® ispLSI 2032VL Functional Block Diagram Global Routing Pool (GRP) Input Bus Output Routing Pool (ORP) A0 A1 A2 D Q GLB Logic Array A7 A6 D Q D Q A5 D Q A3 Input Bus • SuperFAST HIGH DENSITY IN-SYSTEM PROGRAMMABLE LOGIC — 1000 PLD Gates — 32 I/O Pins, Two Dedicated Inputs — 32 Registers — High Speed Global Interconnect — Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc. — Small Logic Block Size for Random Logic — 100% Functional, JEDEC and Pinout Compatible with ispLSI 2032V and 2032VE Devices • 2.5V LOW VOLTAGE 2032 ARCHITECTURE — Interfaces With Standard 3.3V Devices (Inputs and I/Os are 3.3V Tolerant) — 45 mA Typical Active Current • HIGH PERFORMANCE E2CMOS® TECHNOLOGY — fmax = 180 MHz Maximum Operating Frequency — tpd = 5.0 ns Propagation Delay — Electrically Erasable and Reprogrammable — Non-Volatile — 100% Tested at Time of Manufacture — Unused Product Term Shutdown Saves Power • IN-SYSTEM PROGRAMMABLE — 2.5V In-System Programmability (ISP™) Using Boundary Scan Test Access Port (TAP) — Open-Drain Output Option for Flexible Bus Interface Capability, Allowing Easy Implementation of Wired-OR or Bus Arbitration Logic — Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality — Reprogram Soldered Devices for Faster Prototyping • 100% IEEE 1149.1 BOUNDARY SCAN TESTABLE Output Routing Pool (ORP) Features A4 0139Bisp/2000 Description The ispLSI 2032VL is a High Density Programmable Logic Device containing 32 Registers, 32 Universal I/O pins, two Dedicated Input Pins, three Dedicated Clock Input Pins, one dedicated Global OE input pin and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 2032VL features in-system programmability through the Boundary Scan Test Access Port (TAP) and is 100% IEEE 1149.1 Boundary Scan Testable. The ispLSI 2032VL offers non-volatile reprogrammability of the logic, as well as the interconnect to provide truly reconfigurable systems. • THE EASE OF USE AND FAST SYSTEM SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FPGAs — Enhanced Pin Locking Capability — Three Dedicated Clock Input Pins — Synchronous and Asynchronous Clocks — Programmable Output Slew Rate Control — Flexible Pin Placement — Optimized Global Routing Pool Provides Global Interconnectivity The basic unit of logic on the ispLSI 2032VL device is the Generic Logic Block (GLB). The GLBs are labeled A0, A1 .. A7 (see Figure 1). There are a total of eight GLBs in the ispLSI 2032VL device. Each GLB is made up of four macrocells. Each GLB has 18 inputs, a programmable AND/OR/Exclusive OR array, and four outputs which can be configured to be either combinatorial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any GLB on the device. Copyright © 2002 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 2032vl_03 1 January 2002 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm 2.5V In-System Programmable SuperFAST™ High Density PLD Specifications ispLSI 2032VL Figure 1. ispLSI 2032VL