89HPES24NT3 Data Sheet 24-Lane 3-Port Non-Transparent PCI Express® Switch Preliminary Information* ® Device Overview Flexible Architecture with Numerous Configuration Options – Port arbitration schemes utilizing round robin – Supports automatic per port link width negotiation (x8, x4, x2, or x1) – Static lane reversal on all ports – Automatic polarity inversion on all lanes – Supports locked transactions, allowing use with legacy software – Ability to load device configuration from serial EEPROM – Ability to control device via SMBus ◆ Non-Transparent Port – Crosslink support on NTB port – Four mapping windows supported • Each may be configured as a 32-bit memory or I/O window • May be paired to form a 64-bit memory window – Interprocessor communication • Thirty-two inbound and outbound doorbells • Four inbound and outbound message registers • Two shared scratchpad registers – Allows up to sixteen masters to communicate through the nontransparent port – No limit on the number of supported outstanding transactions through the non-transparent bridge – Completely symmetric non-transparent bridge operation allows similar/same configuration software to be run – Supports direct connection to a transparent or non-transparent port of another switch ◆ The 89HPES24NT3 is a member of the IDT PRECISE™ family of PCI Express® switching solutions offering the next-generation I/O interconnect standard. The PES24NT3 is a 24-lane, 3-port peripheral chip that performs PCI Express Base switching with a feature set optimized for high performance applications such as servers, storage, and communications/networking. It provides high-performance switching functions between a PCIe® upstream port, a transparent downstream port, and a non-transparent downstream port. With non-transparent bridging (NTB) functionality, the PES24NT3 can be used standalone or as a chipset with IDT PCIe System Interconnect Switches in multi-host and intelligent I/O applications such as communications, storage, and blade servers where inter-domain communication is required. Features ◆ High Performance PCI Express Switch – Twenty-four PCI Express lanes (2.5Gbps), three switch ports – Delivers 96 Gbps (12 GBps) of aggregate switching capacity – Low latency cut-through switch architecture – Support for Max Payload size up to 2048 bytes – Supports one virtual channel and eight traffic classes – PCI Express Base specification Revision 1.0a compliant Block Diagram 3-Port Switch Core Frame Buffer Port Arbitration Route Table Scheduler Transaction Layer Transaction Layer Transaction Layer Data Link Layer Data Link Layer Data Link Layer Multiplexer / Demultiplexer Phy Logical Layer Phy Logical Layer SerDes SerDes ... Multiplexer / Demultiplexer Phy Logical Layer Phy Logical Layer Phy Logical Layer SerDes SerDes SerDes ... NonTransparent Bridge Multiplexer / Demultiplexer Phy Logical Layer Phy Logical Layer Phy Logical Layer SerDes SerDes SerDes ... Phy Logical Layer SerDes 24 PCI Express Lanes x8 Upstream Port and Two x8 Downstream Ports Figure 1 Internal Block Diagram IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. 1 of 31 © 2007 Integrated Device Technology, Inc. *Notice: The information in this document is subject to change without notice April 11, 2007 DSC 6925 IDT 89HPES24NT3 Data Sheet Highly Integrated Solution – Requires no external components – Incorporates on-chip internal memory for packet buffering and queueing – Integrates twenty-four 2.5 Gbps embedded full duplex SerDes, 8B/10B encoder/decoder (no separate transceivers needed) ◆ Reliability, Availability, and Serviceability (RAS) Features – Upstream port can be dynamically swapped with non-transparent downstream port to support failover applications – Internal end-to-end parity protection on all TLPs ensures data integrity even in systems that do not implement end-to-end CRC (ECRC) – Supports ECRC pass-through in transparent and non-transparent ports – Supports Hot-Swap ◆ Power Management – Supports PCI Power Management Interface specification, Revision 1.1 (PCI-PM) – Unused SerDes are disabled ◆ Testability and Debug Features – Built in SerDes Pseudo-Random Bit Stream (PRBS) generator – Ability to read and write any internal register via the SMBus – Ability to bypass link training and force any link into any mode – Provides statistics and performance counters ◆ Two SMBus Interfaces – Slave interface