89HPES32H8 Data Sheet 32-Lane 8-Port PCI Express® System Interconnect Switch ® Device Overview Flexible Architecture with Numerous Configuration Options – Port arbitration schemes utilizing round robin algorithms – Virtual channels arbitration based on priority – Automatic per port link width negotiation to x8, x4, x2 or x1 – Automatic lane reversal on all ports – Automatic polarity inversion on all ports – Supports locked transactions, allowing use with legacy software – Ability to load device configuration from serial EEPROM – Ability to control device via SMBus Highly Integrated Solution – Requires no external components – Incorporates on-chip internal memory for packet buffering and queueing – Integrates thirty-two 2.5 Gbps embedded full duplex SerDes, 8B/10B encoder/decoder (no separate transceivers needed) Reliability, Availability, and Serviceability (RAS) Features – Redundant upstream port failover capability – Internal end-to-end parity protection on all TLPs ensures data integrity even in systems that do not implement end-to-end CRC (ECRC) ◆ The 89HPES32H8 is a member of the IDT PRECISE™ family of PCI Express® switching solutions. The PES32H8 is a 32-lane, 8-port system interconnect switch optimized for PCI Express packet switching in highperformance applications, supporting multiple simultaneous peer-topeer traffic flows. Target applications include servers, storage, communications, and embedded systems. Features ◆ High Performance PCI Express Switch – Eight maximum switch ports • Four main ports each of which consists of eight SerDes • Each x8 main port can further bifurcate to 2 x4-ports – Thirty-two 2.5 Gbps embedded SerDes • Supports pre-emphasis and receive equalization on per-port basis – Delivers 128 Gbps (16 GBps) aggregate switching capacity – Low-latency cut-through switch architecture – Support for Max Payload Size up to 2048 bytes – Supports two virtual channels and eight traffic classes – PCI Express Base Specification Revision 1.1 compliant ◆ ◆ Block Diagram x8/x4/x2/x1 x8/x4/x2/x1 SerDes SerDes DL/Transaction Layer DL/Transaction Layer Port Arbitration Route Table 8-Port Switch Core Scheduler Frame Buffer DL/Transaction Layer DL/Transaction Layer SerDes SerDes x8/x4/x2/x1 x8/x4/x2/x1 Figure 1 Internal Block Diagram IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. 1 of 40 © 2007 Integrated Device Technology, Inc. July 19, 2007 IDT 89HPES32H8 Data Sheet ◆ ◆ ◆ ◆ – Supports optional PCI Express end-to-end CRC checking – Supports optional PCI Express Advanced Error Reporting – Supports PCI Express Hot-Plug • Compatible with Hot-Plug I/O expanders used on PC motherboards – Supports Hot-Swap Power Management – Supports PCI Power Management Interface specification, Revision 1.1 (PCI-PM) • Supports powerdown modes at the link level (L0, L0s, L1, L2/L3 Ready and L3) and at the device level (D0, D3hot) – Unused SerDes disabled Testability and Debug Features – Built in SerDes Pseudo-Random Bit Stream (PRBS) generator – Ability to read and write any internal register via the SMBus – Ability to bypass link training and force any link into any mode – Provides statistics and performance counters Thirty-two General Purpose Input/Output pins – Each pin may be individually configured as an input or output – Each pin may be individually configured as an interrupt input – Some pins have selectable alternate functions Packaged in a 31mm x 31mm 900-ball Flip Chip BGA with 1mm ball spacing Product Description Utilizing standard PCI Express interconnect, the PES32H8 provides the most efficient system interconnect switching solution for applications requiring maximum throughput, low latency, and simple board layout with a minimum number of board layers. It provides 128 Gbps of aggregated, full-duplex switching capacity through 32 integrated serial lanes, using proven and robust IDT technology. Each lane provides 2.5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base specification 1.1. The PES32H8 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and Transaction layers in compliance with PCI Express Base specification Revision 1.1. The PES32H8 can operate either as a store and forward or cut-through switch and is designed to switch memory and I/O transactions. It supports eight Traffic Classes (TCs) and two Virtual Channels (VC) with sophisticated resource management to enable efficient switching and I/O connectivity for servers, storage, and embedded applications. SMBus Interface The PES32H8 contains two SMBus interfaces. The slave interface provides full access to the configuration registers in the PES32H8, allowing every configuration register in the device to be read or written by an external agent. The master interface allows the default configuration register values of the PES32H8 to be overridden following a reset with values programmed in an external serial EEPROM. The master interface is also used by an external Hot-Plug I/O expander. Six pins make up each of the two SMBus interfaces. These pins consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus address pins. In the slave interface, these address pins allow the SMBus address to which the device responds to be configured. In the master interface, these address pins allow the SMBus address of the serial configuration EEPROM from which data is loaded to be configured. The SMBus address is set up on negation of PERSTN by sampling the corresponding address pins. When the pins are sampled, the resulting address is assigned as shown in Table 1. Non-bifurcated Fully Bifurcated x8 x4 1 0 x8 2 1 7 x8 6 3 x4 0 x4 2 7 x4 x4 3 6 x4 4 5 4 x8 x4 5 x4 Figure 2 Port Configuration Examples Note: The configurations in the above diagram show the maximum port widths. The PES32H8 can negotiate to narrower port widths — x4, x2, or x1. 