89HPES16T4G2 Data Sheet 16-Lane 4-Port Gen2 PCI Express® Switch Advance Information* ® Device Overview Features High Performance PCI Express Switch – Sixteen 5 Gbps Gen2 PCI Express lanes – Four switch ports • One x4 upstream port • Three x4 downstream ports – Low latency cut-through switch architecture – Support for Max Payload Size up to 2048 bytes – One virtual channel – Eight traffic classes – PCI Express Base Specification Revision 2.0 compliant Block Diagram 4-Port Switch Core / 16 PCI Express Lanes Frame Buffer Port Arbitration Route Table Scheduler Transaction Layer Transaction Layer Transaction Layer Transaction Layer Data Link Layer Data Link Layer Data Link Layer Data Link Layer Multiplexer / Demultiplexer Multiplexer / Demultiplexer Multiplexer / Demultiplexer Multiplexer / Demultiplexer Phy Logical Layer Phy Logical Layer Phy Logical Layer Phy Logical Layer SerDes SerDes SerDes SerDes (Port 0) (Port 2) (Port 4) (Port 6) Figure 1 Internal Block Diagram IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. 1 of 32 © 2007 Integrated Device Technology, Inc. *Notice: The information in this document is subject to change without notice September 4, 2007 DSC 6928 Advance Information The 89HPES16T4G2 is a member of IDT’s PRECISE™ family of PCI Express® switching solutions. The PES16T4G2 is a 16-lane, 4-port Gen2 peripheral chip that performs PCI Express Base switching with a feature set optimized for high performance applications such as servers, storage, and communications/networking. It provides connectivity and switching functions between a PCI Express upstream port and up to three downstream ports and supports switching between downstream ports. ◆ Flexible Architecture with Numerous Configuration Options – Automatic per port link width negotiation to x4, x2 or x1 – Automatic lane reversal on all ports – Automatic polarity inversion – Ability to load device configuration from serial EEPROM ◆ Legacy Support – PCI compatible INTx emulation – Bus locking ◆ Highly Integrated Solution – Incorporates on-chip internal memory for packet buffering and queueing – Integrates sixteen 5 Gbps embedded SerDes with 8b/10b encoder/decoder (no separate transceivers needed) • Receive equalization (RxEQ) ◆ Reliability, Availability, and Serviceability (RAS) Features – Internal end-to-end parity protection on all TLPs ensures data integrity even in systems that do not implement end-to-end CRC (ECRC) – Supports ECRC and Advanced Error Reporting – Supports PCI Express Native Hot-Plug, Hot-Swap capable I/O – Compatible with Hot-Plug I/O expanders used on PC motherboards – Supports Hot-Swap ◆ IDT 89HPES16T4G2 Data Sheet Power Management – Utilizes advanced low-power design techniques to achieve low typical power consumption – Support PCI Express Power Management Interface specification (PCI-PM 2.0) – Unused SerDes are disabled. – Supports Advanced Configuration and Power Interface Specification, Revision 2.0 (ACPI) supporting active link state ◆ Testability and Debug Features – Built in Pseudo-Random Bit Stream (PRBS) generator – Numerous SerDes test modes – Ability to read and write any internal register via the SMBus – Ability to bypass link training and force any link into any mode – Provides statistics and performance counters ◆ Sixteen General Purpose Input/Output Pins – Each pin may be individually configured as an input or output – Each pin may be individually configured as an interrupt input – Some pins have selectable alternate functions ◆ Packaged in a 23mm x 23mm, 288-ball BGA with 1mm ball spacing ◆ Utilizing standard PCI Express interconnect, the PES16T4G2 provides the most efficient fan-out solution for applications requiring high throughput, low latency, and simple board layout with a minimum number of board layers. It provides 16 GBps (128 Gbps) of aggregated, full-duplex switching capacity through 16 integrated serial lanes, using proven and robust IDT technology. Each lane provides 5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base Specification, Revision 2.0. The PES16T4G2 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and Transaction layers in compliance with PCI Express Base specification Revision 2.0. The PES16T4G2 can operate either as a store and forward or cut-through switch and is designed to switch memory and I/O transactions. It supports eight Traffic Classes (TCs) and one Virtual Channel (VC) with sophisticated resource management to enable efficient switching and I/O connectivity for servers, storage, and embedded processors with limited connectivity. Processor Memory Memory Memory Memory North Bridge x4 PES16T4G2 x4 x4 x4 PCI Express Slot I/O 10GbE I/O 10GbE I/O SATA I/O SATA Figure 2 I/O Expansion Application SMBus Interface The PES16T4G2 contains two SMBus interfaces. The slave interface provides full access to the configuration registers in the PES16T4G2, allowing every configuration register