provides full access to all software-visible registers by an external SMBus master – Master interface provides connection for an optional serial EEPROM used for initialization – Master interface is also used by an external Hot-Plug I/O expander – Master and slave interfaces may be tied together so the switch can act as both master and slave ◆ Eight General Purpose Input/Output pins ◆ Packaged in 27x27mm 420-ball BGA with 1mm ball spacing ◆ Classes (TCs) and one Virtual Channel (VC) with sophisticated resource management. This includes round robin port arbitration, guaranteeing bandwidth allocation and/or latency for critical traffic classes in applications such as high throughput 10 GbE I/Os, SATA controllers, and Fibre Channel HBAs. Switch Configuration The PES24NT3 is a three port switch that contains 24 PCI Express lanes. Each of the three ports is statically allocated 8 lanes with ports labeled as A, B and C. Port A is the upstream port, port B is the transparent downstream port, and port C is the non-transparent downstream port. During link training, link width is automatically negotiated. Each PES24NT3 port is capable of independently negotiating to a x8, x4, x2 or x1 width. Thus, the PES24NT3 may be used in virtually any three port switch configuration (e.g., {x8, x8, x8}, {x4, x4, x4}, {x4, x2, x1}, etc.). The PES24NT3 supports static lane reversal. For example, lane reversal for upstream port A may be configured by asserting the PCI Express Port A Lane Reverse (PEALREV) input signal or through serial EEPROM or SMBus initialization. Lane reversal for ports B and C may be enabled via a configuration space register, serial EEPROM, or the SMBus. Product Description Utilizing standard PCI Express interconnect, the PES24NT3 provides the most efficient high-performance I/O connectivity solution for applications requiring high throughput, low latency, and simple board layout with a minimum number of board layers. With support for non-transparent bridging, the PES24NT3, as a standalone switch or as a chipset with IDT PCIe System Interconnect Switches, enables multi-host and intelligent I/O applications requiring inter-domain communication. The PES24NT3 provides 96 Gbps (12 GBps) of aggregated, full-duplex switching capacity through 24 integrated serial lanes, using proven and robust IDT technology. Each lane provides 2.5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base specification 1.0a. The PES24NT3 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and Transaction layers in compliance with PCI Express Base specification Revision 1.0a. The PES24NT3 can operate either as a store and forward or cut-through switch depending on the packet size and is designed to switch memory and I/O transactions. It supports eight Traffic 2 of 31 *Notice: The information in this document is subject to change without notice April 11, 2007 IDT 89HPES24NT3 Data Sheet CPU CPU CPU PES24NT3 PES24NT3 PES24NT3 PCIe System Interconnect Switch PCIe System Interconnect Switch Embedded CPU Embedded CPU FC SATA / SAS Embedded CPU GbE / 10GigE Figure 2 PCIe System Interconnect Architecture Block Diagram Controller 1 Controller 2 CPU CPU Cache Maint. & Possible Data Flow x8 PCIe x8 PCIe PES24N3 PES24N3 x8 PCIe FC Controller FC Controller Storage To Server FC 2Gb/s and FC 2Gb/s and 4Gb/s 4Gb/s To Server Figure 3 Dual Host Storage System 3 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Pin Description The following tables list the functions of the pins provided on the PES24NT3. Some of the functions listed may be multiplexed onto the same pin. The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level. Signal Type Name/Description PEALREV I PCI Express Port A Lane Reverse. When this bit is asserted, the lanes of PCI Express Port A are reversed. This value may be overridden by modifying the value of the PALREV bit in the PA_SWCTL register. PEARP[7:0] PEARN[7:0] I PCI Express Port A Serial Data Receive. Differential PCI Express receive pairs for port A. PEATP[7:0] PEATN[7:0 O PCI Express Port A Serial Data Transmit. Differential PCI Express transmit pairs for port A PEBLREV I PCI Express Port B Lane Reverse. When this bit is asserted, the lanes of PCI Express Port B are reversed. This value may be overridden by modifying the value of the PBLREV bit in the PA_SWCTL register. PEBRP[7:0] PEBRN[7:0] I PCI Express Port B Serial Data