2 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Bit Slave SMBus Address Master SMBus Address 1 SSMBADDR[1] MSMBADDR[1] 2 SSMBADDR[2] MSMBADDR[2] 3 SSMBADDR[3] MSMBADDR[3] 4 0 MSMBADDR[4] 5 SSMBADDR[5] 1 6 1 0 7 1 1 Table 1 Master and Slave SMBus Address Assignment As shown in Figure 3, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure 3(a), the master and slave SMBuses are tied together and the PES32H8 acts both as a SMBus master as well as a SMBus slave on this bus. This requires that the SMBus master or processor that has access to PES32H8 registers supports SMBus arbitration. In some systems, this SMBus master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To support these systems, the PES32H8 may be configured to operate in a split configuration as shown in Figure 3(b). In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required. The PES32H8 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of the serial EEPROM. PES32H8 Processor SMBus Master Serial EEPROM ... Other SMBus Devices PES32H8 SSMBCLK SSMBDAT SSMBCLK SSMBDAT MSMBCLK MSMBDAT MSMBCLK MSMBDAT Processor SMBus Master ... Other SMBus Devices Serial EEPROM (b) Split Configuration and Management Buses (a) Unified Configuration and Management Bus Figure 3 SMBus Interface Configuration Examples Hot-Plug Interface The PES32H8 supports PCI Express Hot-Plug on each downstream port (ports 1 through 7). To reduce the number of pins required on the device, the PES32H8 utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES32H8 generates an SMBus transaction to the I/O expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN input pin (alternate function of GPIO) of the PES32H8. In response to an I/O expander interrupt, the PES32H8 generates an SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander. General Purpose Input/Output The PES32H8 provides 32 General Purpose I/O (GPIO) pins that may be individually configured as general purpose inputs, general purpose outputs, or alternate functions. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM. 3 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Description The following tables lists the functions of the pins provided on the PES32H8. Some of the functions listed may be multiplexed onto the same pin. The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level. Differential signals end with a suffix “N” or “P.” The differential signal ending in “P” is the positive portion of the differential pair and the differential signal ending in “N” is the negative portion of the differential pair. Signal Type Name/Description PE0RP[3:0] PE0RN[3:0] I PCI Express Port 0 Serial Data Receive. Differential PCI Express receive pairs for port 0. Port 0 is the upstream port. PE0TP[3:0] PE0TN[3:0] O PCI Express Port 0 Serial Data Transmit. Differential PCI Express transmit pairs for port 0. Port 0 is the upstream port. PE1RP[3:0] PE1RN[3:0] I PCI Express Port 1 Serial Data Receive. Differential PCI Express receive pairs for port 1. When port 0 is merged with port 1, these signals become port 0 receive pairs for lanes 4 through 7. PE1TP[3:0] PE1TN[3:0] O PCI Express Port 1 Serial Data Transmit. Differential PCI Express transmit pairs for port 1. When port 0 is merged with port 1, these signals become port 0 transmit pairs for lanes 4 through 7. PE2RP[3:0] PE2RN[3:0] I PCI Express Port 2 Serial Data Receive. Differential PCI Express receive pairs for port 2. PE2TP[3:0] PE2TN[3:0] O PCI Express Port 2 Serial Data Transmit. Differential PCI Express transmit pairs for port 2. PE3RP[3:0] PE3RN[3:0] I PCI Express Port 3 Serial Data Receive. Differential PCI Express receive pairs for port 3. When port 2 is merged with port 3, these signals become port 2 receive pairs for lanes 4 through 7. PE3TP[3:0] PE3TN[3:0] O PCI Express Port 3 Serial Data Transmit. Differential PCI Express transmit pairs for port 2. When port 2 is merged with port 3, these signals become port 2 transmit pairs for lanes 4 through 7. PE4RP[3:0] PE4RN[3:0] I PCI Express Port 4 Serial Data Receive. Differential PCI Express receive pairs for port 4. PE4TP[3:0] PE4TN[3:0] O PCI Express Port 4 Serial Data Transmit. Differential PCI Express transmit pairs for port 4. PE5RP[3:0] PE5RN[3:0] I PCI Express Port 5 Serial Data Receive. Differential PCI Express receive pairs for port 5. When port 4 is merged with port 5, these signals become port 4 receive pairs for lanes 4 through 7. PE5TP[3:0] PE5TN[3:0] O PCI Express Port 5 Serial Data Transmit. Differential PCI Express transmit pairs for port 5. When port 4 is merged with port 5, these signals become port 4 transmit pairs for lanes 4 through 7. PE6RP[3:0] PE6RN[3:0] I PCI Express Port 6 Serial Data Receive. Differential PCI Express receive pairs for port 6. PE6TP[3:0] PE6TN[3:0] O PCI Express Port 6 Serial Data Transmit. Differential PCI Express transmit pairs for port 6. PE7RP[3:0] PE7RN[3:0] I PCI Express Port 7 Serial Data Receive. Differential PCI Express receive pairs for port 7. When port 6 is merged with port 7, these signals become port 6 receive pairs for lanes 4 through 7. Table 2 PCI Express Interface Pins (Part 1 of 2) 4 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Type Name/Description PE7TP[3:0] PE7TN[3:0] O PCI Express Port 7 Serial Data Transmit. Differential PCI Express transmit pairs for port 7. When port 6 is merged with port 7, these signals become port 6 transmit pairs for lanes 4 through 7. REFCLKM I PCI Express Reference Clock Mode Select. This signal selects the frequency of the reference clock input. 0x0 - 100 MHz 0x1 - 125 MHz PEREFCLKP[3:0] PEREFCLKN[3:0] I PCI Express Reference Clock. Differential reference clock pair input. This clock is used as the reference clock by on-chip PLLs to generate the clocks required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal. Table 2 PCI Express Interface Pins (Part 2 of 2) Signal Type Name/Description MSMBADDR[4:1] I MSMBCLK I/O Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the master SMBus. It is active and generating the clock only when the EEPROM or I/O Expanders are being accessed. MSMBDAT I/O Master SMBus Data. This bidirectional signal is used for data on the master SMBus. SSMBADDR[5,3:1] I Slave SMBus Address. These pins determine the SMBus address to which the slave SMBus interface responds. SSMBCLK I/O Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus. SSMBDAT I/O Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus. Master SMBus Address. These pins determine the SMBus address of the serial EEPROM from which configuration information is loaded. Table 3 SMBus Interface Pins Signal Type Name/Description