in the device to be read or written by an external agent. The master interface allows the default configuration register values of the PES16T4G2 to be overridden following a reset with values programmed in an external serial EEPROM. The master interface is also used by an external Hot-Plug I/O expander. Six pins make up each of the two SMBus interfaces. These pins consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus address pins. In the slave interface, these address pins allow the SMBus address to which the device responds to be configured. In the master interface, these address pins allow the SMBus address of the serial configuration EEPROM from which data is loaded to be configured. The SMBus address is set up on negation of PERSTN by sampling the corresponding address pins. When the pins are sampled, the resulting address is assigned as shown in Table 1. Bit Slave SMBus Address Master SMBus Address 1 SSMBADDR[1] MSMBADDR[1] 2 SSMBADDR[2] MSMBADDR[2] 3 SSMBADDR[3] MSMBADDR[3] 4 0 MSMBADDR[4] 5 SSMBADDR[5] 1 6 1 0 7 1 1 Table 1 Master and Slave SMBus Address Assignment 2 of 32 *Notice: The information in this document is subject to change without notice September 4, 2007 Advance Information Product Description Processor IDT 89HPES16T4G2 Data Sheet As shown in Figure 2, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure 2(a), the master and slave SMBuses are tied together and the PES16T4G2 acts both as a SMBus master as well as a SMBus slave on this bus. This requires that the SMBus master or processor that has access to PES16T4G2 registers supports SMBus arbitration. In some systems, this SMBus master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To support these systems, the PES16T4G2 may be configured to operate in a split configuration as shown in Figure 2(b). In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required. The PES16T4G2 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of the serial EEPROM. Serial EEPROM ... Other SMBus Devices PES16T4G2 SSMBCLK SSMBDAT SSMBCLK SSMBDAT MSMBCLK MSMBDAT MSMBCLK MSMBDAT Processor SMBus Master ... Other SMBus Devices Serial EEPROM (b) Split Configuration and Management Buses (a) Unified Configuration and Management Bus Figure 2 SMBus Interface Configuration Examples Hot-Plug Interface The PES16T4G2 supports PCI Express Hot-Plug on each downstream port. To reduce the number of pins required on the device, the PES16T4G2 utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES16T4G2 generates an SMBus transaction to the I/O expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN input pin (alternate function of GPIO) of the PES16T4G2. In response to an I/O expander interrupt, the PES16T4G2 generates an SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander. General Purpose Input/Output The PES16T4G2 provides 16 General Purpose Input/Output (GPIO) pins that may be used by the system designer as bit I/O ports. Each GPIO pin may be configured independently as an input or output through software control. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM. 3 of 32 September 4, 2007 Advance Information PES16T4G2 Processor SMBus Master IDT 89HPES16T4G2 Data Sheet Pin Description The following tables list the functions of the pins provided on the PES16T4G2. Some of the functions listed may be multiplexed onto the same pin. The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level. Signal Type Name/Description PE0RP[3:0] PE0RN[3:0] I PCI Express Port 0 Serial Data Receive. Differential PCI Express receive pairs for port 0. Port 0 is the upstream port. PE0TP[3:0] PE0TN[3:0] O PCI Express Port 0 Serial Data Transmit. Differential PCI Express transmit pairs for port 0. Port 0 is the upstream port. PE2RP[3:0] PE2RN[3:0] I PCI Express Port 2 Serial Data Receive. Differential PCI Express receive pairs for port 2. PE2TP[3:0] PE2TN[3:0] O PCI Express Port 2 Serial Data Transmit. Differential PCI Express transmit pairs for port 2. PE4RP[3:0] PE4RN[3:0] I PCI Express Port 4 Serial Data Receive. Differential PCI Express receive pairs for port 4. PE4TP[3:0] PE4TN[3:0] O PCI Express Port 4 Serial Data Transmit. Differential PCI Express transmit pairs for port 4. PE6RP[3:0] PE6RN[3:0] I PCI Express Port 6 Serial Data Receive. Differential PCI Express receive pairs for port 6. PE6TP[3:0] PE6TN[3:0] O PCI Express Port 6 Serial Data Transmit. Differential PCI Express transmit pairs for port 6. PEREFCLKP[0] PEREFCLKN[0] I PCI Express Reference Clock. Differential reference clock pair input. This clock is used as the reference clock by on-chip PLLs to generate the clocks required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal. REFCLKM I PCI Express Reference Clock Mode Select. This signal selects the frequency of the reference clock input. 