Functional Block Diagram GOE 0 I/O 12 I/O 13 I/O 14 I/O 15 A1 I/O 31 I/O 30 I/O 29 I/O 28 A7 Global Routing Pool (GRP) A6 A2 A5 A3 A4 I/O 27 Input Bus I/O 9 I/O 10 I/O 11 Output Routing Pool (ORP) I/O 8 Input Bus I/O 4 I/O 5 I/O 6 I/O 7 A0 Output Routing Pool (ORP) I/O 0 I/O 1 I/O 2 I/O 3 I/O 26 I/O 25 I/O 24 I/O 23 I/O 22 I/O 21 I/O 20 I/O 19 I/O 18 I/O 17 I/O 16 TDI/IN 0 TDO/IN 1 CLK 0 CLK 1 CLK 2 Generic Logic Blocks (GLBs) TMS/NC BSCAN Y0 Y1* TCK/Y2 Note: *Y1 and RESET are multiplexed on the same pin 0139B/2032VL The device also has 32 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, output or bidirectional I/O pin with 3-state control, and the output drivers can source 4 mA or sink 8 mA. Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise. Device pins can be safely driven to 3.3 Volt signal levels to support mixed-voltage systems. Clocks in the ispLSI 2032VL device are selected using the dedicated clock pins. Three dedicated clock pins (Y0, Y1, Y2) or an asynchronous clock can be selected on a GLB basis. The asynchronous or Product Term clock can be generated in any GLB for its own clock. Programmable Open-Drain Outputs In addition to the standard output configuration, the outputs of the ispLSI 2032VL are individually programmable, either as a standard totem-pole output or an open-drain output. The totem-pole output drives the specified Voh and Vol levels, whereas the open-drain output drives only the specified Vol. The Voh level on the open-drain output depends on the external loading and pull-up. This output configuration is controlled by a programmable fuse. The default configuration is a totem-pole configuration. The open-drain/totem-pole option is selectable through the Lattice software tools. Eight GLBs, 32 I/O cells, two dedicated inputs and two ORPs are connected together to make a Megablock (see Figure 1). The outputs of the eight GLBs are connected to a set of 32 universal I/O cells by the ORPs. Each ispLSI 2032VL device contains one Megablock. The GRP has as its inputs the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew. 2 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Functional Block Diagram Specifications ispLSI 2032VL Supply Voltage Vcc ................................ -0.5 to +4.05V Input Voltage Applied ............................. -0.5 to +4.05V Off-State Output Voltage Applied .......... -0.5 to +4.05V Storage Temperature .............................. -65 to +150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 150°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Recommended Operating Condition PARAMETER SYMBOL Commercial MIN. MAX. UNITS TA = 0°C to + 70°C 2.3 2.7 V TA = -40°C to + 85°C 2.3 2.7 V VCC Supply Voltage VIL VIH Input Low Voltage -0.3 0.7 V Input High Voltage 1.7 3.6 V Industrial Table 2-0005/2032VL Capacitance (TA=25°C, f=1.0 MHz) TYPICAL UNITS Dedicated Input Capacitance 8 pf VCC = 2.5V, VIN = 0.0V I/O Capacitance 