GPIO[0] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[1] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[2] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[3] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[4] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[5] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: GPEN Alternate function pin type: Output Alternate function: General Purpose Event (GPE) output Table 4 General Purpose I/O Pins (Part 1 of 3) 5 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Type Name/Description GPIO[6] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P1RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 1 GPIO[7] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P2RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 2 GPIO[8] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P3RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 3 GPIO[9] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P4RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 4 GPIO[10] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P5RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 5 GPIO[11] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P6RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 6 GPIO[12] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P7RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 7 GPIO[13] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[14] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[15] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[16] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[17] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[18] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[19] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Table 4 General Purpose I/O Pins (Part 2 of 3) 6 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Type Name/Description GPIO[20] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[21] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN0 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 0 GPIO[22] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN1 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 1 GPIO[23] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN2 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 2 GPIO[24] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN3 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 3 GPIO[25] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[26] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[27] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[28] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[29] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[30] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[31] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN10 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 10 Table 4 General Purpose I/O Pins (Part 3 of 3) 7 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Type Name/Description CCLKDS I Common Clock Downstream. When the CCLKDS pin is asserted, it indicates that a common clock is being used between the downstream device and the downstream port. CCLKUS I Common Clock Upstream. When the CCLKUS pin is asserted, it indicates that a common clock is being used between the upstream device and the upstream port. MSMBSMODE I Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus should operate at 100 KHz instead of 400 KHz. This value may not be overridden. P01MERGEN I Port 0 and 1 Merge. When this pin is asserted, port 1 is merged with port 0 to form a single x8 port. The SerDes lanes associated with port B become lanes 4 through 7 of port 0. P23MERGEN I Port 2 and 3 Merge. When this pin is asserted, port 3 is merged with port 2 to form a single x8 port. The SerDes lanes associated with port D become lanes 4 through 7 of port 2. P45MERGEN I Port 4 and 5 Merge. When this pin is asserted, port 5 is merged with port 4 to form a single x8 port. The SerDes lanes associated with port F become lanes 4 through 7 of port 4. P67MERGEN I Port 6 and 7 Merge. When this pin is asserted, port 7 is merged with port 6 to form a single x8 port. The SerDes lanes associated with port H become lanes 4 through 7 of port 6. PERSTN I Fundamental Reset. Assertion of this signal resets all logic inside the PES32H8 and initiates a PCI Express fundamental reset. RSTHALT I Reset Halt. When this signal is asserted during a PCI Express fundamental reset, the PES32H8 executes the reset procedure and remains in a reset state with the Master and Slave SMBuses active. This allows software to read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is cleared in the PA_SWCTL register by an SMBus master. SWMODE[3:0] I Switch Mode. These configuration pins determine the PES32H8 switch operating mode. 0x0 - Normal switch mode 0x1 - Normal switch mode with Serial EEPROM initialization 0x2 through 0x7 - Reserved 0x8 - Normal switch mode with upstream port failover (port 0 selected as the upstream port) 0x9 - Normal switch mode with upstream port failover (port 2 selected as the upstream port) 0xA - Normal switch mode with Serial EEPROM initialization and upstream port failover (port 0 selected as the upstream port) 0xB - Normal switch mode with Serial EEPROM initialization and upstream port failover (port 2 selected as the upstream port) 0xC through 0xF - Reserved Table 5 System Pins 8 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Type Name/Description JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system clock with a nominal 50% duty cycle. JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic or JTAG Controller. JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary scan logic or JTAG Controller. When no data is being shifted out, this signal is tri-stated. JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary scan logic and JTAG TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in functional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board Table 6 Test Pins Signal Type VDDCORE I Core VDD. Power supply for core logic. VDDIO I I/O VDD. LVTTL I/O buffer power supply. VDDPE I PCI Express Digital Power. PCI Express digital power used by the digital power of the SerDes. VDDAPE I PCI Express Analog Power. PCI