0x0 - 100 MHz 0x1 - 125 MHz This pin should be static and not change following the negation of PERSTN. Advance Information Note: In the PES16T4G2, the three downstream ports are labeled port 2, port 4, and port 6. Table 2 PCI Express Interface Pins Signal Type Name/Description MSMBADDR[4:1] I Master SMBus Address. These pins determine the SMBus address of the serial EEPROM from which configuration information is loaded. MSMBCLK I/O Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the master SMBus. MSMBDAT I/O Master SMBus Data. This bidirectional signal is used for data on the master SMBus. Table 3 SMBus Interface Pins (Part 1 of 2) 4 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Signal Type Name/Description SSMBADDR[5,3:1] I SSMBCLK I/O Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus. SSMBDAT I/O Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus. Slave SMBus Address. These pins determine the SMBus address to which the slave SMBus interface responds. Table 3 SMBus Interface Pins (Part 2 of 2) Type Name/Description GPIO[0] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P2RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 2. GPIO[1] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P4RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 4. GPIO[2] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN0 Alternate function pin type: Input Alternate function: I/O expander interrupt 0 input. GPIO[3] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[4] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN2 Alternate function pin type: Input Alternate function: I/O Expander interrupt 2 input GPIO[5] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[6] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[7] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: GPEN Alternate function pin type: Output Alternate function: General Purpose Event (GPE) output GPIO[9] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[10] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Advance Information Signal Table 4 General Purpose I/O Pins (Part 1 of 2) 5 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Signal Type Name/Description GPIO[11] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P6RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 6. GPIO[12] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[13] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[14] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[15] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Signal Type CCLKDS I Common Clock Downstream. The assertion of this pin indicates that all downstream ports are using the same clock source as that provided to downstream devices.This bit is used as the initial value of the Slot Clock Configuration bit in all of the Link Status Registers for downstream ports. The value may be overridden by modifying the SCLK bit in each downstream port’s PCIELSTS register. CCLKUS I Common Clock Upstream. The assertion of this pin indicates that the upstream port is using the same clock source as the upstream device. This bit is used as the initial value of the Slot Clock Configuration bit in the Link Status Register for the upstream port. The value may be overridden by modifying the SCLK bit in the P0_PCIELSTS register. MSMBSMODE I Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus should operate at 100 KHz instead of 400 KHz. This value may not be overridden. PERSTN I Fundamental Reset. Assertion of this signal resets all logic inside PES16T4G2 and initiates a PCI Express fundamental reset. RSTHALT I Reset Halt. When this signal is asserted during a PCI Express fundamental reset, PES16T4G2 executes the reset procedure and remains in a reset state with the Master and Slave SMBuses active. This allows software to read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is cleared in the SWCTL register by an SMBus master. SWMODE[2:0] I Switch Mode. These configuration pins determine the PES16T4G2 switch operating mode. 0x0 - Normal switch mode 0x1 - Normal switch mode with Serial EEPROM initialization 0x2 - through 0x7 Reserved These pins should be static and not change following the negation of PERSTN. Advance Information Table 4 General Purpose I/O Pins (Part 2 of 2) Name/Description Table 5 System Pins 6 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Type Name/Description JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system clock with a nominal 50% duty cycle. JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic or JTAG Controller. JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary scan logic or JTAG Controller. When no data is being shifted out, this signal is tri-stated. JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary scan logic and JTAG TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in functional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board Advance Information Signal Table 6 Test Pins Signal Type Name/Description REFRES0 I/O Port 0 External Reference