V
ID=10A
12
9
6
Coss
100
10
3
Crss
1
0
0
5
10
15
20
25
30
35
Qg (nC)
Figure 7: Gate-Charge Characteristics
0.1
40
100
1
10
VDS (Volts)
Figure 8: Capacitance Characteristics
100
100
10µs
10µs
RDS(ON)
limited
10
RDS(ON)
limited
100µs
1ms
1
DC
10ms
ID (Amps)
ID (Amps)
10
100µs
1ms
1
10ms
DC
0.1s
0.1
0.1
1s
TJ(Max)=150°C
TC=25°C
TJ(Max)=150°C
TC=25°C
0.01
0.01
1
10
100
1000
1
10
100
1000
VDS (Volts)
VDS (Volts)
Figure 9: Maximum Forward Biased Safe Operating
Area for AOW10N65 (Note F)
Figure 10: Maximum Forward Biased Safe
Operating Area for AOWF10N65 (Note F)
12
Current rating ID(A)
10
8
6
4
2
0
0
25
50
75
100
125
150
TCASE (°°C)
Figure 11: Current De-rating (Note B)
Rev1: Nov 2011
www.aosmd.com
Page 4 of 6
AOW10N65/AOWF10N65
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
Zθ JC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=Tc+PDM.ZθJC.RθJC
RθJC=0.5°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
Single Pulse
Ton
0.01
T
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance for AOW10N65 (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=Tc+PDM.ZθJC.RθJC
RθJC=4.5°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
T
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for AOWF10N65 (Note F)
Rev1: Nov 2011
www.aosmd.com
Page 5 of 6
AOW10N65/AOWF10N65
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
DUT
-
Vgs
Ig
Charge
Res istive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
90%
+ Vdd
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
EAR= 1/2 LI
Vds
2
BVDSS
AR
Vds
Id
+
Vgs
Vgs
VDC
-
Rg
Vdd
I AR
Id
DUT
Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms
Qrr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
Vgs
Ig
Rev1: Nov 2011
L
Isd
+ Vdd
trr
dI/dt
IRM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6