6 pf VCC = 2.5V, VI/O = 0.0V Clock Capacitance 10 pf VCC = 2.5V, VY = 0.0V SYMBOL C1 C2 C3 PARAMETER TEST CONDITIONS Table 2-0006/2032VL Erase Reprogram Specifications PARAMETER MINIMUM MAXIMUM UNITS 10,000 – Cycles Erase/Reprogram Cycles Table 2-0008A/2032VL 3 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Absolute Maximum Ratings 1 Specifications ispLSI 2032VL Input Pulse Levels Figure 2. Test Load GND to VCC VCC ≤ 1.5 ns Input Rise and Fall Time 10% to 90% Input Timing Reference Levels VCC /2 Output Timing Reference Levels VCC /2 R1 Device Output See Figure 2 Output Load Table 2-0003/2032VL 3-state levels are measured 0.15V from steady-state active level. B C *CL includes Test Fixture and Probe Capacitance. R1 R2 CL 250Ω 218Ω 35pF Active High ∞ 218Ω 35pF Active Low A CL* R2 Output Load Conditions (see Figure 2) TEST CONDITION Test Point 250Ω ∞ 35pF Active High to Z at VOH -0.15V ∞ 218Ω 5pF Active Low to Z at VOL +0.15V 250Ω ∞ 5pF 0213A/2032VL Table 2-0004A/2032VL DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL VOL CONDITION PARAMETER Output Low Voltage IOL = 100µA IOL = 8mA 5 IIL IIH IIL-isp IIL-PU IOS1 ICC2, 4 Output High Voltage TYP. — — 0.2 — MAX. UNITS V — 0.4 V VCC - 0.2 — — V IOH = -1mA 2.0 — — V IOH = -4mA 1.8 — — V -10 µA IOH = -100µA VOH 3 MIN. Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (Max.) — — Input or I/O High Leakage Current VIH (min) ≤ VIN ≤ 3.6V — — 10 µA BSCAN Input Pull-Up Current 0V ≤ VIN ≤ VIL — — -150 µA I/O Active Pull-Up Current 0V ≤ VIN ≤ VIL — — -150 µA Output Short Circuit Current VCC = 2.5V, VOUT = 0.5V — — -100 mA Operating Power Supply Current VIL = 0.0V, VIH = 2.5V — 45 — mA fCLK = 1 MHz Table 2-0007/2032VL 1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested. 2. Measured using two 16-bit counters. 3. Typical values are at VCC = 2.5V and TA = 25°C. 4. Maximum ICC varies widely with specific device configuration and operating frequency. Refer to Power Consumption section of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate maximum ICC. 5. With no pull-up resistors. 4 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Switching Test Conditions Specifications ispLSI 2032VL Over Recommended Operating Conditions 3 PARAMETER tpd1 tpd2 fmax fmax (Ext.) fmax (Tog.) tsu1 tco1 th1 tsu2 tco2 th2 tr1 trw1 tptoeen tptoedis tgoeen tgoedis twh twl -180 -135 -110 TEST COND. # A 1 Data Propagation Delay, 4PT Bypass, ORP Bypass — 5.0 — 7.5 — 10.0 ns A 2 Data Propagation Delay — 7.5 — 10.0 — 13.0 ns DESCRIPTION 1 MIN. MAX. MIN. MAX. MIN. MAX. 2 UNITS A 3 Clock Frequency with Internal Feedback 180 — 135 — 110 — MHz — 4 Clock Frequency with External Feedback ( tsu2 + tco1) 118 — 100 — 80.0 — MHz — 5 Clock Frequency, Max. Toggle 200 — 167 — 125 — MHz 1 — 6 GLB Reg. Setup Time before Clock, 4 PT Bypass 3.0 — 4.0 — 5.5 — ns A 7 GLB Reg. Clock to Output Delay, ORP Bypass — 4.0 — 4.5 — 5.0 ns — 8 GLB Reg. Hold Time after Clock, 4 PT