Express analog power used by the PLL and bias generator. VSS I Ground. VTTPE Name/Description PCI Express Serial Data Transmit Termination Voltage. This pin allows the driver termination voltage to be set, enabling the system designer to control the Common Mode Voltage and output voltage swing of the corresponding PCI Serial Data Transmit differential pair. Table 7 Power and Ground Pins 9 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Characteristics Note: Some input pads of the PES32H8 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left floating can cause a slight increase in power consumption. Function Pin Name Type Buffer I/O Type PCI Express Interface PE0RN[3:0] I CML Serial Link PE0RP[3:0] I PE0TN[3:0] O PE0TP[3:0] O PE1RN[3:0] I PE1RP[3:0] I PE1TN[3:0] O PE1TP[3:0] O PE2RN[3:0] I PE2RP[3:0] I PE2TN[3:0] O PE2TP[3:0] O PE3RN[3:0] I PE3RP[3:0] I PE3TN[3:0] O PE3TP[3:0] O PE4RN[3:0] I PE4RP[3:0] I PE4TN[3:0] O PE4TP[3:0] O PE5RN[3:0] I PE5RP[3:0] I PE5TN[3:0] O PE5TP[3:0] O PE6RN[3:0] I PE6RP[3:0] I PE6TN[3:0] O PE6TP[3:0] O PE7RN[3:0] I PE7RP[3:0] I PE7TN[3:0] O PE7TP[3:0] O Internal Resistor Notes Table 8 Pin Characteristics (Part 1 of 2) 10 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Function Pin Name Type Buffer I/O Type PCI Express Interface (cont.) PEREFCLKN[3:0] I PEREFCLKP[3:0] I LVPECL/ CML Diff. Clock Input REFCLKM I LVTTL Input pull-down MSMBADDR[4:1] I LVTTL STI1 pull-up MSMBCLK I/O STI MSMBDAT I/O STI SMBus SSMBADDR[5,3:1] I SSMBCLK I/O STI SSMBDAT I/O STI General Purpose I/O GPIO[31:0] I/O LVTTL System Pins CCLKDS I LVTTL CCLKUS I EJTAG / JTAG 1. Internal Resistor Refer to Table 9 pull-up pull-up Input pull-up pull-up MSMBSMODE I pull-down P01MERGEN I pull-down P23MERGEN I pull-down P45MERGEN I pull-down P67MERGEN I pull-down PERSTN I RSTHALT I pull-down SWMODE[3:0] I pull-down JTAG_TCK I LVTTL STI pull-up STI pull-up JTAG_TDI I JTAG_TDO O JTAG_TMS I STI pull-up JTAG_TRST_N I STI pull-up Schmitt Trigger Input (STI). Notes External pull-down Table 8 Pin Characteristics (Part 2 of 2) 11 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Logic Diagram — PES32H8 Reference Clocks PEREFCLKP[3:0] PEREFCLKN[3:0] REFCLKM 4 4 PE0TP[0] PE0TN[0] PE0RP[0] PE0RN[0] PE0RP[3] PE0RN[3] PE0TP[3] PE0TN[3] PCI Express Switch SerDes Input Port 1 PE1RP[0] PE1RN[0] PE1TP[0] PE1TN[0] PE1RP[3] PE1RN[3] PE1TP[3] PE1TN[3] PCI Express Switch SerDes Input Port 2 PE2RP[0] PE2RN[0] PE2TP[0] PE2TN[0] PE2RP[3] PE2RN[3] PE2TP[3] PE2TN[3] PCI Express Switch SerDes Input Port 3 PE3RP[0] PE3RN[0] PE3TP[0] PE3TN[0] PCI Express Switch SerDes Input Port 7 PE7RP[0] PE7RN[0] ... ... ... ... ... ... ... ... PCI Express Switch SerDes Input Port 0 PE3TP[3] PE3TN[3] PES32H8 ... PE7TP[0] PE7TN[0] ... Master SMBus Interface PE7RP[3] PE7RN[3] MSMBADDR[4:1] MSMBCLK MSMBDAT PE7TP[3] PE7TN[3] 4 4 32 System Functions MSMBSMODE CCLKDS CCLKUS RSTHALT PERSTN SWMODE[3:0] P01MERGEN P23MERGEN P45MERGEN P67MERGEN PCI Express Switch SerDes Output Port 1 PCI Express Switch SerDes Output Port 2 PCI Express Switch SerDes Output Port 3 ... ... PE3RP[3] PE3RN[3] PCI Express Switch SerDes Output Port 0 SSMBADDR[5,3:1] SSMBCLK SSMBDAT GPIO[31:0] JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_TRST_N 4 VDDCORE VDDIO VDDPE VDDAPE VSS PCI Express Switch SerDes Output Port 7 Slave SMBus Interface General Purpose I/O JTAG Power/Ground VTTPE Figure 4 PES32H8 Logic Diagram 12 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet System Clock Parameters Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14. Parameter Description Min Typical Max Unit 1251 MHz 60 % 0.2*RCUI RCUI3 1.6 V 125 ps PEREFCLK RefclkFREQ Input reference clock frequency range 100 RefclkDC2 Duty cycle of input clock 40 TR, TF Rise/Fall time of input clocks VSW Differential input voltage swing4 Tjitter Input clock jitter (cycle-to-cycle) 50 0.6 Table 9 Input Clock Requirements 1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM. 2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors. 3. RCUI (Reference Clock Unit Interval) refers to the reference clock period. 4. AC coupling required. AC Timing Characteristics Parameter Description Min1 Typical1 Max1 Units 399.88 400 400.12 ps 0.7 .9 PCIe Transmit UI Unit Interval TTX-EYE Minimum Tx Eye Width TTX-EYE-MEDIAN-toMAX-JITTER Maximum time between the jitter median and maximum deviation from the median TTX-RISE, TTX-FALL D+ / D- Tx output rise/fall time 50 TTX- IDLE-MIN Minimum time in idle 50 TTX-IDLE-SET-TO- Maximum time to transition to a valid Idle after sending an Idle ordered set 20 UI IDLE TTX-IDLE-TO-DIFF- Maximum time to transition from valid idle to diff data 20 UI 500 1300 ps 400 400.12 ps UI 0.15 90 UI ps UI DATA TTX-SKEW Transmitter data skew between any 2 lanes PCIe Receive UI Unit Interval 399.88 TRX-EYE (with jitter) Minimum Receiver Eye Width (jitter tolerance) TRX-EYE-MEDIUM TO Max time between jitter median & max deviation 0.3 UI Unexpected Idle Enter Detect Threshold Integration Time 10 ms Lane to lane input skew 20 ns 0.4 UI MAX JITTER TRX-IDLE-DET-DIFFENTER TIME TRX-SKEW Table 10 PCIe AC Timing Characteristics 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1 13 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Symbol Reference Edge Min Tpw_13b2 None 50 Max Unit Timing Diagram Reference GPIO GPIO[31:0]1 — ns See Figure 5. Table 11 GPIO AC Timing Characteristics 1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous. 2. The values for this symbol were determined by calculation, not by testing. EXTCLK Tpw_13b GPIO (asynchronous input) Figure 5 GPIO AC Timing Waveform Signal Symbol Reference Edge Min Max Unit Timing Diagram Referenc e Tper_16a none 50.0 — ns See Figure 6. 10.0 25.0 ns 2.4 — ns 1.0 — ns — 20 ns — 20 ns 25.0 — ns JTAG JTAG_TCK Thigh_16a, Tlow_16a JTAG_TMS1, JTAG_TDI JTAG_TDO Tsu_16b JTAG_TCK rising Thld_16b Tdo_16c JTAG_TCK falling Tdz_16c2 JTAG_TRST_N Tpw_16d2 none Table 12 JTAG AC Timing Characteristics 1. The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state. 2. The values for this symbol were determined by calculation, not by testing. 