Receive. Differential PCI Express receive pairs for port B. PEBTP[7:0] PEBTN[7:0] O PCI Express Port B Serial Data Transmit. Differential PCI Express transmit pairs for port B PECLREV I PCI Express Port C Lane Reverse. When this bit is asserted, the lanes of PCI Express Port C are reversed. This value may be overridden by modifying the value of the PCLREV bit in the PA_SWCTL register. PECRP[7:0] PECRN[7:0] I PCI Express Port C Serial Data Receive. Differential PCI Express receive pairs for port C. PECTP[7:0] PECTN[7:0] O PCI Express Port C Serial Data Transmit. Differential PCI Express transmit pairs for port C PEREFCLKP[1:0] PEREFCLKN[1:0] I PCI Express Reference Clock. Differential reference clock pair input. This clock is used as the reference clock by on-chip PLLs to generate the clocks required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal. REFCLKM I PCI Express Reference Clock Mode Select. These signals select the frequency of the reference clock input. 0x0 - 100 MHz 0x1 - 125 MHz Table 1 PCI Express Interface Pins Signal Type Name/Description MSMBADDR[4:1] I Master SMBus Address. These pins determine the SMBus address of the serial EEPROM from which configuration information is loaded. MSMBCLK I/O Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the master SMBus. It is active and generating the clock only when the EEPROM or I/O Expanders are being accessed. MSMBDAT I/O Master SMBus Data. This bidirectional signal is used for data on the master SMBus. Table 2 SMBus Interface Pins (Part 1 of 2) 4 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Type Name/Description SSMBADDR[5,3:1] I SSMBCLK I/O Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus. SSMBDAT I/O Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus. Slave SMBus Address. These pins determine the SMBus address to which the slave SMBus interface responds. Table 2 SMBus Interface Pins (Part 2 of 2) Signal Type Name/Description GPIO[0] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PEBRSTN Alternate function pin type: Output Alternate function: Reset output for downstream port B GPIO[1] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PECRSTN Alternate function pin type: Output Alternate function: Reset output for downstream port C GPIO[2] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PALINKUPN Alternate function pin type: Output Alternate function: Port A link up status output GPIO[3] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PBLINKUPN Alternate function pin type: Output Alternate function: Port B link up status output GPIO[4] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCLINKUPN Alternate function pin type: Output Alternate function: Port C link up status output GPIO[5] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: FAILOVERP Alternate function pin type: Input Alternate function: NTB upstream port failover GPIO[6] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[7] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Table 3 General Purpose I/O Pins 5 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Type Name/Description CCLKDS I Common Clock Downstream. When the CCLKDS pin is asserted, it indicates that a common clock is being used between the downstream device and the downstream port. CCLKUS I Common Clock Upstream. When the CCLKUS pin is asserted, it indicates that a common clock is being used between the upstream device and the upstream port. MSMBSMODE I Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus should operate at 100 KHz instead of 400 KHz. This value may not be overridden. PENTBRSTN I Non-Transparent Bridge Reset. Assertion of this signal indicates a reset on the external side of the non-transparent bridge. This signal is only used when the switch mode selects a non-transparent mode and has no effect otherwise. PERSTN I Fundamental Reset. Assertion of this signal resets all logic inside the PES24NT3 and initiates a PCI Express fundamental reset. RSTHALT I Reset Halt. When this signal is asserted during a PCI Express fundamental reset, the PES24NT3 executes the reset procedure and remains in a reset state with the Master and Slave SMBuses active. This allows software to read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is cleared in the PA_SWCTL register by an SMBus master. SWMODE[3:0] I Switch Mode. These configuration pins determine the PES24NT3 switch