Weighted Low Rank Approximations with Provable Guarantees Ilya Razenshteyn, Zhao Song, and David P. Woodruff MIT, UT-Austin, IBM Almaden Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 1 / 22 IMDB . . . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 2 / 22 IMDB . . . . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 2 / 22 IMDB . . Rating Scale : 1, 2, · · · , 10 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 2 / 22 IMDB . . Lowest Rated Rating Scale : 1, 2, · · · , 10 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 2 / 22 IMDB . . Top Rated Lowest Rated Rating Scale : 1, 2, · · · , 10 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 2 / 22 Motivation . . . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . 2 7 7 6 9 6 4 6 6 8 9 10 4 3 4 3 9 8 9 3 1 4 3 6 5 3 7 5 3 7 1 7 2 9 3 7 5 8 7 9 5 5 6 5 2 10 3 8 3 9 7 2 6 10 8 1 6 7 6 6 9 7 1 4 6 1 5 10 7 10 4 8 9 8 4 4 3 8 4 2 4 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . Action Comedy Historical Cartoon Magical 2 7 7 6 9 6 4 6 6 8 9 10 4 3 4 3 9 8 9 3 1 4 3 6 5 3 7 5 3 7 1 7 2 9 3 7 5 8 7 9 5 5 6 5 2 10 3 8 3 9 7 2 6 10 8 1 6 7 6 6 9 7 1 4 6 1 5 10 7 10 4 8 9 8 4 4 3 8 4 2 4 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . . Action 2 9 4 7 5 2 7 8 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 10 3 2 6 6 1 9 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 Magical Comedy Historical Cartoon 7 6 9 6 4 6 6 8 4 3 4 3 9 8 9 3 1 6 5 3 7 5 3 7 1 9 3 7 5 8 7 9 5 5 2 10 3 8 3 9 7 10 8 1 6 7 6 6 9 4 6 1 5 10 7 10 4 8 4 4 3 8 4 2 4 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . . Comedy Action 2 9 4 7 5 2 7 8 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 10 3 2 6 6 1 9 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 4 6 9 5 10 4 8 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 6 3 4 5 3 2 8 6 4 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 Magical Historical Cartoon 9 6 4 6 6 8 3 9 8 9 3 1 3 7 5 3 7 1 7 5 8 7 9 5 10 3 8 3 9 7 1 6 7 6 6 9 1 5 10 7 10 4 4 3 8 4 2 4 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . . Comedy Action 2 9 4 7 5 2 7 8 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 10 3 2 6 6 1 9 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 4 6 9 5 10 4 8 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 6 3 4 5 3 2 8 6 4 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 Historical 9 3 3 7 10 1 1 4 1 3 1 6 1 4 1 2 1 7 1 5 1 4 1 1 6 9 7 5 3 6 5 3 1 3 1 6 1 4 1 2 1 7 1 5 1 4 1 1 Cartoon Magical 4 6 6 8 8 9 3 1 5 3 7 1 8 7 9 5 8 3 9 7 7 6 6 9 10 7 10 4 8 4 2 4 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . . Comedy Action 2 9 4 7 5 2 7 8 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 10 3 2 6 6 1 9 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 4 6 9 5 10 4 8 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 6 3 4 5 3 2 8 6 4 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 Historical 9 3 3 7 10 1 1 4 1 3 1 6 1 4 1 2 1 7 1 5 1 4 1 1 6 9 7 5 3 6 5 3 1 3 1 6 1 4 1 2 1 7 1 5 1 4 1 1 Cartoon 4 8 5 8 8 7 10 8 1 2 1 1 1 2 1 1 1 5 1 1 1 3 1 4 6 9 3 7 3 6 7 4 1 2 1 1 1 2 1 1 1 5 1 1 1 3 1 4 Magical 6 8 3 1 7 1 9 5 9 7 6 9 10 4 2 4 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Motivation . . . . Comedy Action 2 9 4 7 5 2 7 8 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 10 3 2 6 6 1 9 1 5 1 1 1 1 1 5 1 1 1 4 1 6 1 1 7 4 6 9 5 10 4 8 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 6 3 4 5 3 2 8 6 4 1 1 1 1 1 1 1 6 1 3 1 2 1 2 1 4 Historical 9 3 3 7 10 1 1 4 1 3 1 6 1 4 1 2 1 7 1 5 1 4 1 1 6 9 7 5 3 6 5 3 1 3 1 6 1 4 1 2 1 7 1 5 1 4 1 1 Cartoon 4 8 5 8 8 7 10 8 1 2 1 1 1 2 1 1 1 5 1 1 1 3 1 4 6 9 3 7 3 6 7 4 1 2 1 1 1 2 1 1 1 5 1 1 1 3 1 4 Magical 6 3 7 9 9 6 10 2 . Razenshteyn-Song-Woodruff 1 2 1 2 1 6 1 4 1 2 1 3 1 6 1 2 8 1 1 5 7 9 4 4 1 2 1 2 1 6 1 4 1 2 1 3 1 6 1 2 . Weighted Low Rank Approximations with Provable Guarantees 3 / 22 Matrix Completion . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Matrix Completion . . n2 Given : A ∈ {R, ?} , Ω ⊂ [n] × [n] and k ∈ R . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Matrix Completion . Given : A ∈ {R, ?} 1 ? ? ? 1 0 A= ? 0 1 0 ? ? n2 , Ω ⊂ [n] × [n] and k ∈ R 0 ? , k = 2 ? 1 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Matrix Completion . Given : A ∈ {R, ?} 1 ? ? ? 1 0 A= ? 0 1 0 ? ? n2 . , Ω ⊂ [n] × [n] and k ∈ R 0 ? , k = 2 ? 1 Output : AΩ̄ s.t. rank(A) = k . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Matrix Completion . Given : A ∈ {R, ?} 1 ? ? ? 1 0 A= ? 0 1 0 ? ? n2 . , Ω ⊂ [n] × [n] and k ∈ R 0 ? , k = 2 ? 1 Output : AΩ̄ s.t. rank(A) = k 1 1 0 0 1 1 1 0 0 0 A= 0 0 1 1, A = 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 . 0 1 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Matrix Completion . Given : A ∈ {R, ?} 1 ? ? ? 1 0 A= ? 0 1 0 ? ? n2 . , Ω ⊂ [n] × [n] and k ∈ R 0 ? , k = 2 ? 1 Output : AΩ̄ s.t. rank(A) = k Algorithm : Candes-Recht’09, Candes-Recht’10, Keshavan’12 Hardt-Wootters’14, Jain-Netrapalli-Sanghavi’13 Hardt’15, Sun-Luo’15 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Matrix Completion . Given : A ∈ {R, ?} 1 ? ? ? 1 0 A= ? 0 1 0 ? ? n2 . , Ω ⊂ [n] × [n] and k ∈ R 0 ? , k = 2 ? 1 Output : AΩ̄ s.t. rank(A) = k Algorithm : Candes-Recht’09, Candes-Recht’10, Keshavan’12 Hardt-Wootters’14, Jain-Netrapalli-Sanghavi’13 Hardt’15, Sun-Luo’15 Hardness : Peeters’96, Gillis-Glineur’11 Hardt-Meka-Raghavendra-Weitz’14 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Matrix Completion . Given : A ∈ {R, ?} 1 ? ? ? 1 0 A= ? 0 1 0 ? ? n2 . , Ω ⊂ [n] × [n] and k ∈ R 0 ? , k = 2 ? 1 Output : AΩ̄ s.t. rank(A) = k Algorithm : Candes-Recht’09, Candes-Recht’10, Keshavan’12 Hardt-Wootters’14, Jain-Netrapalli-Sanghavi’13 Hardt’15, Sun-Luo’15 Hardness : Peeters’96, Gillis-Glineur’11 Hardt-Meka-Raghavendra-Weitz’14 Weighted : Srebro-Jaakkola’03, Li-Liang-Risteski’16 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 4 / 22 Weighted Matrix Completion . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 5 / 22 Weighted Matrix Completion . 2 Given :A ∈ {R, ?}n , Ω ⊂ [n]2 . 2 A ∈ {R}n W ∈ {0, 1}n . Razenshteyn-Song-Woodruff 2 . Weighted Low Rank Approximations with Provable Guarantees 5 / 22 Weighted Matrix Completion . 2 Given :A ∈ {R, ?}n , Ω ⊂ [n]2 k ∈N . 2 A ∈ {R}n W ∈ {0, 1}n k ∈ N, r ∈ N . Razenshteyn-Song-Woodruff 2 . Weighted Low Rank Approximations with Provable Guarantees 5 / 22 Weighted Matrix Completion . . 2 Given :A ∈ {R, ?}n , Ω ⊂ [n]2 k ∈N 1 ? ? 0 ? 1 0 ? A= ? 0 1 ? 0 ? ? 1 2 1 2 A= 6 0 5 1 0 5 . Razenshteyn-Song-Woodruff 2 A ∈ {R}n W ∈ {0, 1}n k ∈ N, r ∈ N 1 0 0 8 0 0 1 1 0 9 W = 0 1 1 1 4 1 0 0 3 1 1 0 0 1 . Weighted Low Rank Approximations with Provable Guarantees 5 / 22 Weighted Matrix Completion . . 2 Given :A ∈ {R, ?}n , Ω ⊂ [n]2 k ∈N 1 ? ? 0 ? 1 0 ? A= ? 0 1 ? 0 ? ? 1 k =2 2 1 2 A= 6 0 5 1 0 5 1 0 0 1 k = 2, r = 2 . Razenshteyn-Song-Woodruff 2 A ∈ {R}n W ∈ {0, 1}n k ∈ N, r ∈ N 1 0 0 8 0 0 1 1 0 9 W = 0 1 1 1 4 1 0 0 3 1 . Weighted Low Rank Approximations with Provable Guarantees 5 / 22 Weighted Matrix Completion . . 2 Given :A ∈ {R, ?}n , Ω ⊂ [n]2 k ∈N 1 ? ? 0 ? 1 0 ? A= ? 0 1 ? 0 ? ? 1 2 1 2 A= 6 0 5 1 0 5 1 0 0 1 k = 2, r = 2 k =2 Output : AΩ̄ s.t. rank(A) = k B s.t. rank(B) = k kW ◦ (A − B)k2F = 0 . Razenshteyn-Song-Woodruff 2 A ∈ {R}n W ∈ {0, 1}n k ∈ N, r ∈ N 1 0 0 8 0 0 1 1 0 9 W = 0 1 1 1 4 1 0 0 3 1 . Weighted Low Rank Approximations with Provable Guarantees 5 / 22 Main Results - Summary Algorithm for Weighted low rank approximation(WLRA) problem . . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 6 / 22 Main Results - Summary Algorithm for Weighted low rank approximation(WLRA) problem I W has r distinct rows and columns . 1 1 2 W = 2 2 7 1 1 2 2 2 7 1 1 2 2 2 7 3 3 5 5 5 4 3 3 5 5 5 4 4 4 0 , r = 3 0 0 6 . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 6 / 22 Main Results - Summary Algorithm for Weighted low rank approximation(WLRA) problem I I W has r distinct rows and columns W has r distinct columns . 