14 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Tlow_16a Tper_16a Thigh_16a JTAG_TCK Thld_16b Tsu_16b JTAG_TDI Thld_16b Tsu_16b JTAG_TMS Tdo_16c Tdz_16c JTAG_TDO Tpw_16d JTAG_TRST_N Figure 6 JTAG AC Timing Waveform Recommended Operating Supply Voltages Symbol Parameter Minimum Typical Maximum Unit VDDCORE Internal logic supply 0.9 1.0 1.1 V VDDI/O I/O supply except for SerDes LVPECL/CML 3.0 3.3 3.6 V VDDPE PCI Express Digital Power 0.9 1.0 1.1 V VDDAPE PCI Express Analog Power 0.9 1.0 1.1 V VTTPE PCI Express Serial Data Transmit Termination Voltage 1.425 1.5 1.575 V VSS Common ground 0 0 0 V Table 13 PES32H8 Operating Voltages Power-Up Sequence This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the PES32H8, the power-up sequence must be as follows: 1. VDDI/O — 3.3V 2. VDDCore, VDDPE, VDDAPE — 1.0V 3. VTTPE — 1.5V When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the power-up sequence. 15 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Recommended Operating Temperature Grade Temperature Commercial 0°C to +70°C Ambient Industrial -40°C to +85°C Ambient Table 14 PES32H8 Operating Temperatures Power Consumption Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13 (and also listed below). Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in Table 13 (and also listed below). Core Supply PCIe Digital Supply PCIe Analog Supply PCIe Termination Supply Typ 1.0V Max 1.1V Typ 1.0V Max 1.1V Typ 1.0V Max 1.1V Typ 1.5V Max 1.575V Typ 3.3V Max 3.6V Typ Power Max Power mA 1800 2100 1677 1990 792 909 804 826 1 2 5.5W 6.81W Watts 1.81 2.31 1.68 2.19 0.79 1.0 1.21 1.3 0.003 0.01 Number of active Lanes per Port 8/8/8/8 I/O Supply Total Table 15 PES32H8 Power Consumption 16 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Thermal Considerations This section describes thermal considerations for the PES32H8 (31mm2 FCBGA900 package). The data in Table 16 below contains information that is relevant to the thermal performance of the PES32H8 switch. Symbol Parameter Value TJ(max) Junction Temperature 125 o Maximum 70 o Maximum TA(max) Ambient Temperature Units C C θJC Thermal Resistance, Junction-to-Case 0.2 o P Power Dissipation of the Device 6.81 Watts Conditions C/W Maximum Table 16 Thermal Specifications for PES32H8, 31x31 mm FCBGA900 Package Note: It is important for the reliability of this device in any user environment that the junction temperature not exceed the TJ(max) value specified in Table 16. Consequently, the effective junction to ambient thermal resistance (θJA) for the worst case scenario must be maintained below the value determined by the formula: θJA = (TJ(max) - TA(max))/P Given that the values of TJ(max), TA(max), and P are known, the value of desired θJA becomes a known entity to the system designer. How to achieve the desired θJA is left up to the board or system designer, but in general, it can be achieved by adding the effects of θJC (value provided in Table 16), thermal resistance of the chosen adhesive (θCS), that of the heat sink (θSA), amount of airflow, and properties of the circuit board (number of layers and size of the board). As a general guideline, this device will not need a heat sink if the board has 10 or more layers AND the board size is larger than 4"x12" AND airflow in excess of 1 m/s is available. It is strongly recommended that users perform their own thermal analysis for their own board and system design scenarios. 17 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet DC Electrical Characteristics Values based on systems running at recommended supply voltages, as shown in Table 13. Note: See Table 8, Pin Characteristics, for a complete I/O listing. I/O Type Serial Link Parameter Min1 Description Typ1 Max1 Unit 800 1200 mV -3 -4 dB 3.7 V Conditions PCIe Transmit VTX-DIFFp-p VTX-DE-RATIO Differential peak-to-peak output voltage De-emphasized differential output voltage VTX-DC-CM DC Common mode voltage VTX-CM-ACP RMS AC peak common mode output voltage 20 mV VTX-CM-DC- Abs delta of DC common mode voltage between L0 and idle 100 mV Abs delta of DC common mode voltage between D+ and D- 25 mV Electrical idle diff peak output 20 mV Voltage change during receiver detection 600 mV active-idle-delta VTX-CM-DC-linedelta VTX-Idle-DiffP VTX-RCV-Detect -0.1 1 RLTX-DIFF Transmitter Differential Return loss 12 dB RLTX-CM Transmitter Common Mode Return loss 6 dB ZTX-DEFF-DC DC Differential TX impedance 80 100 120 Ω ZOSE Single ended TX Impedance 40 50 60 Ω Transmitter Eye Diagram TX Eye Height (De-emphasized bits) 505 650 mV Transmitter Eye Diagram TX Eye Height (Transition bits) 800 950 mV VRX-DIFFp-p Differential input voltage (peak-to-peak) 175 VRX-CM-AC Receiver common-mode voltage for AC coupling RLRX-DIFF Receiver Differential Return Loss 15 dB RLRX-CM Receiver Common Mode Return Loss 6 dB Differential input impedance (DC) 80 100 120 Ω Single-ended input impedance 40 50 60 Ω 200k 350k PCIe Receive ZRX-DIFF-DC ZRX-COMM-DC ZRX-COMM-HIGH- Powered down input common mode impedance (DC) Z-DC VRX-IDLE-DET- Electrical idle detect threshold 65 Input Capacitance 1.5 1200 mV 150 mV Ω 175 mV DIFFp-p PCIe REFCLK CIN — pF Table 17 DC Electrical Characteristics (Part 1 of 2) 18 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet I/O Type Min1 Typ1 Max1 Unit Conditions IOL — 2.5 — mA VOL = 0.4v IOH — -5.5 — mA VOH = 1.5V IOL — 12.0 — mA VOL = 0.4v IOH — -20.0 — mA VOH = 1.5V Parameter Description Other I/Os LOW Drive Output High Drive Output Schmitt Trigger Input (STI) VIL -0.3 — 0.8 V — VIH 2.0 — VDDIO + 0.5 V — Input VIL -0.3 — 0.8 V — VIH 2.0 — VDDIO + 0.5 V — CIN — — 8.5 pF — Inputs — — + 10 μA VDDI/O (max) I/OLEAK W/O Pull-ups/downs — — + 10 μA VDDI/O (max) I/OLEAK WITH Pull-ups/downs — — + 80 μA VDDI/O (max) Capacitance Leakage Table 17 DC Electrical Characteristics (Part 2 of 2) 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a. 19 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Package Pinout — 900-BGA Signal Pinout for PES32H8 The following table lists the pin numbers and signal names for the PES32H8 device. Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt A1 VSS B5 VSS C9 VSS D13 VSS A2 VSS B6 VSS C10 VSS D14 PE3RP01 A3 GPIO_19 B7 VSS C11 VSS D15 PE3RP00 A4 VDDIO B8 VSS C12 VSS D16 VSS A5 VSS B9 VSS C13 VSS D17 PE2RP03 A6 VSS B10 VSS C14 VSS D18 PE2RP02 A7 VSS B11 PE3TN03 C15 VSS D19 VSS A8 VSS B12 PE3TN02 C16 VSS D20 PE2RP01 A9 VSS B13 VSS C17 VSS D21 PE2RP00 A10 VSS B14 PE3TN01 C18 VSS D22 VSS A11 PE3TP03 B15 PE3TN00 C19 VSS D23 VSS A12 PE3TP02 B16 VSS C20 VSS D24 VSS A13 VSS B17 PE2TN03 C21 VSS D25 VSS A14 PE3TP01 B18 PE2TN02 C22 VSS D26 JTAG_TMS A15 PE3TP00 B19 VSS C23 VSS D27 VDDIO A16 VSS B20 PE2TN01 C24 VSS D28 SSMBADDR_5 A17 PE2TP03 B21 PE2TN00 C25 VSS D29 SSMBADDR_3 A18 PE2TP02 B22 VSS C26 MSMBADDR_4 D30 VDDIO A19 VSS B23 VSS C27 JTAG_TDI E1 VDDIO A20 PE2TP01 B24 VSS C28 JTAG_TRST_N E2 GPIO_30 A21 PE2TP00 B25 VSS C29 SSMBADDR_2 E3 GPIO_31 1 A22 VSS B26 MSMBADDR_3 C30 SSMBADDR_1 E4 GPIO_24 1 A23 VSS B27 MSMBADDR_2 D1 GPIO_28 1 E5 VSS A24 VSS B28 PERSTN D2 GPIO_26 1 E6 VSS A25 VSS B29 VDDIO D3 VDDIO E7 VSS A26 VDDIO B30 VSS D4 GPIO_23 E8 VSS A27 MSMBADDR_1 C1 GPIO_29 D5 VSS E9 PEREFCLKP1 A28 MSMBSMODE C2 GPIO_27 1 D6 VSS E10 VSS A29 VSS C3 GPIO_21 1 D7 VSS E11 PE3RN03 A30 VSS C4 GPIO_16 D8 VSS E12 PE3RN02 B1 VSS C5 VSS D9 PEREFCLKN1 E13 VSS B2 VDDIO C6 VSS D10 VSS E14 PE3RN01 B3 GPIO_18 C7 VSS D11 PE3RP03 E15 PE3RN00 B4 GPIO_17 C8 VSS D12 PE3RP02 E16 VSS 1 Table 18 PES32H8 900-pin Signal Pin-Out (Part 1 of 7) 20 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function E17 PE2RN03 F23 VSS G29 VSS J5 PEREFCLKN2 E18 PE2RN02 F24 MSMBDAT G30 VSS J6 VSS E19 VSS F25 VDDIO H1 VSS J7 VSS E20 PE2RN01 F26 SSMBCLK H2 VSS J8 VSS E21 PE2RN00 F27 VSS H3 VSS J9 VSS E22 VSS F28 VSS H4 VSS J10 VSS E23 VSS F29 VSS H5 VSS J11 VDDPE E24 VSS F30 VSS H6 VSS J12 VDDPE E25 MSMBCLK G1 VSS H7 VDDIO J13 VDDPE E26 VSS G2 VSS H8 GPIO_22 J14 VSS E27 VSS G3 VSS H9 VSS J15 VDDPE E28 VSS G4 VSS H10 VSS J16 VDDPE E29 VSS G5 VSS H11 VTTPE J17 VSS E30 VSS G6 VSS H12 VSS J18 VDDPE F1 VSS G7 GPIO_25 H13 VDDAPE J19 VDDPE F2 VSS G8 VSS H14 VSS J20 VDDPE F3 VSS G9 VSS H15 VTTPE J21 VSS F4 VSS G10 VSS H16 VTTPE J22 VSS F5 VSS G11 VSS H17 VSS J23 VSS F6 GPIO_20 G12 VDDPE H18 VDDAPE J24 VSS F7 VDDIO G13 VSS H19 VSS J25 VSS F8 VSS G14 VSS H20 VTTPE J26 VSS F9 VSS G15 VTTPE H21 VSS J27 VSS F10 VSS G16 VTTPE H22 VSS J28 VSS F11 VSS G17 VSS H23 CCLKDS J29 VSS F12 VSS G18 VSS H24 JTAG_TCK J30 VSS F13 VSS G19 VDDPE H25 VSS K1 VSS F14 VSS G20 VSS H26 VSS K2 VSS F15 VSS G21 VSS H27 VSS K3 VSS F16 VSS G22 VSS H28 VSS K4 VSS F17 VSS G23 JTAG_TDO H29 VSS K5 VSS F18 VSS G24 VDDIO H30 VSS K6 VSS F19 VSS G25 SSMBDAT J1 VSS K7 VSS F20 VSS G26 VSS J2 VSS K8 VSS F21 VSS G27 VSS J3 VSS K9 VSS F22 VSS G28 VSS J4 PEREFCLKP2 K10 VSS 1 1 Alt Table 18 PES32H8 900-pin Signal Pin-Out (Part 2 of 7) 21 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function K11 VDDPE L17 VDDCORE M23 VSS N29 PE1TN01 K12 VSS L18 VDDCORE M24 VDDPE N30 PE1TP01 K13 VDDPE L19 VDDCORE M25 VSS P1 PE4TP02 K14 VSS L20 VDDCORE M26 VSS P2 PE4TN02 K15 VDDPE L21 VDDPE M27 VSS P3 VSS K16 VDDPE L22 VDDPE M28 VSS P4 PE4RP02 K17 VSS L23 VTTPE M29 VSS P5 PE4RN02 K18 VDDPE L24 VSS M30 VSS P6 VSS K19 VSS L25 VSS N1 VSS P7 VSS K20 VDDPE L26 PE1RN02 N2 VSS P8 VSS K21 VSS L27 PE1RP02 N3 VSS P9 VSS K22 VSS L28 VSS N4 VSS P10 VSS K23 VSS L29 PE1TN02 N5 VSS P11 VSS K24 VSS L30 PE1TP02 N6 VSS P12 VSS K25 VSS M1 PE4TP01 N7 VSS P13 VDDCORE K26 PE1RN03 M2 PE4TN01 N8 VDDAPE P14 VSS K27 PE1RP03 M3 VSS N9 VDDPE P15 VDDCORE K28 VSS M4 PE4RP01 N10 VDDPE P16 VSS K29 PE1TN03 M5 PE4RN01 N11 VDDCORE P17 VDDCORE K30 PE1TP03 M6 VSS N12 VDDCORE P18 VSS L1 PE4TP00 M7 VDDPE N13 VSS P19 VDDCORE L2 PE4TN00 M8 VSS N14 VDDCORE P20 VDDCORE L3 VSS M9 VDDPE N15 VSS P21 VSS L4 PE4RP00 M10 VSS N16 VDDCORE P22 VSS L5 PE4RN00 M11 VDDCORE N17 VSS P23 VSS L6 VSS M12 VSS N18 VDDCORE P24 VSS L7 VSS M13 VDDCORE N19 VSS P25 VSS L8 VTTPE M14 VSS N20 VDDCORE P26 PE1RN00 L9 VDDPE M15 VDDCORE N21 VDDPE P27 PE1RP00 L10 VDDPE M16 VSS N22 VDDPE P28 VSS L11 VDDCORE M17 VDDCORE N23 VDDAPE P29 PE1TN00 L12 VDDCORE M18 VSS N24 VSS P30 PE1TP00 L13 VDDCORE M19 VDDCORE N25 VSS R1 PE4TP03 L14 VSS M20 VDDCORE N26 PE1RN01 R2 PE4TN03 L15 VDDCORE M21 VSS N27 PE1RP01 R3 VSS L16 VSS M22 VDDPE N28 VSS R4 PE4RP03 Alt Table 18 PES32H8 900-pin Signal Pin-Out (Part 3 of 7) 22 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function R5 PE4RN03 T11 VSS U17 VSS V23 VDDAPE R6 VSS T12 VSS U18 VDDCORE V24 VSS R7 VTTPE T13 VDDCORE U19 VSS V25 VSS R8 VTTPE T14 VSS U20 VSS V26 VSS R9 VDDPE T15 VDDCORE U21 VSS V27 VSS R10 VDDPE T16 VSS U22 VSS V28 VSS R11 VDDCORE T17 VDDCORE U23 VSS V29 VSS R12 VDDCORE T18 VSS U24 VSS V30 VSS R13 VSS T19 VDDCORE U25 VSS W1 VSS R14 VDDCORE T20 VDDCORE U26 PE0RN02 W2 VSS R15 VSS T21 VDDPE U27 PE0RP02 W3 VSS R16 VDDCORE T22 VDDPE U28 VSS W4 VSS R17 VSS T23 VTTPE U29 PE0TN02 W5 VSS R18 VDDCORE T24 VTTPE U30 PE0TP02 W6 VSS R19 VSS T25 VSS V1 PE5TP01 W7 VDDPE R20 VSS T26 PE0RN03 V2 PE5TN01 W8 VSS R21 VDDPE T27 PE0RP03 V3 VSS W9 VDDPE R22 VDDPE T28 VSS V4 PE5RP01 W10 VSS R23 VTTPE T29 PE0TN03 V5 PE5RN01 W11 VDDCORE R24 VTTPE T30 PE0TP03 V6 VSS W12 VDDCORE R25 VSS U1 PE5TP00 V7 VSS W13 VSS R26 VSS U2 PE5TN00 V8 VDDAPE W14 VDDCORE R27 VSS U3 VSS V9 VDDPE W15 VSS R28 VSS U4 PE5RP00 V10 VDDPE W16 VDDCORE R29 VSS U5 PE5RN00 V11 VDDCORE W17 VSS R30 VSS U6 VSS V12 VSS W18 VDDCORE T1 VSS U7 VSS V13 VDDCORE W19 VSS T2 VSS U8 VSS V14 VSS W20 VDDCORE T3 VSS U9 VSS V15 VDDCORE W21 VSS T4 VSS U10 VSS V16 VSS W22 VDDPE T5 VSS U11 VDDCORE V17 VDDCORE W23 VSS T6 VSS U12 VDDCORE V18 VSS W24 VDDPE T7 VTTPE U13 VSS V19 VDDCORE W25 VSS T8 VTTPE U14 VDDCORE V20 VDDCORE W26 PE0RN01 T9 VDDPE U15 VSS V21 VDDPE W27 PE0RP01 T10 VDDPE U16 VDDCORE V22 VDDPE W28 VSS Alt Table 18 PES32H8 900-pin Signal Pin-Out (Part 4 of 7) 23 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function W29 PE0TN01 AA5 PE5RN03 AB11 VDDPE AC17 VSS W30 PE0TP01 AA6 VSS AB12 VDDPE AC18 VDDAPE Y1 PE5TP02 AA7 VSS AB13 VDDPE AC19 VSS Y2 PE5TN02 AA8 VSS AB14 VSS AC20 VTTPE Y3 VSS AA9 VSS AB15 VDDPE AC21 VSS Y4 PE5RP02 AA10 VSS AB16 VDDPE AC22 VSS Y5 PE5RN02 AA11 VDDPE AB17 VSS AC23 GPIO_06 Y6 VSS AA12 VSS AB18 VDDPE AC24 VDDIO Y7 VSS AA13 VDDPE AB19 VDDPE AC25 VSS Y8 VTTPE AA14 VSS AB20 VDDPE AC26 VSS Y9 VDDPE AA15 VDDPE AB21 VSS AC27 VSS Y10 VDDPE AA16 VDDPE AB22 VSS AC28 VSS Y11 VDDCORE AA17 VSS AB23 VSS AC29 VSS Y12 VDDCORE AA18 VDDPE AB24 VSS AC30 VSS Y13 VDDCORE AA19 VSS AB25 VSS AD1 VSS Y14 VDDCORE AA20 VDDPE AB26 PEREFCLKN0 AD2 VSS Y15 VSS AA21 VSS AB27 PEREFCLKP0 AD3 VSS Y16 VDDCORE AA22 VSS AB28 VSS AD4 VSS Y17 VSS AA23 VSS AB29 VSS AD5 VSS Y18 VDDCORE AA24 VSS