Bypass 0.0 — 0.0 — 0.0 — ns — 9 GLB Reg. Setup Time before Clock 4.5 — 5.5 — 7.5 — ns A 10 GLB Reg. Clock to Output Delay — 5.0 — 5.5 — 6.0 ns 0.0 — 0.0 — 0.0 — ns — 6.0 — 8.0 — 12.5 ns — 11 GLB Reg. Hold Time after Clock A 12 Ext. Reset Pin to Output Delay, ORP Bypass — 13 Ext. Reset Pulse Duration 4.0 — 5.0 — 6.5 — ns B 14 Input to Output Enable — 10.0 — 12.0 — 14.5 ns C 15 Input to Output Disable — 10.0 — 12.0 — 14.5 ns B 16 Global OE Output Enable — 5.0 — 6.0 — 7.0 ns C 17 Global OE Output Disable — 5.0 — 6.0 — 7.0 ns — 18 External Synchronous Clock Pulse Duration, High 2.5 — 3.0 — 4.0 — ns — 19 External Synchronous Clock Pulse Duration, Low 2.5 — 3.0 — 4.0 — ns 1. Unless noted otherwise, all parameters use a GRP load of 4, 20 PTXOR path, ORP and Y0 clock. 2. Standard 16-bit counter using GRP feedback. 3. Reference Switching Test Conditions section. 5 Table 2-0030B/2032VL Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm External Timing Parameters Specifications ispLSI 2032VL Over Recommended Operating Conditions PARAMETER 2 # -180 DESCRIPTION -135 -110 MIN. MAX. MIN. MAX. MIN. MAX. UNITS Inputs tio tdin 20 Input Buffer Delay — 0.5 — 0.5 — 0.9 ns 21 Dedicated Input Delay — 1.1 — 1.7 — 2.7 ns 22 GRP Delay — 0.6 — 1.2 — 1.8 ns 23 4 Product Term Bypass Path Delay (Combinatorial) — 1.4 — 3.7 — 4.7 ns 24 4 Product Term Bypass Path Delay (Registered) — 1.4 — 3.2 — 3.7 ns 25 1 Product Term/XOR Path Delay — 2.9 — 4.7 — 5.7 ns 26 20 Product Term/XOR Path Delay — 2.9 — 4.7 — 5.7 ns — 2.9 — 4.7 — 5.7 ns — 0.0 — 0.5 — 1.0 ns 29 GLB Register Setup Time before Clock 1.7 — 1.2 — 1.2 — ns 30 GLB Register Hold Time after Clock 1.3 — 2.8 — 4.3 — ns 31 GLB Register Clock to Output Delay — 0.3 — 0.3 — 0.3 ns 32 GLB Register Reset to Output Delay — 0.1 — 1.1 — 2.8 ns 33 GLB Product Term Reset to Register Delay — 5.3 — 7.1 — 8.9 ns 34 GLB Product Term Output Enable to I/O Cell Delay — 5.4 — 6.3 — 6.9 ns 1.1 4.1 2.1 5.0 2.3 4.3 ns 36 ORP Delay — 1.7 — 1.5 — 1.8 ns 37 ORP Bypass Delay — 0.7 — 0.5 — 0.8 ns 38 Output Buffer Delay — 1.8 — 1.6 — 1.8 ns 39 Output Slew Limited Delay Adder — 2.0 — 2.0 — 2.0 ns 40 I/O Cell OE to Output Enabled — 3.5 — 4.0 — 4.9 ns 41 I/O Cell OE to Output Disabled — 3.5 — 4.0 — 4.9 ns 42 Global Output Enable — 1.5 — 2.0 — 2.1 ns 43 Clock Delay, Y0 to Global GLB Clock Line (Ref. clock) 1.2 1.2 2.1 2.1 2.1 2.1 ns 44 Clock Delay, Y1 or Y2 to Global GLB Clock Line 1.4 1.4 2.3 2.3 2.3 2.3 ns — 3.4 — 4.8 — 7.1 ns GRP tgrp GLB t4ptbpc t4ptbpr t1ptxor t20ptxor txoradj tgbp tgsu tgh tgco tgro tptre tptoe tptck 27 XOR Adjacent Path Delay 3 28 GLB Register Bypass Delay 35 GLB Product Term Clock Delay ORP torp torpbp Outputs tob tsl toen todis tgoe Clocks tgy0 tgy1/2 Global Reset tgr 45 Global Reset to GLB 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to Timing Model in this data sheet for further details. 3. The XOR adjacent path can only be used by hard macros. 