operating mode. 0x0 - Reserved 0x1 - Reserved 0x2 - Non-transparent mode 0x3 - Non-transparent mode with serial EEPROM initialization 0x4 - Non-transparent failover mode 0x5 - Non-transparent failover mode with serial EEPROM initialization 0x6 through 0xF - Reserved Table 4 System Pins Signal Type Name/Description JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system clock with a nominal 50% duty cycle. JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic or JTAG Controller. Table 5 Test Pins (Part 1 of 2) 6 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Type Name/Description JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary scan logic or JTAG Controller. When no data is being shifted out, this signal is tri-stated. JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary scan logic and JTAG TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in functional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board Table 5 Test Pins (Part 2 of 2) Signal Type Name/Description VDDCORE I Core VDD. Power supply for core logic. VDDIO I I/O VDD. LVTTL I/O buffer power supply. VDDPE I PCI Express Digital Power. PCI Express digital power used by the digital power of the SerDes. VDDAPE I PCI Express Analog Power. PCI Express analog power used by the PLL and bias generator. VTTPE I PCI Express Termination Power. VSS I Ground. Table 6 Power and Ground Pins 7 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Pin Characteristics Note: Some input pads of the PES24NT3 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left floating can cause a slight increase in power consumption. Function PCI Express Interface SMBus Type Buffer I/O Type Internal Resistor PEALREV I LVTTL Input pull-down PEARN[7:0] I CML Serial link PEARP[7:0] I PEATN[7:0] O PEATP[7:0] O PEBLREV I LVTTL Input PEBRN[7:0] I CML Serial link Pin Name PEBRP[7:0] I PEBTN[7:0] O PEBTP[7:0] O PECLREV I LVTTL Input PECRN[7:0] I CML Serial link PECRP[7:0] I PECTN[7:0] O PECTP[7:0] O pull-down pull-down PEREFCLKN[1:0] I PEREFCLKP[1:0] I LVPECL/ CML Diff. Clock Input REFCLKM I LVTTL Input pull-down MSMBADDR[4:1] I LVTTL Input pull-up MSMBCLK I/O MSMBDAT I/O SSMBADDR[5,3:1] SSMBCLK Notes Refer to Table 8 STI I Input I/O STI pull-up SSMBDAT I/O General Purpose I/O GPIO[7:0] I/O LVTTL Input, High Drive pull-up System Pins CCLKDS I LVTTL Input pull-up CCLKUS I pull-up MSMBSMODE I pull-down PENTBRSTN I PERSTN I RSTHALT I pull-down SWMODE[3:0] I pull-up Table 7 Pin Characteristics (Part 1 of 2) 8 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Function JTAG Type Buffer I/O Type Internal Resistor JTAG_TCK I LVTTL STI pull-up JTAG_TDI I JTAG_TDO O Low Drive JTAG_TMS I STI JTAG_TRST_N I Pin Name Notes pull-up pull-up pull-up External pull-down Table 7 Pin Characteristics (Part 2 of 2) 9 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Logic Diagram — PES24NT3 PEATP[0] PEATN[0] PEARP[1] PEARN[1] PEATP[1] PEATN[1] ... PEALREV PEARP[0] PEARN[0] PEARP[7] PEARN[7] PEATP[7] PEATN[7] PEBLREV PEBRP[0] PEBRN[0] PEBTP[0] PEBTN[0] PEBRP[1] PEBRN[1] PEBTP[1] PEBTN[1] ... PCI Express Switch SerDes Input Port B 2 ... PCI Express Switch SerDes Input Port A 2 PEREFCLKP PEREFCLKN REFCLKM ... Reference Clocks PEBRP[7] PEBRN[7] PES24NT3 PECTP[0] PECTN[0] PECTP[1] PECTN[1] ... ... PECRP[1] PECRN[1] PECRP[7] PECRN[7] Master SMBus Interface Slave SMBus Interface MSMBADDR[4:1] MSMBCLK MSMBDAT SSMBADDR[5,3:1] SSMBCLK SSMBDAT PCI Express Switch SerDes Output Port B PEBTP[7] PEBTN[7] PECLREV PECRP[0] PECRN[0] PCI Express Switch SerDes Input Port C PCI Express Switch SerDes Output Port A PCI Express Switch SerDes Output Port C PECTP[7] PECTN[7] 4 8 GPIO[7:0] JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_TRST_N 4 General Purpose I/O JTAG PENTBRSTN System Functions MSMBSMODE CCLKDS CCLKUS RSTHALT PERSTN VDDCORE VDDIO VDDPE VDDAPE VSS PENTBRSTN SWMODE[3:0] VTTPE 4 Power/Ground Figure 4 PES24NT3 Logic Diagram 10 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet System Clock Parameters Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 12 and 13. Parameter Description Min RefclkFREQ Input reference clock frequency range 100 RefclkDC2 Duty cycle of input clock 40 TR, TF Rise/Fall time of input clocks VSW Differential input voltage swing4 Tjitter Input clock jitter (cycle-to-cycle) Typical 50 0.6 Max Unit 1251 MHz 60 % 0.2*RCUI RCUI3 1.6 V 125 ps Table 8 Input Clock Requirements 1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM. 2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors. 3. RCUI (Reference Clock Unit Interval) refers to the reference clock period. 