Resistor. Provides a reference for the Port 0 SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resistor should be connected from this pin to ground. REFRES2 I/O Port 2 External Reference Resistor. Provides a reference for the Port 2 SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resistor should be connected from this pin to ground. REFRES4 I/O Port 4 External Reference Resistor. Provides a reference for the Port 4 SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resistor should be connected from this pin to ground. REFRES6 I/O Port 6 External Reference Resistor. Provides a reference for the Port 6 SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resistor should be connected from this pin to ground. VDDCORE I Core VDD. Power supply for core logic. VDDI/O I I/O VDD. LVTTL I/O buffer power supply. VDDPEA I PCI Express Analog Power. Serdes analog power supply (1.0V). VDDPEHA I PCI Express Analog High Power. Serdes analog power supply (2.5V). VDDPETA I PCI Express Transmitter Analog Voltage. Serdes transmitter analog power supply (1.0V). VSS I Ground. Table 7 Power, Ground, and SerDes Resistor Pins 7 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Pin Characteristics Note: Some input pads of the PES16T4G2 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left floating can cause a slight increase in power consumption. PCI Express Interface SMBus Type Buffer I/O Type PE0RN[3:0] I CML Serial Link PE0RP[3:0] I PE0TN[3:0] O PE0TP[3:0] O PE2RN[3:0] I PE2RP[3:0] I PE2TN[3:0] O PE2TP[3:0] O PE4RN[3:0] I PE4RP[3:0] I PE4TN[3:0] O PE4TP[3:0] O PE6RN[3:0] I PE6RP[3:0] I PE6TN[3:0] O PE6TP[3:0] O PEREFCLKN[0] I PEREFCLKP[0] I REFCLKM I LVTTL Input pull-down I LVTTL Input pull-up Pin Name MSMBADDR[4:1] Internal Resistor1 Diff. Clock Input Notes Refer to Table 9 MSMBCLK I/O STI2 pull-up on board MSMBDAT I/O STI pull-up on board I Input SSMBADDR[5,3:1] pull-up SSMBCLK I/O STI pull-up on board SSMBDAT I/O STI pull-up on board General Purpose I/O GPIO[15:0] I/O LVTTL STI, High Drive pull-up System Pins CCLKDS I LVTTL Input pull-up CCLKUS I Input pull-up MSMBSMODE I Input pull-down PERSTN I STI RSTHALT I Input pull-down SWMODE[2:0] I Input pull-down Table 8 Pin Characteristics (Part 1 of 2) 8 of 32 September 4, 2007 Advance Information Function IDT 89HPES16T4G2 Data Sheet Type Buffer I/O Type Internal Resistor1 JTAG_TCK I LVTTL STI pull-up JTAG_TDI I STI pull-up JTAG_TDO O JTAG_TMS I STI pull-up JTAG_TRST_N I STI pull-up Function EJTAG / JTAG SerDes Reference Resistors Pin Name REFRES0 I/O REFRES2 I/O REFRES4 I/O REFRES6 I/O Notes Analog Table 8 Pin Characteristics (Part 2 of 2) 1. Internal Schmitt Trigger Input (STI). Advance Information 2. resistor values under typical operating conditions are 92K Ω for pull-up and 90K Ω for pull-down. 9 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Logic Diagram — PES16T4G2 Reference Clock Frequency Selection PEREFCLKP[0] PEREFCLKN[0] REFCLKM PE0TP[0] PE0TN[0] PE0RP[0] PE0RN[0] PE0RP[3] PE0RN[3] PE0TP[3] PE0TN[3] PCI Express Switch SerDes Input Port 2 PE2RP[0] PE2RN[0] PE2TP[0] PE2TN[0] PE2RP[3] PE2RN[3] PE2TP[3] PE2TN[3] PCI Express Switch SerDes Input Port 4 PE4RP[0] PE4RN[0] PE4TP[0] PE4TN[0] PE4RP[3] PE4RN[3] PE4TP[3] PE4TN[3] PCI Express Switch SerDes Input Port 6 PE6RP[0] PE6RN[0] PE6TP[0] PE6TN[0] ... ... ... ... ... System Pins ... Slave SMBus Interface ... Master SMBus Interface ... PCI Express Switch SerDes Input Port 0 PE6RP[3] PE6RN[3] MSMBADDR[4:1] MSMBCLK MSMBDAT SSMBADDR[5,3:1] SSMBCLK SSMBDAT MSMBSMODE CCLKDS CCLKUS RSTHALT PERSTN SWMODE[2:0] PE6TP[3] PE6TN[3] PES16T4G2 16 4 GPIO[15:0] JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_TRST_N 4 REFRES0 REFRES2 REFRES4 REFRES6 PCI Express Switch SerDes Output Port 0 PCI Express Switch SerDes Output Port 2 PCI Express Switch SerDes Output Port 4 PCI Express Switch SerDes Output Port 6 General Purpose I/O JTAG Pins SerDes Reference Resistors VDDCORE 3 VDDI/O VDDPEA VDDPEHA Power/Ground VSS VDDPETA Figure 3 PES16T4G2 Logic Diagram 10 of 32 September 4, 2007 Advance Information Reference Clocks IDT 89HPES16T4G2 Data Sheet System Clock Parameters Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14. Description Condition Min Typical Max Unit 100 1251 MHz RefclkFREQ Input reference clock frequency range TC-RISE Rising edge rate Differential 0.6 4 V/ns TC-FALL Falling edge rate Differential 0.6 4 V/ns VIH Differential input high voltage Differential +150 VIL Differential input low voltage Differential VCROSS Absolute single-ended crossing point voltage Single-ended VCROSS-DELTA Variation of VCROSS over all rising clock edges Single-ended VRB Ring back voltage margin Differential -100 TSTABLE Time before VRB is allowed Differential 500 TPERIOD-AVG Average clock period accuracy -300 2800 ppm TPERIOD-ABS Absolute period, including spread-spectrum and jitter 9.847 10.203 ns TCC-JITTER Cycle to cycle jitter 150 ps VMAX Absolute