6 Table 2-0036B/2032VL Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Internal Timing Parameters1 Specifications ispLSI 2032VL I/O Cell GRP GLB ORP I/O Cell Feedback Ded. In I/O Pin (Input) Comb 4 PT Bypass #23 #21 I/O Delay GRP Reg 4 PT Bypass GLB Reg Bypass ORP Bypass #20 #22 #24 #28 #37 20 PT XOR Delays GLB Reg Delay ORP Delay #25, 26, 27 D Q #38, 39 #36 RST #45 Reset #29, 30, 31, 32 Control RE PTs OE #33, 34, CK 35 #40, 41 #43, 44 Y0,1,2 #42 GOE 0 0491/2032VL Derivations of tsu, th and tco from the Product Term Clock tsu = = = 3.5ns = Logic + Reg su - Clock (min) (tio + tgrp + t20ptxor) + (tgsu) - (tio + tgrp + tptck(min)) (#20 + #22 + #26) + (#29) - (#20 + #22 + #35) (0.5 + 0.6 + 2.9) + (1.7) - (0.5 + 0.6 + 1.1) th = = = 2.5ns = Clock (max) + Reg h - Logic (tio + tgrp + tptck(max)) + (tgh) - (tio + tgrp + t20ptxor) (#20 + #22 + #35) + (#30) - (#20 + #22 + #26) (0.5 + 0.6 + 4.1) + (1.3) - (0.5 + 0.6 + 2.9) tco = = = 9.0ns = Clock (max) + Reg co + Output (tio + tgrp + tptck(max)) + (tgco) + (torp + tob) (#20 + #22 + #35) + (#31) + (#36 + #38) (0.5 + 0.6 + 4.1) + (0.3) + (1.7 + 1.8) Note: Calculations are based on timing specifications for the ispLSI 2032VL-180L. Table 2-0042/2032VL 7 I/O Pin (Output) Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm ispLSI 2032VL Timing Model Specifications ispLSI 2032VL Power consumption in the ispLSI 2032VL device depends on two primary factors: the speed at which the device is operating and the number of product terms used. Figure 3 shows the relationship between power and operating speed. Figure 3. Typical Device Power Consumption vs fmax 80 ispLSI 2032VL ICC (mA) 60 40 20 0 0 30 60 90 120 150 180 fmax (MHz) Notes: Configuration of two 16-bit counters Typical current at 2.5V, 25° C ICC can be estimated for the ispLSI 2032VL using the following equation: ICC(mA) = 6 + (# of PTs * 0.63) + (# of nets * Max freq * 0.002) Where: # of PTs = Number of product terms used in design # of nets = Number of signals used in device Max freq = Highest clock frequency to the device (in MHz) The ICC estimate is based on typical conditions (VCC = 2.5V, room temperature) and an assumption of two GLB loads on average exists. These values are for estimates only. Since the value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified. 0127A/2032VL 8 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Power Consumption Specifications ispLSI 2032VL Signal Name Description GOE 0 Global Output Enable Pin Y0 Dedicated Clock input. This clock input is connected to one of the clock inputs of all the GLBs on the device. RESET/Y1 This pin performs two functions: (1) Dedicated clock input. This clock input is brought into the Clock Distribution Network and can optionally be routed to any GLB and/or I/O cell on the device. (2) Active Low (0) Reset pin which resets all of the GLB and I/O registers in the device. BSCAN Input – Dedicated in-system programming Boundary Scan Enable