4. AC coupling required. AC Timing Characteristics Parameter Description Min1 Typical1 Max1 Units 399.88 400 400.12 ps 0.7 .9 PCIe Transmit UI Unit Interval TTX-EYE Minimum Tx Eye Width TTX-EYE-MEDIAN-toMAX-JITTER Maximum time between the jitter median and maximum deviation from the median TTX-RISE, TTX-FALL D+ / D- Tx output rise/fall time 50 TTX- IDLE-MIN Minimum time in idle 50 TTX-IDLE-SET-TO- Maximum time to transition to a valid Idle after sending an Idle ordered set 20 UI IDLE TTX-IDLE-TO-DIFF- Maximum time to transition from valid idle to diff data 20 UI 500 1300 ps 400 400.12 ps UI 0.15 90 UI ps UI DATA TTX-SKEW Transmitter data skew between any 2 lanes PCIe Receive UI Unit Interval 399.88 TRX-EYE (with jitter) Minimum Receiver Eye Width (jitter tolerance) TRX-EYE-MEDIUM TO Max time between jitter median & max deviation 0.3 UI Unexpected Idle Enter Detect Threshold Integration Time 10 ms Lane to lane input skew 20 ns 0.4 UI MAX JITTER TRX-IDLE-DET-DIFFENTER TIME TRX-SKEW Table 9 PCIe AC Timing Characteristics 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1 11 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Symbol Reference Min Max Unit Edge Timing Diagram Reference GPIO GPIO[7:0]1 Tpw_13b2 None 50 — ns Table 10 GPIO AC Timing Characteristics 1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous. 2. Signal The values for this symbol were determined by calculation, not by testing. Symbol Reference Edge Min Max Unit Timing Diagram Reference Tper_16a none 50.0 — ns See Figure 5. 10.0 25.0 ns 2.4 — ns 1.0 — ns — 20 ns — 20 ns 25.0 — ns JTAG JTAG_TCK Thigh_16a, Tlow_16a JTAG_TMS1, JTAG_TDI JTAG_TDO Tsu_16b JTAG_TCK rising Thld_16b Tdo_16c JTAG_TCK falling Tdz_16c2 JTAG_TRST_N Tpw_16d2 none Table 11 JTAG AC Timing Characteristics 1. The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state. 2. The values for this symbol were determined by calculation, not by testing. 12 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Tlow_16a Tper_16a Thigh_16a JTAG_TCK Thld_16b Tsu_16b JTAG_TDI Thld_16b Tsu_16b JTAG_TMS Tdo_16c Tdz_16c JTAG_TDO Tpw_16d JTAG_TRST_N Figure 5 JTAG AC Timing Waveform Recommended Operating Supply Voltages Symbol Parameter Minimum Typical Maximum Unit VDDCORE Internal logic supply 0.9 1.0 1.1 V VDDI/O I/O supply except for SerDes LVPECL/CML 3.0 3.3 3.6 V VDDPE PCI Express Digital Power 0.9 1.0 1.1 V VDDAPE PCI Express Analog Power 0.9 1.0 1.1 V VTTPE PCI Express Serial Data Transmit Termination Voltage 1.425 1.5 1.575 V VSS Common ground 0 0 0 V Table 12 PES24NT3 Operating Voltages Power-Up Sequence This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the PES24NT3, the power-up sequence must be as follows: 1. VDDI/O — 3.3V 2. VDDCore, VDDPE, VDDAPE — 1.0V 3. VTTPE — 1.5V When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the power-up sequence. 13 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Recommended Operating Temperature Grade Temperature Commercial 0°C to +70°C Ambient Table 13 PES24NT3 Operating Temperatures Power Consumption Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 14. Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in Table 14. All power measurements assume that the part is mounted on a 10 layer printed circuit board with 0 LFM airflow. Number of Connected Lanes: Port-A/Port-B/Port-C Core (Watts) (1.0V supply) PCIe Digital (Watts) (1.0V supply) PCIe Analog (Watts) (1.0V supply) PCIe Termination (Watts) (1.5V supply) I/O (Watts) (3.3V supply) Total (Watts) Typ Max Typ Max Typ Max Typ Max Typ Max Typ Max 8/4/4 0.59 0.84 0.75 1.08 0.33 0.42 0.62 0.78 0.002 0.01 2.3 3.12 8/8/8 0.68 0.95 0.98 1.43 0.38 0.48 0.88 1.01 0.002 0.01 2.92 3.88 Table 14 PES24NT3 Power Consumption 14 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet DC Electrical Characteristics Values based on systems running at recommended supply voltages, as shown in Table 12. Note: See Table 7, Pin Characteristics, for a complete I/O listing. I/O Type Serial Link Parameter Typ1 Max1 Unit 800 1200 mV -3 -4 dB 3.7 V Conditions PCIe Transmit VTX-DIFFp-p VTX-DE-RATIO Differential peak-to-peak output voltage De-emphasized differential output voltage VTX-DC-CM DC Common