AB30 VSS AD6 VSS Y19 VDDCORE AA25 VSS AC1 VSS AD7 VDDIO Y20 VDDCORE AA26 VSS AC2 VSS AD8 VDDIO Y21 VDDPE AA27 VSS AC3 VSS AD9 VSS Y22 VDDPE AA28 VSS AC4 VSS AD10 VSS Y23 VTTPE AA29 VSS AC5 VSS AD11 VSS Y24 VSS AA30 VSS AC6 VSS AD12 VDDPE Y25 VSS AB1 VSS AC7 VDDIO AD13 VSS Y26 PE0RN00 AB2 VSS AC8 VDDIO AD14 VSS Y27 PE0RP00 AB3 VSS AC9 VSS AD15 VTTPE Y28 VSS AB4 VSS AC10 VSS AD16 VTTPE Y29 PE0TN00 AB5 VSS AC11 VTTPE AD17 VSS Y30 PE0TP00 AB6 VSS AC12 VSS AD18 VSS AA1 PE5TP03 AB7 VSS AC13 VDDAPE AD19 VDDPE AA2 PE5TN03 AB8 VSS AC14 VSS AD20 VSS AA3 VSS AB9 VSS AC15 VTTPE AD21 VSS AA4 PE5RP03 AB10 VSS AC16 VTTPE AD22 VSS Alt 1 Table 18 PES32H8 900-pin Signal Pin-Out (Part 5 of 7) 24 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt AE29 VSS AG5 VSS AH11 VSS AE30 VSS AG6 VSS AH12 VSS VSS AF1 VSS AG7 VSS AH13 VSS AD26 VSS AF2 VSS AG8 VSS AH14 VSS AD27 VSS AF3 VSS AG9 VSS AH15 VSS AD28 VSS AF4 VSS AG10 PE6RP00 AH16 VSS AD29 VSS AF5 VSS AG11 PE6RP01 AH17 VSS AD30 VSS AF6 REFCLKM AG12 VSS AH18 VSS AE1 VSS AF7 VSS AG13 PE6RP02 AH19 VSS AE2 VSS AF8 VSS AG14 PE6RP03 AH20 VSS AE3 VSS AF9 VSS AG15 VSS AH21 VSS AE4 VSS AF10 PE6RN00 AG16 PE7RP00 AH22 VSS AE5 CCLKUS AF11 PE6RN01 AG17 PE7RP01 AH23 VSS AE6 VDDIO AF12 VSS AG18 VSS AH24 VSS AE7 VSS AF13 PE6RN02 AG19 PE7RP02 AH25 VSS AE8 VSS AF14 PE6RN03 AG20 PE7RP03 AH26 VSS AE9 VSS AF15 VSS AG21 VSS AH27 GPIO_00 AE10 VSS AF16 PE7RN00 AG22 PEREFCLKN3 AH28 GPIO_05 1 AE11 VSS AF17 PE7RN01 AG23 VSS AH29 GPIO_11 1 AE12 VSS AF18 VSS AG24 VSS AH30 GPIO_13 AE13 VSS AF19 PE7RN02 AG25 VSS AJ1 VSS AE14 VSS AF20 PE7RN03 AG26 VSS AJ2 VDDIO AE15 VSS AF21 VSS AG27 GPIO_07 AJ3 VSS AE16 VSS AF22 PEREFCLKP3 AG28 VDDIO AJ4 SWMODE_0 AE17 VSS AF23 VSS AG29 GPIO_10 1 AJ5 SWMODE_2 AE18 VSS AF24 VSS AG30 GPIO_12 1 AJ6 VSS AE19 VSS AF25 VSS AH1 P23MERGEN AJ7 VSS AE20 VSS AF26 VSS AH2 P67MERGEN AJ8 VSS AE21 VSS AF27 GPIO_08 AH3 VSS AJ9 VSS AE22 VSS AF28 GPIO_15 AH4 VSS AJ10 PE6TN00 AE23 VSS AF29 GPIO_14 AH5 SWMODE_3 AJ11 PE6TN01 AE24 VDDIO AF30 VDDIO AH6 VSS AJ12 VSS AE25 GPIO_04 AG1 VDDIO AH7 VSS AJ13 PE6TN02 AE26 VSS AG2 P01MERGEN AH8 VSS AJ14 PE6TN03 AE27 VSS AG3 P45MERGEN AH9 VSS AJ15 VSS AE28 VSS AG4 VDDIO AH10 VSS AJ16 PE7TN00 AD23 VSS AD24 GPIO_09 AD25 1 1 1 Table 18 PES32H8 900-pin Signal Pin-Out (Part 6 of 7) 25 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function AJ17 PE7TN01 AJ28 GPIO_02 AK9 VSS AK20 PE7TP03 AJ18 VSS AJ29 VDDIO AK10 PE6TP00 AK21 VSS AJ19 PE7TN02 AJ30 VSS AK11 PE6TP01 AK22 VSS AJ20 PE7TN03 AK1 VSS AK12 VSS AK23 VSS AJ21 VSS AK2 VSS AK13 PE6TP02 AK24 VSS AJ22 VSS AK3 RSTHALT AK14 PE6TP03 AK25 VSS AJ23 VSS AK4 SWMODE_1 AK15 VSS AK26 VSS AJ24 VSS AK5 VDDIO AK16 PE7TP00 AK27 VDDIO AJ25 VSS AK6 VSS AK17 PE7TP01 AK28 GPIO_03 AJ26 VSS AK7 VSS AK18 VSS AK29 VSS AJ27 GPIO_01 AK8 VSS AK19 PE7TP02 AK30 VSS Alt Table 18 PES32H8 900-pin Signal Pin-Out (Part 7 of 7) Alternate Signal Functions Pin GPIO Alternate Pin GPIO Alternate AH28 GPIO_05 GPEN H8 GPIO_22 IOEXPINTN1 AC23 GPIO_06 P1RSTN D4 GPIO_23 IOEXPINTN2 AG27 GPIO_07 P2RSTN E4 GPIO_24 IOEXPINTN3 AF27 GPIO_08 P3RSTN G7 GPIO_25 IOEXPINTN4 AD24 GPIO_09 P4RSTN D2 GPIO_26 IOEXPINTN5 AG29 GPIO_10 P5RSTN C2 GPIO_27 IOEXPINTN6 AH29 GPIO_11 P6RSTN D1 GPIO_28 IOEXPINTN7 AG30 GPIO_12 P7RSTN E3 GPIO_31 IOEXPINTN10 C3 GPIO_21 IOEXPINTN0 Table 19 PES32H8 Alternate Signal Functions 26 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Power Pins VDDCore VDDCore VDDIO VDDPE VDDPE VDDAPE VTTPE L11 T17 A4 G12 T9 H13 G15 L12 T19 A26 G19 T10 H18 G16 L13 T20 B2 J11 T21 N8 H11 L15 U11 B29 J12 T22 N23 H15 L17 U12 D3 J13 V9 V8 H16 L18 U14 D27 J15 V10 V23 H20 L19 U16 D30 J16 V21 AC13 L8 L20 U18 E1 J18 V22 AC18 L23 M11 V11 F7 J19 W7 R7 M13 V13 F25 J20 W9 R8 M15 V15 G24 K11 W22 R23 M17 V17 H7 K13 W24 R24 M19 V19 AC7 K15 Y9 T7 M20 V20 AC8 K16 Y10 T8 N11 W11 AC24 K18 Y21 T23 N12 W12 AD7 K20 Y22 T24 N14 W14 AD8 L9 AA11 Y8 N16 W16 AE6 L10 AA13 Y23 N18 W18 AE24 L21 AA15 AC11 N20 W20 AF30 L22 AA16 AC15 P13 Y11 AG1 M7 AA18 AC16 P15 Y12 AG4 M9 AA20 AC20 P17 Y13 AG28 M22 AB11 AD15 P19 Y14 AJ2 M24 AB12 AD16 P20 Y16 AJ29 N9 AB13 R11 Y18 AK5 N10 AB15 R12 Y19 AK27 N21 AB16 R14 Y20 N22 AB18 R16 R9 AB19 R18 R10 AB20 T13 R21 AD12 T15 R22 AD19 Table 20 PES32H8 Power Pins 27 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Ground Pins VSS VSS VSS VSS VSS VSS VSS VSS A1 C8 E13 F30 H21 K8 M29 R13 A2 C9 E16 G1 H22 K9 M30 R15 A5 C10 E19 G2 H25 K10 N1 R17 A6 C11 E22 G3 H26 K12 N2 R19 A7 C12 E23 G4 H27 K14 N3 R20 A8 C13 E24 G5 H28 K17 N4 R25 A9 C14 E26 G6 H29 K19 N5 R26 A10 C15 E27 G8 H30 K21 N6 R27 A13 C16 E28 G9 J1 K22 N7 R28 A16 C17 E29 G10 J2 K23 N13 R29 A19 C18 E30 G11 J3 K24 N15 R30 A22 C19 F1 G13 J6 K25 N17 T1 A23 C20 F2 G14 J7 K28 N19 T2 A24 C21 F3 G17 J8 L3 N24 T3 A25 C22 F4 G18 J9 L6 N25 T4 A29 C23 F5 G20 J10 L7 N28 T5 A30 C24 F8 G21 J14 L14 P3 T6 B1 C25 F9 G22 J17 L16 P6 T11 B5 D5 F10 G26 J21 L24 P7 T12 B6 D6 F11 G27 J22 L25 P8 T14 B7 D7 F12 G28 J23 L28 P9 T16 B8 D8 F13 G29 J24 M3 P10 T18 B9 D10 F14 G30 J25 M6 P11 T25 B10 D13 F15 H1 J26 M8 P12 T28 B13 D16 F16 H2 J27 M10 P14 U3 B16 D19 F17 H3 J28 M12 P16 U6 B19 D22 F18 H4 J29 M14 P18 U7 B22 D23 F19 H5 J30 M16 P21 U8 B23 D24 F20 H6 K1 M18 P22 U9 B24 D25 F21 H9 K2 M21 P23 U10 B25 E5 F22 H10 K3 M23 P24 U13 B30 E6 F23 H12 K4 M25 P25 U15 C5 E7 F27 H14 K5 M26 P28 U17 C6 E8 F28 H17 K6 M27 R3 U19 C7 E10 F29 H19 K7 M28 R6 U20 Table 21 PES32H8 Ground Pins (Part 1 of 2) 28 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet VSS VSS VSS VSS VSS VSS VSS VSS U21 W17 AA27 AC9 AD23 AE28 AG25 AJ9 U22 W19 AA28 AC10 AD25 AE29 AG26 AJ12 U23 W21 AA29 AC12 AD26 AE30 AH3 AJ15 U24 W23 AA30 AC14 AD27 AF1 AH4 AJ18 U25 W25 AB1 AC17 AD28 AF2 AH6 AJ21 U28 W28 AB2 AC19 AD29 AF3 AH7 AJ22 V3 Y3 AB3 AC21 AD30 AF4 AH8 AJ23 V6 Y6 AB4 AC22 AE1 AF5 AH9 AJ24 V7 Y7 AB5 AC25 AE2 AF7 AH10 AJ25 V12 Y15 AB6 AC26 AE3 AF8 AH11 AJ26 V14 Y17 AB7 AC27 AE4 AF9 AH12 AJ30 V16 Y24 AB8 AC28 AE7 AF12 AH13 AK1 V18 Y25 AB9 AC29 AE8 AF15 AH14 AK2 V24 Y28 AB10 AC30 AE9 AF18 AH15 AK6 V25 AA3 AB14 AD1 AE10 AF21 AH16 AK7 V26 AA6 AB17 AD2 AE11 AF23 AH17 AK8 V27 AA7 AB21 AD3 AE12 AF24 AH18 AK9 V28 AA8 AB22 AD4 AE13 AF25 AH19 AK12 V29 AA9 AB23 AD5 AE14 AF26 AH20 AK15 V30 AA10 AB24 AD6 AE15 AG5 AH21 AK18 W1 AA12 AB25 AD9 AE16 AG6 AH22 AK21 W2 AA14 AB28 AD10 AE17 AG7 AH23 AK22 W3 AA17 AB29 AD11 AE18 