input pin. This pin is brought low to enable the programming mode. The TMS, TDI, TDO and TCK controls become active. TDI/IN 0 Input – This pin performs two functions. When BSCAN is logic low, it functions as an input pin to load programming data into the device. When BSCAN is high, it functions as a dedicated input pin. TMS/NC1 Input – When BSCAN is logic low, this pin functions as a mode control pin for the Boundary Scan State Machine. TDO/IN 1 Output/Input – This pin performs two functions. When BSCAN is logic low, it functions as an output pin pin to read serial shift register data. When BSCAN is high, it functions as a dedicated input pin. TCK/Y2 Input – This pin performs two functions. When BSCAN is logic low, it functions as a clock pin for the Serial Shift Register. When BSCAN is high, it functions as a dedicated clock input. This clock input is brought into the Clock Distribution Network and can optionally be routed to any GLB. GND Ground (GND) VCC Vcc NC1 No Connect I/O Input/Output pins – These are the general purpose I/O pins used by the logic array. Signal Locations Signal 44-Pin TQFP 44-Pin PLCC 48-Pin TQFP 49-Ball caBGA GOE 0 40 2 43 Y0 5 11 5 A4 C1 RESET/Y1 29 35 31 D7 BSCAN 7 13 7 D1 TDI/IN 0 8 14 8 E2 TMS/NC1 30 36 32 C6 TDO/IN 1 18 24 19 G4 TCK/Y2 27 33 29 E7 GND 17, 39 1, 23 18, 42 C4, E4 VCC 6, 28 12, 34 6, 30 D3, D5 — — 12, 24, 36, 48 A1, A7, D4, G1, G7 1 NC I/O Locations Signal 44-Pin TQFP 44-Pin PLCC 15, 16, 17, 18, 19, 20, 21 48-Pin TQFP 49-Ball caBGA I/O 0 - I/O 6 9, 10, 11, 12, 13, 14, 15 9, 10, 11, 13, 14, 15, 16 E1, F2, F1, E3, F3, G2, F4 I/O 7 - I/O 13 16, 19, 20, 21, 22, 23, 24 22, 25, 26, 27, 28, 29, 30 17, 20, 21, 22, 23, 25, 26 G3, F5, G5, F6, G6, E5, E6 I/O 14 - I/O 20 25, 26, 31, 32, 33, 34, 35 31, 32, 37, 38, 39, 40, 41 27, 28, 33, 34, 35, 37, 38 F7, D6, C7, B6, B7, C5, B5 I/O 21 - I/O 27 36, 37, 38, 41, 42, 43, 44 42, 43, 44, 3, 4, 5, 6 39, 40, 41, 44, 45, 46, 47 A6, B4, A5, B3, A3, B2, A2 I/O 28 - I/O 31 1, 2, 3, 4 1, 2, 3, 4 C3, C2, B1, D2 7, 8, 9, 10 1. NC pins are not to be connected to any active signals, VCC or GND. 9 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Signal Descriptions Specifications ispLSI 2032VL I/O 21 I/O 20 I/O 19 I/O 22 GND I/O 23 GOE 0 I/O 24 I/O 26 I/O 25 I/O 27 ispLSI 2032VL 44-Pin TQFP Pinout Diagram 44 43 42 41 40 39 38 37 36 35 34 I/O 28 1 33 I/O 18 I/O 29 2 I/O 30 3 32 31 I/O 17 I/O 16 I/O 31 4 5 30 TMS/NC1 RESET/Y1 VCC 6 ispLSI 2032VL 29 28 BSCAN 7 Top View 27 TCK/Y2 TDI/IN 0 8 26 I/O 15 25 24 I/O 14 I/O 1 9 10 I/O 2 11 23 I/O 12 Y0 VCC I/O 0 I/O 13 I/O 11 I/O 9 I/O 10 I/O 8 GND TDO/IN 1 I/O 7 I/O 6 I/O 4 I/O 5 I/O 3 12 13 14 15 16 17 18 19 20 21 22 0851/2032VL 1. NC pins are not to be connected to any active signals, VCC or GND. Pin Configuration I/O 21 I/O 20 I/O 19 I/O 22 GND I/O 23 GOE 0 I/O 24 I/O 26 I/O 25 I/O 27 ispLSI 2032VL 44-Pin PLCC Pinout Diagram 6 5 4 3 2 1 44 43 42 41 40 I/O 28 I/O 29 I/O 30 