AOT9N50/AOTF9N50 500V, 9A N-Channel MOSFET General Description Product Summary The AOT9N50 & AOTF9N50 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. VDS ID (at VGS=10V) 600V@150℃ 9A RDS(ON) (at VGS=10V) < 0.85Ω 100% UIS Tested 100% Rg Tested For Halogen Free add "L" suffix to part number: AOT9N50L & AOTF9N50L TO-220 G D Top View D G S TO-220F G D S S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol AOT9N50 Drain-Source Voltage VDS 500 Gate-Source Voltage ±30 Continuous Drain Current VGS TC=25°C TC=100°C AOTF9N50 V 9 ID Units V 9* 6.0 6* A Pulsed Drain Current C IDM 30 Avalanche Current C IAR 3.2 A Repetitive avalanche energy C EAR 154 mJ Single plused avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D EAS dv/dt 307 5 mJ V/ns W PD 38.5 0.3 TJ, TSTG -55 to 150 W/ oC °C 300 °C TL Symbol RθJA RθCS AOT9N50 65 AOTF9N50 65 Units °C/W 0.5 0.65 -3.25 °C/W °C/W Maximum Case-to-sink A Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev3: July 2010 192 1.5 www.aosmd.com Page 1 of 6 AOT9N50/AOTF9N50 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 500 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Breakdown Voltage Temperature Coefficient IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±30V Gate Threshold Voltage VDS=5V ID=250µA VGS(th) ID=250µA, VGS=0V, TJ=150°C 600 V ID=250µA, VGS=0V 0.56 V/ oC VDS=500V, VGS=0V 1 VDS=400V, TJ=125°C 10 ±100 3.4 µA 4 4.5 nΑ V 0.85 Ω 1 V RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=4.5A 0.66 gFS Forward Transconductance VDS=40V, ID=4.5A 10 VSD Diode Forward Voltage IS=1A,VGS=0V S 0.74 IS Maximum Body-Diode Continuous Current 9 A ISM Maximum Body-Diode Pulsed Current 30 A DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time Qrr VGS=10V, VDS=400V, ID=9A 694 868 1042 pF 74 93 112 pF 6.2 7.8 9.4 pF 2 4 6 Ω 15 23.6 28 nC 4 5.2 6.2 nC 8.5 10.6 12.7 nC VGS=10V, VDS=250V, ID=9A, RG=25Ω 19.5 ns 47 ns 51.5 ns 38.5 IF=9A,dI/dt=100A/µs,VDS=100V Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=9A,dI/dt=100A/µs,VDS=100V ns 195 248 300 2.5 3.5 4.5 ns µC A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=3.2A, VDD=150V, RG=25Ω, Starting TJ=25°C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev3: July 2010 www.aosmd.com Page 2 of 6 AOT9N50/AOTF9N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 18 100 10V -55°C VDS=40V 15 6.5V 10 6V ID(A) ID (A) 12 9 125°C 6 1 VGS=5.5V 25°C 3 0 0.1 0 5 10 15 20 25 30 2 VDS (Volts) Fig 1: On-Region Characteristics 6 8 10 VGS(Volts) Figure 2: Transfer Characteristics 2.0 Normalized On-Resistance 3 1.5 RDS(ON) (Ω ) 4 1.0 VGS=10V 0.5 2.5 VGS=10V ID=4.5A 2 1.5 1 0.5 0.0 0 4 8 12 16 0 20 -100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02 1.2 1.0E+00 40 IS (A) BVDSS (Normalized) 1.0E+01 1.1 1 125°C 1.0E-01 25°C 1.0E-02 1.0E-03 0.9 1.0E-04 1.0E-05 0.8 -100 -50 0 50 100 150 200 TJ (°C) Figure 5:Break Down vs. Junction Temperature Rev3: July 2010 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT9N50/AOTF9N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 VDS=400V ID=9A 12 Ciss Capacitance (pF) VGS (Volts) 1000 9 6 Coss 100 10 3 Crss 0 1 0 5 10 15 20 25 30 Qg (nC) Figure 7: Gate-Charge Characteristics 35 100 0.1 1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 100 10µs RDS(ON) limited RDS(ON) limited 10 100µs 1ms 1 10ms ID (Amps) ID (Amps) 10 10µs 100µs 1ms 1 10ms DC DC 0.1 0.1 TJ(Max)=150°C TC=25°C TJ(Max)=150°C TC=25°C 0.01 0.1s 1s 0.01 1 10 100 1000 1 10 100 1000 VDS (Volts) VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOT9N50 (Note F) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF9N50 (Note F) 10 Current rating ID(A) 8 6 4 2 0 0 25 50 75 100 125 150 TCASE (°C) Figure 11: Current De-rating (Note B) Rev3: July 2010 www.aosmd.com Page 4 of 6 AOT9N50/AOTF9N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=0.65°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Ton 0.01 T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT9N50 (Note F) Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=3.25°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF9N50 (Note F) Rev3: July 2010 www.aosmd.com Page 5 of 6 AOT9N50/AOTF9N50 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs + VDC 90% Vdd - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev3: July 2010 L Isd + Vdd trr dI/dt IRM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6