AG8 AH24 AK23 W4 AA19 AB30 AD13 AE19 AG9 AH25 AK24 W5 AA21 AC1 AD14 AE20 AG12 AH26 AK25 W6 AA22 AC2 AD17 AE21 AG15 AJ1 AK26 W8 AA23 AC3 AD18 AE22 AG18 AJ3 AK29 W10 AA24 AC4 AD20 AE23 AG21 AJ6 AK30 W13 AA25 AC5 AD21 AE26 AG23 AJ7 W15 AA26 AC6 AD22 AE27 AG24 AJ8 Table 21 PES32H8 Ground Pins (Part 2 of 2) 29 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signals Listed Alphabetically Signal Name I/O Type Location Signal Category CCLKDS I H23 System CCLKUS I AE5 GPIO_00 I/O AH27 GPIO_01 I/O AJ27 GPIO_02 I/O AJ28 GPIO_03 I/O AK28 GPIO_04 I/O AE25 GPIO_05 I/O AH28 GPIO_06 I/O AC23 GPIO_07 I/O AG27 GPIO_08 I/O AF27 GPIO_09 I/O AD24 GPIO_10 I/O AG29 GPIO_11 I/O AH29 GPIO_12 I/O AG30 GPIO_13 I/O AH30 GPIO_14 I/O AF29 GPIO_15 I/O AF28 GPIO_16 I/O C4 GPIO_17 I/O B4 GPIO_18 I/O B3 GPIO_19 I/O A3 GPIO_20 I/O F6 GPIO_21 I/O C3 GPIO_22 I/O H8 GPIO_23 I/O D4 GPIO_24 I/O E4 GPIO_25 I/O G7 GPIO_26 I/O D2 GPIO_27 I/O C2 GPIO_28 I/O D1 GPIO_29 I/O C1 GPIO_30 I/O E2 GPIO_31 I/O E3 General Purpose I/O General Purpose I/O (cont.) Table 22 89PES32H8 Alphabetical Signal List (Part 1 of 6) 30 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Name I/O Type Location Signal Category JTAG_TCK I H24 Test JTAG_TDI I C27 JTAG_TDO O G23 JTAG_TMS I D26 JTAG_TRST_N I C28 MSMBADDR_1 I A27 MSMBADDR_2 I B27 MSMBADDR_3 I B26 MSMBADDR_4 I C26 MSMBCLK I/O E25 MSMBDAT I/O F24 MSMBSMODE I A28 P01MERGEN I AG2 P23MERGEN I AH1 P45MERGEN I AG3 P67MERGEN I AH2 PE0RN00 I Y26 PE0RN01 I W26 PE0RN02 I U26 PE0RN03 I T26 PE0RP00 I Y27 PE0RP01 I W27 PE0RP02 I U27 PE0RP03 I T27 PE0TN00 O Y29 PE0TN01 O W29 PE0TN02 O U29 PE0TN03 O T29 PE0TP00 O Y30 PE0TP01 O W30 PE0TP02 O U30 PE0TP03 O T30 PE1RN00 I P26 PE1RN01 I N26 PE1RN02 I L26 SMBus Interface System PCI Express Table 22 89PES32H8 Alphabetical Signal List (Part 2 of 6) 31 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Name I/O Type Location Signal Category PE1RN03 I K26 PCI Express (cont.) PE1RP00 I P27 PE1RP01 I N27 PE1RP02 I L27 PE1RP03 I K27 PE1TN00 O P29 PE1TN01 O N29 PE1TN02 O L29 PE1TN03 O K29 PE1TP00 O P30 PE1TP01 O N30 PE1TP02 O L30 PE1TP03 O K30 PE2RN00 I E21 PE2RN01 I E20 PE2RN02 I E18 PE2RN03 I E17 PE2RP00 I D21 PE2RP01 I D20 PE2RP02 I D18 PE2RP03 I D17 PE2TN00 O B21 PE2TN01 O B20 PE2TN02 O B18 PE2TN03 O B17 PE2TP00 O A21 PE2TP01 O A20 PE2TP02 O A18 PE2TP03 O A17 PE3RN00 I E15 PE3RN01 I E14 PE3RN02 I E12 PE3RN03 I E11 PE3RP00 I D15 PE3RP01 I D14 PE3RP02 I D12 Table 22 89PES32H8 Alphabetical Signal List (Part 3 of 6) 32 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Name I/O Type Location Signal Category PE3RP03 I D11 PCI Express (cont.) PE3TN00 O B15 PE3TN01 O B14 PE3TN02 O B12 PE3TN03 O B11 PE3TP00 O A15 PE3TP01 O A14 PE3TP02 O A12 PE3TP03 O A11 PE4RN00 I L5 PE4RN01 I M5 PE4RN02 I P5 PE4RN03 I R5 PE4RP00 I L4 PE4RP01 I M4 PE4RP02 I P4 PE4RP03 I R4 PE4TN00 O L2 PE4TN01 O M2 PE4TN02 O P2 PE4TN03 O R2 PE4TP00 O L1 PE4TP01 O M1 PE4TP02 O P1 PE4TP03 O R1 PE5RN00 I U5 PE5RN01 I V5 PE5RN02 I Y5 PE5RN03 I AA5 PE5RP00 I U4 PE5RP01 I V4 PE5RP02 I Y4 PE5RP03 I AA4 PE5TN00 O U2 PE5TN01 O V2 PE5TN02 O Y2 Table 22 89PES32H8 Alphabetical Signal List (Part 4 of 6) 33 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Name I/O Type Location Signal Category PE5TN03 O AA2 PCI Express (cont.) PE5TP00 O U1 PE5TP01 O V1 PE5TP02 O Y1 PE5TP03 O AA1 PE6RN00 I AF10 PE6RN01 I AF11 PE6RN02 I AF13 PE6RN03 I AF14 PE6RP00 I AG10 PE6RP01 I AG11 PE6RP02 I AG13 PE6RP03 I AG14 PE6TN00 O AJ10 PE6TN01 O AJ11 PE6TN02 O AJ13 PE6TN03 O AJ14 PE6TP00 O AK10 PE6TP01 O AK11 PE6TP02 O AK13 PE6TP03 O AK14 PE7RN00 I AF16 PE7RN01 I AF17 PE7RN02 I AF19 PE7RN03 I AF20 PE7RP00 I AG16 PE7RP01 I AG17 PE7RP02 I AG19 PE7RP03 I AG20 PE7TN00 O AJ16 PE7TN01 O AJ17 PE7TN02 O AJ19 PE7TN03 O AJ20 PE7TP00 O AK16 PE7TP01 O AK17 PE7TP02 O AK19 Table 22 89PES32H8 Alphabetical Signal List (Part 5 of 6) 34 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Signal Name I/O Type Location Signal Category PE7TP03 O AK20 PCI Express (cont.) PEREFCLKN0 I AB26 PEREFCLKN1 I D9 PEREFCLKN2 I J5 PEREFCLKN3 I AG22 PEREFCLKP0 I AB27 PEREFCLKP1 I E9 PEREFCLKP2 I J4 PEREFCLKP3 I AF22 PERSTN I B28 System REFCLKM I AF6 PCI Express RSTHALT I AK3 System SSMBADDR_1 I C30 SMBus Interface SSMBADDR_2 I C29 SSMBADDR_3 I D29 SSMBADDR_5 I D28 SSMBCLK I/O F26 SSMBDAT I/O G25 SWMODE_0 I AJ4 SWMODE_1 I AK4 SWMODE_2 I AJ5 SWMODE_3 I AH5 System VDDCORE, VDDAPE, VDDIO, VDDPE, VTTPE See Table 20 for a listing of power pins. VSS See Table 21 for a listing of ground pins. Table 22 89PES32H8 Alphabetical Signal List (Part 6 of 6) 35 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet PES32H8 Pinout — Top View 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 7 8 A A B B C C D D E E F F G H X X X X X G H X J J K K L L X X M M N N P P R T R X X X X X X X X T U U V V W W Y Y X X AA AA AB AB AC X AD X X X X AC X AD AE AE AF AF AG AG AH AH AJ AJ AK AK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 VDDCore (Power) VDDPE (Power) VDDI/O (Power) VDDAPE (Power) X VTTPE (Power) 36 of 40 Vss (Ground) Signals July 19, 2007 IDT 89HPES32H8 Data Sheet PES32H8 Package Drawing — 900-Pin AL900/AR900 37 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet PES32H8 Package Drawing — Page Two 38 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Revision History July 19, 2007: Initial publication of data sheet. 39 of 40 July 19, 2007 IDT 89HPES32H8 Data Sheet Ordering Information NN A AAA NNAN AA Product Family Operating Voltage Device Family Product Detail Device Revision AA Legend A = Alpha Character N = Numeric Character A Package Temp Range Blank Commercial Temperature (0°C to +70°C Ambient) I Industrial Temperature (-40° C to +85° C Ambient) AL 900-ball FCBGA AR 900-ball FCBGA, RoHS ZA ZA revision 32H8 32-lane, 8-port PES PCI Express Switch H 1.0V +/- 0.1V Core Voltage 89 Serial Switching Product Valid Combinations 89HPES32H8ZAAL 900-ball FCBGA package, Commercial Temperature 89HPES32H8ZAAR 900-ball RoHS FCBGA package, Commercial Temperature 89HPES32H8ZAALI 900-ball FCBGA package, Industrial Temperature 89HPES32H8ZAARI 900-ball RoHS FCBGA package, Industrial Temperature ® CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com 40 of 40 for Tech Support: email: [email protected] phone: 408-284-8208 July 19, 2007