I/O 31 Y0 VCC 7 8 9 10 11 ispLSI 2032VL 12 BSCAN 13 TDI/IN 0 14 I/O 0 I/O 1 I/O 2 15 16 17 Top View 39 I/O 18 38 37 I/O 17 I/O 16 36 TMS/NC1 35 34 RESET/Y1 VCC 33 TCK/Y2 32 I/O 15 31 30 29 I/O 14 I/O 13 I/O 12 I/O 9 I/O 10 I/O 11 I/O 8 TDO/IN 1 GND I/O 7 I/O 6 I/O 4 I/O 5 I/O 3 18 19 20 21 22 23 24 25 26 27 28 0123/2032VL 1. NC pins are not to be connected to any active signals, VCC or GND. 10 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Pin Configuration Specifications ispLSI 2032VL I/O 21 I/O 20 I/O 19 I/O 22 GND I/O 23 GOE 0 I/O 24 I/O 26 I/O 25 I/O 27 NC2 ispLSI 2032VL 48-Pin TQFP Pinout Diagram 48 47 46 45 44 43 42 41 40 39 38 37 I/O 28 I/O 29 I/O 30 I/O 31 Y0 VCC BSCAN 1TDI/IN 0 I/O 0 I/O 1 I/O 2 2NC 36 NC2 35 I/O 18 34 33 I/O 17 I/O 16 32 TMS/NC2 31 30 RESET/Y11 VCC 8 29 TCK/Y21 9 10 11 12 28 I/O 15 27 26 25 I/O 14 I/O 13 I/O 12 1 2 3 4 5 6 ispLSI 2032VL 7 Top View I/O 9 I/O 10 I/O 11 2NC I/O 8 1 1TDO/IN I/O 7 GND I/O 6 I/O 4 I/O 5 I/O 3 13 14 15 16 17 18 19 20 21 22 23 24 48TQFP/2032VL 1. Pins have dual function capability. 2. NC pins are not to be connected to any active signals, VCC or GND. Signal Configuration ispLSI 2032VL 49-Ball caBGA Signal Diagram 7 6 5 4 3 2 1 A NC1 I/O 21 I/O 23 GOE 0 I/O 25 I/O 27 NC1 A B I/O 18 I/O 17 I/O 20 I/O 22 I/O 24 I/O 26 I/O 30 B C I/O 16 TMS/ NC1 I/O 19 GND I/O 28 I/O 29 Y0 C D RESET/ Y1 I/O 15 VCC NC1 VCC I/O 31 BSCAN D E TCK/ Y2 I/O 13 I/O 12 GND I/O 3 TDI/ IN0 I/O 0 E F I/O 14 I/O 10 I/O 8 I/O 6 I/O 4 I/O 1 I/O 2 F G NC1 I/O 11 I/O 9 TDO/ IN1 I/O 7 I/O 5 NC1 G 2 1 ispLSI 2032VL Bottom View 7 6 5 4 3 49-BGA/2032VL 1. NCs are not to be connected to any active signals, VCC or GND. Note: Ball A1 indicator dot on top side of package. 11 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Pin Configuration Specifications ispLSI 2032VL ispLSI 2032VL – XXX X XXX X Device Family Grade Blank = Commercial I = Industrial Device Number 2032VL Package T44 = 44-Pin TQFP T48 = 48-Pin TQFP J44 = 44-Pin PLCC B49 = 49-Ball caBGA Speed 180 = 180 MHz fmax 135 = 135 MHz fmax 110 = 110 MHz fmax Power L = Low 0212A/2032VL ispLSI 2032VL Ordering Information COMMERCIAL FAMILY ispLSI fmax (MHz) tpd (ns) ORDERING NUMBER PACKAGE 180 5.0 ispLSI 2032VL-180LT44 44-Pin TQFP 180 5.0 180 180 5.0 5.0 ispLSI 2032VL-180LT48 ispLSI 2032VL-180LJ44 ispLSI 2032VL-180LB49 48-Pin TQFP 44-Pin PLCC 49-Ball caBGA 135 7.5 ispLSI 2032VL-135LT44 44-Pin TQFP 135 7.5 ispLSI 2032VL-135LT48 48-Pin TQFP 135 7.5 ispLSI 2032VL-135LJ44 44-Pin PLCC 135 7.5 ispLSI 2032VL-135LB49 49-Ball caBGA 110 110 10 10 ispLSI 2032VL-110LT44 ispLSI 2032VL-110LT48 44-Pin TQFP 48-Pin TQFP 110 10 ispLSI 2032VL-110LJ44 44-Pin PLCC 110 10 ispLSI 2032VL-110LB49 49-Ball caBGA Table 2-0041A/2032VL INDUSTRIAL FAMILY fmax (MHz) tpd (ns) ORDERING NUMBER PACKAGE ispLSI 135 7.5 ispLSI 2032VL-135LT44I 44-Pin TQFP Table 2-0041A/2032VL 12 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Part Number Description