maximum input voltage +1.15 V VMIN Absolute minimum input voltage -0.3 Duty Cycle Duty cycle 40 Rise/Fall Matching Single ended rising Refclk edge rate versus falling Refclk edge rate ZC-DC Clock source output DC impedance mV +250 -150 mV +550 mV +140 mV +100 mV ps V 60 % 20 % 40 Ω 60 Table 9 Input Clock Requirements 1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM. AC Timing Characteristics Parameter Gen 1 Description Gen 2 Min1 Typ1 Max1 Min1 Typ1 Max1 399.88 400 400.12 199.94 200 200.06 Units PCIe Transmit UI Unit Interval TTX-EYE Minimum Tx Eye Width TTX-EYE-MEDIAN-toMAX-JITTER Maximum time between the jitter median and maximum deviation from the median TTX-RISE, TTX-FALL TX Rise/Fall Time: 20% - 80% TTX- IDLE-MIN Minimum time in idle 0.75 0.75 0.125 ps UI UI 0.125 0.15 UI 20 20 UI Table 10 PCIe AC Timing Characteristics (Part 1 of 2) 11 of 32 September 4, 2007 Advance Information Parameter IDT 89HPES16T4G2 Data Sheet Parameter TTX-IDLE-SET-TO- Gen 1 Description Min1 Typ1 Gen 2 Max1 Min1 Typ1 Max1 Units 8 8 ns IDLE Maximum time to transition to a valid Idle after sending an Idle ordered set TTX-IDLE-TO-DIFF- Maximum time to transition from valid idle to diff data 8 8 ns 1.3 1.3 ns DATA TTX-SKEW Transmitter data skew between any 2 lanes TMIN-PULSED Minimum Instantaneous Lone Pulse Width TMEAS-HPF Transmit Jitter Measurement Filter TTX-HF-DJ-DD Transmitter Deterministic Jitter > 1.5MHz Bandwidth NA 0.15 UI TRF-MISMATCH Rise/Fall Time Differential Mismatch NA 0.1 UI 200.06 ps NA 0.9 HPF: 1.5MHz UI HPF: 1.0MHz MHz UI Unit Interval 399.88 400 400.12 TRX-EYE (with jitter) Minimum Receiver Eye Width (jitter tolerance) TRX-EYE-MEDIUM TO Max time between jitter median & max deviation 0.3 TRX-SKEW Lane to lane input skew 20 TRX-HF-RMS 1.5 — 100 MHz RMS jitter TRX-HF-DJ-DD 0.4 199.94 0.4 UI UI MAX JITTER 8 ns NA 4.2 ps Maximum tolerable DJ by the receiver NA 8.8 ps TRX-LF-RMS 10 KHz to 1.5 MHz RMS jitter NA 4.2 ps TRX-MIN-PULSE Minimum receiver instantaneous eye width NA 0.6 UI Table 10 PCIe AC Timing Characteristics (Part 2 of 2) 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 2.0 Signal Symbol Reference Min Max Unit Edge Timing Diagram Reference GPIO GPIO[15:0]1 Tpw2 None 50 — ns Table 11 GPIO AC Timing Characteristics 1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous. 2. The values for this symbol were determined by calculation, not by testing. 12 of 32 September 4, 2007 Advance Information PCIe Receive IDT 89HPES16T4G2 Data Sheet Signal Symbol Reference Edge Min Max Unit Timing Diagram Reference Tper_16a none 50.0 — ns See Figure 4. 10.0 25.0 ns 2.4 — ns 1.0 — ns — 20 ns — 20 ns 25.0 — ns JTAG JTAG_TCK Thigh_16a, Tlow_16a JTAG_TMS1, JTAG_TDI Tsu_16b JTAG_TCK rising Thld_16b JTAG_TDO Tdo_16c JTAG_TCK falling Tdz_16c2 JTAG_TRST_N Tpw_16d2 none Table 12 JTAG AC Timing Characteristics The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state. 2. The values for this symbol were determined by calculation, not by testing. Tlow_16a Tper_16a Thigh_16a JTAG_TCK Thld_16b Tsu_16b JTAG_TDI Thld_16b Tsu_16b JTAG_TMS Tdo_16c Tdz_16c JTAG_TDO Tpw_16d JTAG_TRST_N Figure 4 JTAG AC Timing Waveform 13 of 32 September 4, 2007 Advance Information 1. IDT 89HPES16T4G2 Data Sheet Recommended Operating Supply Voltages Symbol Parameter Minimum Typical Maximum Unit 0.9 1.0 1.1 V VDDCORE Internal logic supply VDDI/O I/O supply except for SerDes LVPECL/CML 3.135 3.3 3.465 V PCI Express Analog Power 0.95 1.0 1.1 V VDDPEHA PCI Express Analog High Power 2.25 2.5 2.75 V VDDPETA PCI Express Transmitter Analog Voltage 0.95 1.0 1.1 V VSS Common ground 0 0 0 V 1 VDDPEA 2 2. Table 13 PES16T4G2 Operating Voltages VDDPEA should have no more than 25mVpeak-peak AC power supply noise superimposed on the 1.0V nominal DC value. VDDPEHA should have no more than 50mVpeak-peak AC power supply noise superimposed on the 2.5V nominal DC value. Power-Up/Power-Down Sequence During power supply ramp-up, VDDCORE must remain at least 1.0V below VDDI/O at all times. There are no other power-up sequence requirements for the various operating supply voltages. The power-down sequence can occur in any order. Recommended Operating Temperature Grade Temperature Commercial 0°C to +70°C Ambient Table 14 PES16T4G2 Operating Temperatures 14 of 32 September 4, 2007 Advance Information 1. IDT 89HPES16T4G2 Data Sheet Power Consumption Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13 (and also listed below). Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in Table 13 (and also listed below). Core Supply PCIe Analog Supply PCIe Analog High Supply PCIe Termination Supply Typ 1.0V Max 1.1V Typ 1.0V Max 1.1V Typ 2.5V Max 2.75V Typ 1.0V Max 1.1V Typ 3.3V Max 3.465V Typ Power Max Power mA 852 1136 518 688 270 361 362 483 10 10 2.4W 3.5W Watts 0.85 1.25 0.51 0.75 0.67 0.99 0.36 0.53 0.03 .034 mA TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Watts TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 4/4/4/4 4/4/1/1 I/O Supply Total Table 15 PES16T4G2 Power Consumption Thermal Considerations This section describes thermal considerations for the PES16T4G2 (23mm2 SBGA288 package). The data in Table 16 below contains information that is relevant to the thermal performance of the PES16T4G2 switch. Symbol TJ(max) TA(max) Parameter Value Units Conditions 125 oC Maximum 70 oC Maximum Junction Temperature Ambient Temperature θJC Thermal Resistance, Junction-to-Case 1.1 oC/W P Power Dissipation of the Device 3.5 Watts Maximum Table 16 Thermal Specifications for PES16T4G2, 23x23 mm SBGA288 Package Note: It is important for the reliability of this device in any user environment that the junction temperature not exceed the TJ(max) value specified in Table 16. Consequently, the effective junction to ambient thermal resistance (θJA) for the worst case scenario must be maintained below the value determined by the formula: θJA = (TJ(max) - TA(max))/P Given that the values of TJ(max), TA(max), and P are known, the value of desired θJA becomes a known entity to the system designer. How to achieve the desired θJA is left up to the board or system designer, but in general, it can be achieved by adding the effects of θJC (value provided in Table 16), thermal resistance of the chosen adhesive (θCS), that of the heat sink (θSA), amount of airflow, and properties of the circuit board (number of layers and size of the board). As a general guideline, this device will not need a heat sink if the board has 8 or more layers AND the board size is larger than 4"x12" AND airflow in excess of 0.5 m/s is available. It is strongly recommended that users perform their own thermal analysis for their own board and system design scenarios. 15 of 32 September 4, 2007 Advance Information Number of active Lanes per Port IDT 89HPES16T4G2 Data Sheet DC Electrical Characteristics Values based on systems running at recommended supply voltages, as shown in Table 13. Note: See Table 8, Pin Characteristics, for a complete I/O listing. Parameter Description Min1 Serial Link Typ1 Gen 2 Max1 Min1 Typ1 Unit Conditions Max1 PCIe Transmit VTX-DIFFp-p Differential peak-to-peak output voltage 800 1200 800 1200 mV VTX-DIFFp-p-LOW Low-Drive Differential Peak to Peak Output Voltage 400 1200 400 1200 mV VTX-DE-RATIO- De-emphasized differential output voltage -3 -4 -3.0 -3.5 -4.0 dB -5.5 -6.0 -6.5 dB 3.6 V 3.5dB VTX-DE-RATIO6.0dB De-emphasized differential output voltage VTX-DC-CM DC Common mode voltage VTX-CM-ACP RMS AC peak common mode output voltage 20 VTX-CM-DC- Abs delta of DC common mode voltage between L0 and idle 100 100 mV Abs delta of DC common mode voltage between D+ and D- 25 25 mV delta VTX-Idle-DiffP Electrical idle diff peak output 20 20 mV VTX-RCV-Detect Voltage change during receiver detection 600 600 mV RLTX-DIFF Transmitter Differential Return loss 10 10dB: 0.05 1.25GHz 8dB: 1.25 2.5GHz dB RLTX-CM Transmitter Common Mode Return loss 6 6 dB ZTX-DIFF-DC DC Differential TX impedance 80 120 Ω VTX-CM-ACpp Peak-Peak AC Common 100 mV VTX-DC-CM Transmit Driver DC Common Mode Voltage 3.6 V 600 mV active-idle-delta VTX-CM-DC-line- NA 0 3.6 100 Transmitter Short Circuit Current Limit mV 120 NA 0 3.6 VTX-RCV-DETECT The amount of voltage change allowed during Receiver Detection ITX-SHORT 0 0 600 0 Advance Information I/O Type Gen 1 90 90 mA Table 17 DC Electrical Characteristics (Part 1 of 3) 16 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Parameter Description Min1 Serial Link (cont.) Typ1 Gen 2 Max1 Min1 1200 120 Typ1 Unit Conditions Max1 PCIe Receive VRX-DIFFp-p Differential input voltage (peakto-peak) 175 1200 mV RLRX-DIFF Receiver Differential Return Loss 10 10dB: 0.05 1.25GHz 8dB: 1.25 2.5GHz dB RLRX-CM Receiver Common Mode Return Loss 6 6 dB ZRX-DIFF-DC Differential input impedance (DC) 80 100 120 Refer to return loss spec Ω ZRX--DC DC common mode impedance 40 50 60 40 60 Ω ZRX-COMM-DC Powered down input common mode impedance (DC) 200k 350k 50k Ω ZRX-HIGH-IMP- DC input CM input impedance for V>0 during reset or power down 50k 50k Ω DC input CM input impedance for V<0 during reset or power down 1.0k 1.0k Ω DC-NEG VRX-IDLE-DET- Electrical idle detect threshold 175 mV 150 mV DC-POS ZRX-HIGH-IMP- 65 175 65 Advance Information I/O Type Gen 1 DIFFp-p VRX-CM-ACp Receiver AC common-mode peak voltage 150 VRX-CM-ACp PCIe REFCLK CIN Input Capacitance 1.5 — 1.5 — IOL — 2.5 IOH — IOL pF — — 2.5 — mA VOL = 0.4v -5.5 — — -5.5 — mA VOH = 1.5V — 12.0 — — 12.0 — mA VOL = 0.4v IOH — -20.0 — — -20.0 — mA VOH = 1.5V Other I/Os LOW Drive Output High Drive Output Schmitt Trigger Input (STI) VIL -0.3 — 0.8 -0.3 — 0.8 V — VIH 2.0 — VDDI/O + 0.5 2.0 — VDDI/O + 0.5 V — Input VIL -0.3 — 0.8 -0.3 — 0.8 V — VIH 2.0 — VDDI/O + 0.5 2.0 — VDDI/O + 0.5 V — Table 17 DC Electrical Characteristics (Part 2 of 3) 17 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet I/O Type Capacitance Leakage Parameter Gen 1 Description Gen 2 Unit Conditions Min1 Typ1 Max1 Min1 Typ1 Max1 CIN — — 8.5 — — 8.5 pF — Inputs — — + 10 — — + 10 μA VDDI/O (max) I/OLEAK W/O Pull-ups/downs — — + 10 — — + 10 μA VDDI/O (max) I/OLEAK WITH Pull-ups/downs — — + 80 — — + 80 μA VDDI/O (max) Table 17 DC Electrical Characteristics (Part 3 of 3) Minimum, Typical, and Maximum values meet the requirements under PCI Specification 2.0. Advance Information 1. 