mode voltage VTX-CM-ACP RMS AC peak common mode output voltage 20 mV VTX-CM-DC- Abs delta of DC common mode voltage between L0 and idle 100 mV Abs delta of DC common mode voltage between D+ and D- 25 mV Electrical idle diff peak output 20 mV Voltage change during receiver detection 600 mV active-idle-delta VTX-CM-DC-linedelta VTX-Idle-DiffP Serial Link (cont.) Min1 Description VTX-RCV-Detect -0.1 1 RLTX-DIFF Transmitter Differential Return loss 12 dB RLTX-CM Transmitter Common Mode Return loss 6 dB ZTX-DEFF-DC DC Differential TX impedance 80 100 120 Ω ZOSE Single ended TX Impedance 40 50 60 Ω Transmitter Eye Diagram TX Eye Height (De-emphasized bits) 505 650 mV Transmitter Eye Diagram TX Eye Height (Transition bits) 800 950 mV VRX-DIFFp-p Differential input voltage (peak-to-peak) 175 VRX-CM-AC Receiver common-mode voltage for AC coupling RLRX-DIFF Receiver Differential Return Loss 15 dB RLRX-CM Receiver Common Mode Return Loss 6 dB Differential input impedance (DC) 80 100 120 Ω Single-ended input impedance 40 50 60 Ω 200k 350k PCIe Receive ZRX-DIFF-DC ZRX-COMM-DC ZRX-COMM-HIGH- Powered down input common mode impedance (DC) Z-DC VRX-IDLE-DET- Electrical idle detect threshold 65 Input Capacitance 1.5 1200 mV 150 mV Ω 175 mV DIFFp-p PCIe REFCLK CIN — pF Table 15 DC Electrical Characteristics (Part 1 of 2) 15 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet I/O Type Min1 Typ1 Max1 Unit Conditions IOL — 2.5 — mA VOL = 0.4v IOH — -5.5 — mA VOH = 1.5V IOL — 12.0 — mA VOL = 0.4v IOH — -20.0 — mA VOH = 1.5V Parameter Description Other I/Os LOW Drive Output High Drive Output Schmitt Trigger Input (STI) VIL -0.3 — 0.8 V — VIH 2.0 — VDDIO + 0.5 V — Input VIL -0.3 — 0.8 V — VIH 2.0 — VDDIO + 0.5 V — CIN — — 8.5 pF — Inputs — — + 10 μA VDDI/O (max) I/OLEAK W/O Pull-ups/downs — — + 10 μA VDDI/O (max) I/OLEAK WITH Pull-ups/downs — — + 80 μA VDDI/O (max) Capacitance Leakage Table 15 DC Electrical Characteristics (Part 2 of 2) 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a. 16 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Package Pinout — 420-BGA Signal Pinout for PES24NT3 The following table lists the pin numbers and signal names for the PES24NT3 device. Pin Function Alt Pin Function Alt Pin Function Alt Pin Function A1 VSS B9 MSMBDAT C17 VDDIO D25 VSS A2 VSS B10 SSMBADDR_2 C18 VSS D26 PEREFCLKN2 A3 VSS B11 SSMBADDR_5 C19 VDDIO E1 VSS A4 JTAG_TDI B12 SSMBDAT C20 VSS E2 VSS A5 JTAG_TMS B13 PEALREV C21 VDDIO E3 VSS A6 MSMBADDR_1 B14 SWMODE_0 C22 VSS E4 VSS A7 MSMBADDR_3 B15 SWMODE_2 C23 VDDIO E5 VSS A8 MSMBCLK B16 PECLREV C24 VSS E6 VDDCORE A9 SSMBADDR_1 B17 PENTBRSTN C25 VSS E7 VDDCORE A10 SSMBADDR_3 B18 GPIO_00 1 C26 PEREFCLKP2 E8 VSS A11 SSMBCLK B19 GPIO_02 1 D1 PEREFCLKP1 E9 VDDCORE A12 CCLKUS B20 GPIO_04 1 D2 VSS E10 VSS A13 CCLKDS B21 GPIO_06 D3 VSS E11 VDDCORE A14 PEBLREV B22 MSMBSMODE D4 VSS E12 VSS A15 SWMODE_1 B23 REFCLKM D5 VDDCORE E13 VDDCORE A16 SWMODE_3 B24 VDDIO D6 VDDCORE E14 VSS A17 PERSTN B25 VSS D7 VSS E15 VDDCORE A18 RSTHALT B26 VSS D8 VDDCORE E16 VSS A19 GPIO_01 1 C1 PEREFCLKN1 D9 VSS E17 VDDCORE A20 GPIO_03 1 C2 VSS D10 VDDCORE E18 VSS A21 GPIO_05 1 C3 VSS D11 VSS E19 VDDCORE A22 GPIO_07 C4 VDDCORE D12 VDDCORE E20 VDDCORE A23 VSS C5 VDDIO D13 VDDCORE E21 VDDCORE A24 VSS C6 VSS D14 VSS E22 VSS A25 VSS C7 VDDIO D15 VDDCORE E23 VSS A26 VSS C8 VSS D16 VSS E24 VSS B1 VSS C9 VDDIO D17 VDDCORE E25 VSS B2 VSS C10 VSS D18 VDDCORE E26 VSS B3 VDDIO C11 VDDIO D19 VDDCORE F1 VDDCORE B4 JTAG_TCK C12 VSS D20 VSS F2 VDDCORE B5 JTAG-TDO C13 VDDIO D21 VDDCORE F3 VDDAPE B6 JTAG-TRST_N C14 VDDCORE D22 VDDCORE F4 VSS B7 MSMBADDR_2 C15 VDDIO D23 VSS F5 VSS B8 MSMBADDR_4 C16 VDDCORE D24 VSS F22 VSS Alt Table 16 PES24NT3 420-pin Signal Pin-Out (Part 1 of 3) 17 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function F23 VSS K4 VDDAPE P1 VDDCORE U24 VDDPE F24 VDDAPE K5 VDDAPE P2 VSS U25 PECTP05 F25 VDDCORE K22 VDDAPE P3 VTTPE U26 PECTN05 F26 VDDCORE K23 VDDAPE P4 VTTPE V1 VDDCORE G1 PEBTN07 K24 VDDAPE P5 VSS V2 VSS G2 PEBTP07 K25 VSS P22 VSS V3 VDDAPE G3 VDDPE K26 VSS P23 VTTPE V4 VDDAPE G4 PEBRN07 L1 PEBTN05 P24 VTTPE V5 VDDAPE G5 PEBRP07 L2 PEBTP05 P25 VSS V22 VDDAPE G22 PECRP00 L3 VDDPE P26 VDDCORE V23 VDDAPE G23 PECRN00 L4 PEBRN05 R1 PEBTN03 V24 VDDAPE G24 VDDPE L5 PEBRP05 R2 PEBTP03 V25 VSS G25 PECTP00 L22 PECRP02 R3 VDDPE V26 VDDCORE G26 PECTN00 L23 PECRN02 R4 PEBRN03 W1 PEBTN01 H1 VSS L24 VDDPE R5 