18 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Package Pinout — 288-BGA Signal Pinout for PES16T4G2 The following table lists the pin numbers and signal names for the PES16T4G2 device. Function Alt Pin Function Alt Pin Function Alt Pin Function A1 VSS B13 VDDPEHA D3 PE2TP00 F21 GPIO_06 A2 VSS B14 VSS D4 VDDPETA F22 PE4RN03 A3 VDDI/O B15 VSS D5 VDDPEA G1 VDDCORE A4 VDDCORE B16 VDDPEHA D6 VSS G2 VDDPEHA A5 PE6RP03 B17 VSS D7 VDDPETA G3 PE2TP01 A6 PE6RN03 B18 VSS D8 VDDPEA G4 VDDPEA A7 VDDCORE B19 VSS D9 VSS G19 VDDPETA A8 PE6RP02 B20 REFCLKM D10 VDDPETA G20 PE4TP03 A9 PE6RN02 B21 GPIO_13 D11 VDDPEA G21 GPIO_05 A10 VDDCORE B22 VSS D12 VSS G22 VSS A11 VSS C1 SSMBCLK D13 VDDPEA H1 PE2RN01 A12 VSS C2 SSMBDAT D14 VSS H2 VSS A13 VDDCORE C3 MSMBSMODE D15 VDDPETA H3 PE2TN01 A14 PE6RP01 C4 MSMBDAT D16 VDDPEA H4 VDDPETA A15 PE6RN01 C5 MSMBADDR_4 D17 VSS H19 VDDPEA A16 VDDCORE C6 PE6TN03 D18 VDDCORE H20 VDDI/O A17 PE6RP00 C7 PE6TP03 D19 VDDPETA H21 GPIO_04 A18 PE6RN00 C8 VDDI/O D20 GPIO_09 H22 PE4RP02 A19 VDDI/O C9 PE6TN02 D21 GPIO_11 J1 PE2RP01 A20 GPIO_15 C10 PE6TP02 D22 VDDCORE J2 VSS A21 GPIO_14 C11 VSS E1 PE2RN00 J3 VSS A22 VSS C12 VDDPEHA E2 VSS J4 VSS B1 SSMBADDR_5 C13 VSS E3 PE2TN00 J19 VSS B2 SSMBADDR_3 C14 VSS E4 VDDCORE J20 PE4TN02 B3 SSMBADDR_2 C15 PE6TN01 E19 VDDPEA J21 VDDPEHA B4 SSMBADDR_1 C16 PE6TP01 E20 GPIO_07 J22 PE4RN02 B5 MSMBCLK C17 VDDPEHA E21 GPIO_08 K1 VDDCORE B6 MSMBADDR_3 C18 PE6TN00 E22 PE4RP03 K2 VDDPEHA B7 MSMBADDR_2 C19 PE6TP00 F1 PE2RP00 K3 VSS B8 MSMBADDR_1 C20 GPIO_10 F2 VSS K4 VDDPEA B9 VDDPEHA C21 GPIO_12 F3 VDDPEHA K19 VDDPETA B10 NC C22 VDDI/O F4 VSS K20 PE4TP02 B11 REFRES6 D1 VSS F19 VSS K21 NC B12 VSS D2 VDDI/O F20 PE4TN03 K22 VDDCORE 1 1 Alt 1 Table 18 PES16T4G2 288-pin Signal Pin-Out (Part 1 of 2) 19 of 32 September 4, 2007 Advance Information Pin IDT 89HPES16T4G2 Data Sheet Function Alt Pin Function Alt Pin Function Alt Pin Function Alt L1 VSS R21 VSS W13 VDDPETA AA7 VDDPEHA L2 VSS R22 PE4RN01 W14 VSS AA8 VSS L3 VDDPEHA T1 VDDCORE W15 VDDPEA AA9 VSS L4 VSS T2 JTAG_TRST_N W16 VDDPETA AA10 VDDPEHA L19 VDDPEA T3 PE2TP03 W17 VSS AA11 VSS L20 VSS T4 JTAG_TDO W18 VDDPEA AA12 REFRES0 L21 REFRES4 T19 VDDPEA W19 VDDPETA AA13 NC L22 VSS T20 PE4TP01 W20 PE4TP00 AA14 VDDPEHA M1 VSS T21 VDDPEHA W21 VDDI/O AA15 CCLKUS M2 REFRES2 T22 VDDCORE W22 VSS AA16 CCLKDS M3 VSS U1 PE2RN03 Y1 JTAG_TDI AA17 SWMODE_0 M4 VDDPEA U2 JTAG_TMS Y2 VDDI/O AA18 SWMODE_2 M19 VSS U3 PE2TN03 Y3 VDDI/O AA19 NC M20 VDDPEHA U4 VSS Y4 PE0TP00 AA20 NC M21 VSS U19 VSS Y5 PE0TN00 AA21 GPIO_00 1 M22 VSS U20 VDDPEHA Y6 VDDPEHA AA22 GPIO_01 1 N1 VDDCORE U21 VSS Y7 PE0TP01 AB1 VSS N2 NC U22 PE4RP00 Y8 PE0TN01 AB2 VSS N3 PE2TP02 V1 PE2RP03 Y9 VSS AB3 VSS N4 VDDPETA V2 VSS Y10 VSS AB4 VDDCORE N19 VDDPEA V3 VSS Y11 VDDPEHA AB5 PE0RN00 N20 VSS V4 VDDPEA Y12 VSS AB6 PE0RP00 N21 VDDPEHA V19 VDDCORE Y13 PE0TP02 AB7 VDDCORE N22 VDDCORE V20 PE4TN00 Y14 PE0TN02 AB8 PE0RN01 P1 PE2RN02 V21 VSS Y15 VDDI/O AB9 PE0RP01 P2 VDDPEHA V22 PE4RN00 Y16 PE0TP03 AB10 VDDCORE P3 PE2TN02 W1 JTAG_TCK Y17 PE0TN03 AB11 PEREFCLKP0 P4 VSS W2 VSS Y18 SWMODE_1 AB12 PEREFCLKN0 P19 VSS W3 VSS Y19 PERSTN AB13 VDDCORE P20 VSS W4 VDDPETA Y20 RSTHALT AB14 PE0RN02 P21 VSS W5 VDDCORE Y21 GPIO_03 AB15 PE0RP02 P22 PE4RP01 W6 VSS Y22 GPIO_02 AB16 VDDCORE R1 PE2RP02 W7 VDDPEA AA1 VSS AB17 PE0RN03 R2 VDDI/O W8 VDDPETA AA2 VSS AB18 PE0RP03 R3 VDDPETA W9 VSS AA3 VSS AB19 VSS R4 VDDPEA W10 VDDPEA AA4 VSS AB20 VDDI/O R19 VDDPETA W11 VSS AA5 VSS AB21 VSS R20 PE4TN01 W12 VDDPEA AA6 VSS AB22 VSS 1 Table 18 PES16T4G2 288-pin Signal Pin-Out (Part 2 of 2) 20 of 32 September 4, 2007 Advance Information Pin IDT 89HPES16T4G2 Data Sheet Alternate Signal Functions Pin GPIO Alternate AA21 GPIO_00 P2RSTN AA22 GPIO_01 P4RSTN Y22 GPIO_02 IOEXPINTN0 H21 GPIO_04 IOEXPINTN2 E20 GPIO_07 GPEN D21 GPIO_11 P6RSTN Table 19 PES16T4G2 Alternate Signal Functions No Connection Pins Advance Information NC Pins B10 K21 N2 AA13 AA19 AA20 Table 20 PES16T4G2 No Connection Pins 21 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet VDDCore VDDI/O VDDPEA VDDPEHA VDDPETA A4 A3 D5 B9 D4 A7 A19 D8 B13 D7 A10 C8 D11 B16 D10 A13 C22 D13 C12 D15 A16 D2 D16 C17 D19 D18 H20 E19 F3 G19 D22 R2 G4 G2 H4 E4 W21 H19 J21 K19 G1 Y2 K4 K2 N4 K1 Y3 L19 L3 R3 K22 Y15 M4 M20 R19 N1 AB20 N19 N21 W4 N22 R4 P2 W8 T1 T19 T21 W13 T22 V4 U20 W16 V19 W7 Y6 W19 W5 W10 Y11 AB4 W12 AA7 AB7 W15 AA10 AB10 W18 AA14 Advance Information Power Pins AB13 AB16 Table 21 PES16T4G2 Power Pins 22 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Vss Vss Vss Vss A1 D17 M21 W17 A2 E2 M22 W22 A11 F2 N20 Y9 A12 F4 P4 Y10 A22 F19 P19 Y12 B12 G22 P20 AA1 B14 H2 P21 AA2 B15 J2 R21 AA3 B17 J3 U4 AA4 B18 J4 U19 AA5 B19 J19 U21 AA6 B22 K3 V2 AA8 C11 L1 V3 AA9 C13 L2 V21 AA11 C14 L4 W2 AB1 D1 L20 W3 AB2 D6 L22 W6 AB3 D9 M1 W9 AB19 D12 M3 W11 AB21 D14 M19 W14 AB22 Advance Information Ground Pins Table 22 PES16T4G2 Ground Pins 23 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Signals Listed Alphabetically I/O Type Location Signal Category CCLKDS I AA16 System CCLKUS I AA15 GPIO_00 I/O AA21 GPIO_01 I/O AA22 GPIO_02 I/O Y22 GPIO_03 I/O Y21 GPIO_04 I/O H21 GPIO_05 I/O G21 GPIO_06 I/O F21 GPIO_07 I/O E20 GPIO_08 I/O E21 GPIO_09 I/O D20 GPIO_10 I/O C20 GPIO_11 I/O D21 GPIO_12 I/O C21 GPIO_13 I/O B21 GPIO_14 I/O A21 GPIO_15 I/O A20 JTAG_TCK I W1 JTAG_TDI I Y1 JTAG_TDO O T4 JTAG_TMS I U2 JTAG_TRST_N I T2 MSMBADDR_1 I B8 MSMBADDR_2 I B7 MSMBADDR_3 I B6 MSMBADDR_4 I C5 MSMBCLK I/O B5 MSMBDAT I/O C4 I C3 MSMBSMODE No Connection General Purpose Input/Output Advance Information Signal Name JTAG SMBus System See Table 20 PE0RN00 I AB5 PE0RN01 I AB8 PE0RN02 I AB14 PCI Express Table 23 89PES16T4G2 Alphabetical Signal List (Part 1 of 4) 24 of 32 September 4, 2007 Signal Name I/O Type Location Signal Category PE0RN03 I AB17 PCI Express (Cont.) PE0RP00 I AB6 PE0RP01 I AB9 PE0RP02 I AB15 PE0RP03 I AB18 PE0TN00 O Y5 PE0TN01 O Y8 PE0TN02 O Y14 PE0TN03 O Y17 PE0TP00 O Y4 PE0TP01 O Y7 PE0TP02 O Y13 PE0TP03 O Y16 PE2RN00 I E1 PE2RN01 I H1 PE2RN02 I P1 PE2RN03 I U1 PE2RP00 I F1 PE2RP01 I J1 PE2RP02 I R1 PE2RP03 I V1 PE2TN00 O E3 PE2TN01 O H3 PE2TN02 O P3 PE2TN03 O U3 PE2TP00 O D3 PE2TP01 O G3 PE2TP02 O N3 PE2TP03 O T3 PE4RN00 I V22 PE4RN01 I R22 PE4RN02 I J22 PE4RN03 I F22 PE4RP00 I U22 PE4RP01 I P22 PE4RP02 I H22 Advance Information IDT 89HPES16T4G2 Data Sheet Table 23 89PES16T4G2 Alphabetical Signal List (Part 2 of 4) 25 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet I/O Type Location Signal Category PE4RP03 I E22 PCI Express (Cont.) PE4TN00 O V20 PE4TN01 O R20 PE4TN02 O J20 PE4TN03 O F20 PE4TP00 O W20 PE4TP01 O T20 PE4TP02 O K20 PE4TP03 O G20 PE6RN00 I A18 PE6RN01 I A15 PE6RN02 I A9 PE6RN03 I A6 PE6RP00 I A17 PE6RP01 I A14 PE6RP02 I A8 PE6RP03 I A5 PE6TN00 O C18 PE6TN01 O C15 PE6TN02 O C9 PE6TN03 O C6 PE6TP00 O C19 PE6TP01 O C16 PE6TP02 O C10 PE6TP03 O C7 PEREFCLKN0 I AB12 PEREFCLKP0 I AB11 PERSTN I Y19 System REFCLKM I B20 PCI Express REFRES0 I/O AA12 SerDes Reference Resistors REFRES2 I/O M2 REFRES4 I/O L21 REFRES6 I/O B11 RSTHALT I Y20 Advance Information Signal Name System Table 23 89PES16T4G2 Alphabetical Signal List (Part 3 of 4) 26 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet I/O Type Location Signal Category SSMBADDR_1 I B4 SMBus SSMBADDR_2 I B3 SSMBADDR_3 I B2 SSMBADDR_5 I B1 SSMBCLK I/O C1 SSMBDAT I/O C2 SWMODE_0 I AA17 SWMODE_1 I Y18 SWMODE_2 I AA18 SMBus System VDDCORE, VDDI/O, VDDPEA, VDDPEHA, VDDPETA See Table 21 for a listing of power pins. VSS See Table 22 for a listing of ground pins. Advance Information Signal Name Table 23 89PES16T4G2 Alphabetical Signal List (Part 4 of 4) 27 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet PES16T4G2 Pinout — Top View 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 A A B B C C X D X X X X D E E F F X G G X H H J J X K K L L M M X N N P P X R X R T T U U V V X X W X X X W Y Y AA AA AB AB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 VDDPETA (Transmitter Power) Signals VDDI/O (Power) VDDPEA (Analog Power) No Connect Vss (Ground) VDDPEHA (High Analog Power) VDDCore (Power) X 28 of 32 September 4, 2007 Advance Information 1 IDT 89HPES16T4G2 Data Sheet Advance Information PES16T4G2 Package Drawing — 288-Pin BX288/BXG288 29 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Advance Information PES16T4G2 Package Drawing — Page Two 30 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Revision History May 4, 2007: Initial publication of Advanced data sheet. Advance Information September 4, 2007: Added values to Table 16, Thermal Specifications. 31 of 32 September 4, 2007 IDT 89HPES16T4G2 Data Sheet Ordering Information A AAA NNAN Product Family Operating Voltage Device Family Product Detail AN AA AAA Generation Device Revision Series Legend A = Alpha Character N = Numeric Character A Package Temp Range Blank Commercial Temperature (0°C to +70°C Ambient) BX BX288 288-ball SBGA BXG BXG288 288-ball SBGA, Green ZA ZA revision G2 Generation 2 16T4 16-lane, 4-port PES PCI Express Switch H 1.0V +/- 0.1V Core Voltage 89 Serial Switching Product Valid Combinations 89HPES16T4G2ZABX 288-ball SBGA package, Commercial Temperature 89HPES16T4G2ZABXG 288-ball Green SBGA package, Commercial Temperature ® CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com 32 of 32 for Tech Support: email: [email protected] phone: 408-284-8208 September 4, 2007 Advance Information NN