PEBRP03 W2 PEBTP01 H2 VSS L25 PECTP02 R22 PECRP04 W3 VDDPE H3 VTTPE L26 PECTN02 R23 PECRN04 W4 PEBRN01 H4 VTTPE M1 VDDCORE R24 VDDPE W5 PEBRP01 H5 VSS M2 VSS R25 PECTP04 W22 PECRP06 H22 VSS M3 VTTPE R26 PECTN04 W23 PECRN06 H23 VTTPE M4 VTTPE T1 VDDCORE W24 VDDPE H24 VTTPE M5 VSS T2 VSS W25 PECTP06 H25 VSS M22 VSS T3 VDDAPE W26 PECTN06 H26 VSS M23 VTTPE T4 VDDAPE Y1 VSS J1 PEBTN06 M24 VTTPE T5 VSS Y2 VSS J2 PEBTP06 M25 VSS T22 VSS Y3 VTTPE J3 VDDPE M26 VDDCORE T23 VDDAPE Y4 VTTPE J4 PEBRN06 N1 PEBTN04 T24 VDDAPE Y5 VSS J5 PEBRP06 N2 PEBTP04 T25 VSS Y22 VSS J22 PECRP01 N3 VDDPE T26 VDDCORE Y23 VTTPE J23 PECRN01 N4 PEBRN04 U1 PEBTN02 Y24 VTTPE J24 VDDPE N5 PEBRP04 U2 PEBTP02 Y25 VSS J25 PECTP01 N22 PECRP03 U3 VDDPE Y26 VSS J26 PECTN01 N23 PECRN03 U4 PEBRN02 AA1 PEBTN00 K1 VSS N24 VDDPE U5 PEBRP02 AA2 PEBTP00 K2 VSS N25 PECTP03 U22 PECRP05 AA3 VDDPE K3 VDDAPE N26 PECTN03 U23 PECRN05 AA4 PEBRN00 Alt Table 16 PES24NT3 420-pin Signal Pin-Out (Part 2 of 3) 18 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function AA5 PEBRP00 AC3 VDDCORE AD11 VDDPE AE19 PEATP01 AA22 PECRP07 AC4 VDDCORE AD12 VTTPE AE20 VSS AA23 PECRN07 AC5 VDDCORE AD13 VDDPE AE21 PEATP00 AA24 VDDPE AC6 VTTPE AD14 VTTPE AE22 VSS AA25 PECTP07 AC7 PEARN07 AD15 VDDPE AE23 VDDCORE AA26 PECTN07 AC8 VDDAPE AD16 VDDAPE AE24 VDDCORE AB1 VSS AC9 PEARN06 AD17 VSS AE25 VSS AB2 VSS AC10 VDDAPE AD18 VDDPE AE26 VSS AB3 VDDCORE AC11 PEARN05 AD19 VDDPE AF1 VSS AB4 VDDCORE AC12 VTTPE AD20 VTTPE AF2 VSS AB5 VDDCORE AC13 PEARN04 AD21 VDDPE AF3 VDDCORE AB6 VSS AC14 VTTPE AD22 VSS AF4 VDDCORE AB7 PEARP07 AC15 PEARN03 AD23 VDDCORE AF5 VDDCORE AB8 VSS AC16 VDDAPE AD24 VDDCORE AF6 VSS AB9 PEARP06 AC17 PEARN02 AD25 VSS AF7 PEATN07 AB10 VDDAPE AC18 VDDAPE AD26 VSS AF8 VSS AB11 PEARP05 AC19 PEARN01 AE1 VSS AF9 PEATN06 AB12 VSS AC20 VTTPE AE2 VSS AF10 VDDCORE AB13 PEARP04 AC21 PEARN00 AE3 VDDCORE AF11 PEATN05 AB14 VDDAPE AC22 VSS AE4 VDDCORE AF12 VDDCORE AB15 PEARP03 AC23 VDDCORE AE5 VSS AF13 PEATN04 AB16 VSS AC24 VDDCORE AE6 VSS AF14 VDDCORE AB17 PEARP02 AC25 VSS AE7 PEATP07 AF15 PEATN03 AB18 VDDAPE AC26 VSS AE8 VSS AF16 VDDCORE AB19 PEARP01 AD1 VSS AE9 PEATP06 AF17 PEATN02 AB20 VSS AD2 VSS AE10 VSS AF18 VSS AB21 PEARP00 AD3 VDDCORE AE11 PEATP05 AF19 PEATN01 AB22 VSS AD4 VDDCORE AE12 VSS AF20 VSS AB23 VDDCORE AD5 VDDCORE AE13 PEATP04 AF21 PEATN00 AB24 VDDCORE AD6 VTTPE AE14 VSS AF22 VSS AB25 VSS AD7 VSS AE15 PEATP03 AF23 VDDCORE AB26 VSS AD8 VDDPE AE16 VSS AF24 VDDCORE AC1 VSS AD9 VSS AE17 PEATP02 AF25 VSS AC2 VSS AD10 VDDPE AE18 VSS AF26 VSS Alt Table 16 PES24NT3 420-pin Signal Pin-Out (Part 3 of 3) 19 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Power Pins VDDCore VDDCore VDDCore VDDIO VDDPE VDDAPE VTTPE C4 F2 AE3 B3 G3 F3 H3 C14 F25 AE4 B24 G24 F24 H4 C16 F26 AE23 C5 J3 K3 H23 D5 M1 AE24 C7 J24 K4 H24 D6 M26 AF3 C9 L3 K5 M3 D8 P1 AF4 C11 L24 K22 M4 D10 P26 AF5 C13 N3 K23 M23 D12 T1 AF10 C15 N24 K24 M24 D13 T26 AF12 C17 R3 T3 P3 D15 V1 AF14 C19 R24 T4 P4 D17 V26 AF16 C21 U3 T23 P23 D18 AB3 AF23 C23 U24 T24 P24 D19 AB4 AF24 W3 V3 Y3 D21 AB5 W24 V4 Y4 D22 AB23 AA3 V5 Y23 E6 AB24 AA24 V22 Y24 E7 AC3 AD8 V23 AC6 E9 AC4 AD10 V24 AC12 E11 AC5 AD11 AB10 AC14 E13 AC23 AD13 AB14 AC20 E15 AC24 AD15 AB18 AD6 E17 AD3 AD18 AC8 AD12 E19 AD4 AD19 AC10 AD14 E20 AD5 AD21 AC16 AD20 E21 AD23 AC18 F1 AD24 AD16 Table 17 PES24NT3 Power Pins 20 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Ground Pins Vss Vss Vss Vss Vss A1 D11 H1 Y22 AE2 A2 D14 H2 Y25 AE5 A3 D16 H5 Y26 AE6 A23 D20 H22 AB1 AE8 A24 D23 H25 AB2 AE10 A25 D24 H26 AB6 AE12 A26 D25 K1 AB8 AE14 B1 E1 K2 AB12 AE16 B2 E2 K25 AB16 AE18 B25 E3 K26 AB20 AE20 B26 E4 M2 AB22 AE22 C2 E5 M5 AB25 AE25 C3 E8 M22 AB26 AE26 C6 E10 M25 AC1 AF1 C8 E12 P2 AC2 AF2 C10 E14 P5 AC22 AF6 C12 E16 P22 AC25 AF8 C18 E18 P25 AC26 AF18 C20 E22 T2 AD1 AF20 C22 E23 T5 AD2 AF22 C24 E24 T22 AD7 AF25 C25 E25 T25 AD9 AF26 D2 E26 V2 AD17 D3 F4 V25 AD22 D4 F5 Y1 AD25 D7 F22 Y2 AD26 D9 F23 Y5 AE1 Table 18 PES24NT3 Ground Pins 21 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Alternate Signal Functions Pin GPIO Alternate B18 GPIO[0] PEBRSTN A19 GPIO[1] PECRSTN B19 GPIO[2] PALINKUPN A20 GPIO[3] PBLINKUPN B20 GPIO[4] PCLINKUPN A21 GPIO[5] FAILOVERP Table 19 PES24NT3 Alternate Signal Functions Signals Listed Alphabetically Signal Name I/O Type Location Signal Category CCLKDS I A13 System CCLKUS I A12 GPIO_00 I/O B18 GPIO_01 I/O A19 GPIO_02 I/O B19 GPIO_03 I/O A20 GPIO_04 I/O B20 GPIO_05 I/O A21 GPIO_06 I/O B21 GPIO_07 I/O A22 JTAG_TCK I B4 JTAG_TDI I A4 JTAG_TMS I A5 JTAG-TDO O B5 JTAG-TRST_N I B6 MSMBADDR_1 I A6 MSMBADDR_2 I B7 MSMBADDR_3 I A7 MSMBADDR_4 I B8 MSMBCLK I/O A8 MSMBDAT I/O B9 I B22 MSMBSMODE General Purpose Input/Output JTAG SMBus System Table 20 89PES24NT3 Alphabetical Signal List (Part 1 of 5) 22 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Name I/O Type Location Signal Category PEALREV I B13 PCI Express PEARN00 I AC21 PEARN01 I AC19 PEARN02 I AC17 PEARN03 I AC15 PEARN04 I AC13 PEARN05 I AC11 PEARN06 I AC9 PEARN07 I AC7 PEARP00 I AB21 PEARP01 I AB19 PEARP02 I AB17 PEARP03 I AB15 PEARP04 I AB13 PEARP05 I AB11 PEARP06 I AB9 PEARP07 I AB7 PEATN00 O AF21 PEATN01 O AF19 PEATN02 O AF17 PEATN03 O AF15 PEATN04 O AF13 PEATN05 O AF11 PEATN06 O AF9 PEATN07 O AF7 PEATP00 O AE21 PEATP01 O AE19 PEATP02 O AE17 PEATP03 O AE15 PEATP04 O AE13 PEATP05 O AE11 PEATP06 O AE9 PEATP07 O AE7 PEBLREV I A14 PEBRN00 I AA4 PEBRN01 I W4 Table 20 89PES24NT3 Alphabetical Signal List (Part 2 of 5) 23 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Name I/O Type Location Signal Category PEBRN02 I U4 PCI Express PEBRN03 I R4 PEBRN04 I N4 PEBRN05 I L4 PEBRN06 I J4 PEBRN07 I G4 PEBRP00 I AA5 PEBRP01 I W5 PEBRP02 I U5 PEBRP03 I R5 PEBRP04 I N5 PEBRP05 I L5 PEBRP06 I J5 PEBRP07 I G5 PEBTN00 O AA1 PEBTN01 O W1 PEBTN02 O U1 PEBTN03 O R1 PEBTN04 O N1 PEBTN05 O L1 PEBTN06 O J1 PEBTN07 O G1 PEBTP00 O AA2 PEBTP01 O W2 PEBTP02 O U2 PEBTP03 O R2 PEBTP04 O N2 PEBTP05 O L2 PEBTP06 O J2 PEBTP07 O G2 PECLREV I B16 PECRN00 I G23 PECRN01 I J23 PECRN02 I L23 PECRN03 I N23 PECRN04 I R23 Table 20 89PES24NT3 Alphabetical Signal List (Part 3 of 5) 24 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Name I/O Type Location Signal Category PECRN05 I U23 PCI Express PECRN06 I W23 PECRN07 I AA23 PECRP00 I G22 PECRP01 I J22 PECRP02 I L22 PECRP03 I N22 PECRP04 I R22 PECRP05 I U22 PECRP06 I W22 PECRP07 I AA22 PECTN00 O G26 PECTN01 O J26 PECTN02 O L26 PECTN03 O N26 PECTN04 O R26 PECTN05 O U26 PECTN06 O W26 PECTN07 O AA26 PECTP00 O G25 PECTP01 O J25 PECTP02 O L25 PECTP03 O N25 PECTP04 O R25 PECTP05 O U25 PECTP06 O W25 PECTP07 O AA25 PENTBRSTN I B17 System PEREFCLKN1 I C1 PCI Express PEREFCLKN2 I D26 PEREFCLKP1 I D1 PEREFCLKP2 I C26 PERSTN I A17 System REFCLKM I B23 PCI Express RSTHALT I A18 System Table 20 89PES24NT3 Alphabetical Signal List (Part 4 of 5) 25 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Signal Name I/O Type Location Signal Category SSMBADDR_1 I A9 SMBus SSMBADDR_2 I B10 SSMBADDR_3 I A10 SSMBADDR_5 I B11 SSMBCLK I/O A11 SSMBDAT I/O B12 SWMODE_0 I B14 SWMODE_1 I A15 SWMODE_2 I B15 SWMODE_3 I A16 SMBus System System VDDCORE, VDDAPE, VDDIO, VDDPE, VTTPE See Table 17 for a listing of power pins. VSS See Table 18 for a listing of ground pins. Table 20 89PES24NT3 Alphabetical Signal List (Part 5 of 5) 26 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet PES24NT3 Pinout — Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 A B C D E F G H x x x x x x x x x x x x x x x x J K L M N P R T U V W Y AA AB x x x x AC AD x x x x AE AF VDDCore (Power) VDDI/O (Power) x VTTPE (Power) Vss (Ground) Signals VDDPE (Power) VDDAPE (Power) 27 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet PES24NT3 Package Drawing — 420-Pin BX420/BXG420 28 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet PES24NT3 Package Drawing — Page Two 29 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Revision History March 15, 2007: Initial publication of Preliminary data sheet. April 11, 2007: In Table 2, revised description of MSMBCLK. 30 of 31 April 11, 2007 IDT 89HPES24NT3 Data Sheet Ordering Information NN A AAA NNAN AA AA A Product Family Operating Voltage Device Family Product Detail Revision ID Package Temp Range Legend A = Alpha Character N = Numeric Character Blank Commercial Temperature (0°C to +70°C Ambient) BX BX420 420-ball BGA BXG BXG420 420-ball BGA, Green ZA Silicon revision 24NT3 24-lane, 3-port Non-Transparent PES PCI Express Switch H 1.0V +/- 0.1V Core Voltage 89 Serial Switching Product Valid Combinations 89HPES24NT3ZABX 420-pin BX420 package, Commercial Temperature 89HPES24NT3ZABXG 420-pin Green BX420 package, Commercial Temperature ® CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com 31 of 31 for Tech Support: email: [email protected] phone: 408-284-8208 April 11, 2007