1 2 3 W = 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 3 5 , r = 3 1 3 5 . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 6 / 22 Main Results - Summary Algorithm for Weighted low rank approximation(WLRA) problem I I I W has r distinct rows and columns W has r distinct columns W has rank at most r . 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 , r = 3 4 5 6 . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 6 / 22 Main Results - Summary Algorithm for Weighted low rank approximation(WLRA) problem I I I W has r distinct rows and columns W has r distinct columns W has rank at most r Hardness for Weighted low rank approximation(WLRA) problem . . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 6 / 22 r . Distinct Rows and Columns . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given : 2 . 2 A ∈ Rn , W ∈ Rn , r ∈ N, k ∈ N, > 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given : 2 A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given : 2 A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 . 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 Output : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given : Output : 2 A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 . 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 2 rank-k B ∈ Rn s.t. . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns 2 . 2 Given : A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) 2 min rank −k A 0 kW ◦ (A − A 0 )k2F . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given. : A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) 2 . 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 2 min rank −k A 0 P i,j 0 )2 W 2i,j (Ai,j − Ai,j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given. : A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 2 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given. : A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 2 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given. : A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 e 2 in O((nnz(A) + nnz(W )) · nγ ) + n · 2O(k r /) time 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 2 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given. : A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 e 2 in O((nnz(A) + nnz(W )) · nγ ) + n · 2O(k r /) time for an arbitrarily small constant γ > 0 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 2 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Rows and Columns Given. : A ∈ Rn , W 1 1 1 1 2 2 W = 2 2 2 2 7 7 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 e 2 in O((nnz(A) + nnz(W )) · nγ ) + n · 2O(k r /) time for an arbitrarily small constant γ > 0 fixed parameter tractable 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 3 3 4 1 3 3 4 2 5 5 0 , r = 3 2 5 5 0 2 5 5 0 7 4 4 6 2 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 7 / 22 r . Distinct Columns . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns Given : 2 . 2 A ∈ Rn , W ∈ Rn , r ∈ N, k ∈ N, > 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns Given : 2 A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 . 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns Given : 2 A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 . 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 Output : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns Given : Output : 2 A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 . 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 2 rank-k B ∈ Rn s.t. . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns 2 . 2 Given : A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) 2 min rank −k A 0 kW ◦ (A − A 0 )k2F . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns . Given. : A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 2 min rank −k A 0 P i,j 0 )2 W 2i,j (Ai,j − Ai,j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns . Given. : A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns . Given. : A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns . Given. : A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 e 2 2 in O((nnz(A) + nnz(W )) · nγ ) + n · 2O(k r /) time 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns . Given. : A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 e 2 2 in O((nnz(A) + nnz(W )) · nγ ) + n · 2O(k r /) time for an arbitrarily small constant γ > 0 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 r . Distinct Columns . Given. : A ∈ Rn , W 1 1 2 2 3 3 W = 4 4 5 5 6 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 e 2 2 in O((nnz(A) + nnz(W )) · nγ ) + n · 2O(k r /) time for an arbitrarily small constant γ > 0 fixed parameter tractable 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 1 1 1 2 1 1 3 3 1 1 5 , r = 3 4 1 1 1 5 1 1 3 6 1 1 5 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 8 / 22 Rank r . . . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . Given : . 2 2 A ∈ Rn , W ∈ Rn , r ∈ N, k ∈ N, > 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . Given : . 2 A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . Given : . 2 A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 Output : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . Given : Output : . 2 A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 2 rank-k B ∈ Rn s.t. . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . . 2 2 Given : A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) 2 min rank −k A 0 kW ◦ (A − A 0 )k2F . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . . Given. : A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 2 min rank −k A 0 P i,j 0 )2 W 2i,j (Ai,j − Ai,j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . . Given. : A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . . Given. : A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . . Given. : A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 2 in nO(k 2 r /) time . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Rank r . . Given. : A ∈ Rn , W 1 1 0 1 1 1 W = 0 0 1 0 0 0 Output : rank-k B ∈ Rn s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 2 2 ∈ Rn , r ∈ N, k ∈ N, > 0 1 2 2 2 2 1 2 3 3 2 4 4 , r = 3 4 0 4 4 5 1 6 5 6 0 6 6 2 2 in nO(k r /) time previously only r =1 was known to be in polynomial time . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 9 / 22 Main Results - Hardness . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . . . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis Given : random 4-SAT formula S on n variables . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis Given : random 4-SAT formula S on n variables each clause has 4 literals S1 (x4 ∨ x32 ∨ x9 ∨ x20 ) . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis Given : random 4-SAT formula S on n variables each clause has 4 literals each of Θ(n4 ) clauses is picked ind. with prob. Θ(1/n3 ) S1 S2 SΘ(n) . Razenshteyn-Song-Woodruff (x4 ∨ x32 ∨ x9 ∨ x20 ) (x2 ∨ x13 ∨ x5 ∨ x25 ) ······ (x11 ∨ x19 ∨ x24 ∨ x6 ) S = S1 ∧ S2 ∧ · · · ∧ SΘ(n) Weighted Low Rank Approximations with Provable Guarantees . 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis Given : random 4-SAT formula S on n variables each clause has 4 literals each of Θ(n4 ) clauses is picked ind. with prob. Θ(1/n3 ) Any algorithm that S1 S2 SΘ(n) . Razenshteyn-Song-Woodruff (x4 ∨ x32 ∨ x9 ∨ x20 ) (x2 ∨ x13 ∨ x5 ∨ x25 ) ······ (x11 ∨ x19 ∨ x24 ∨ x6 ) S = S1 ∧ S2 ∧ · · · ∧ SΘ(n) Weighted Low Rank Approximations with Provable Guarantees . 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis Given : random 4-SAT formula S on n variables each clause has 4 literals each of Θ(n4 ) clauses is picked ind. with prob. Θ(1/n3 ) Any algorithm that outputs 1 with prob. 1 when S is satisfiable S1 S2 SΘ(n) . Razenshteyn-Song-Woodruff (x4 ∨ x32 ∨ x9 ∨ x20 ) (x2 ∨ x13 ∨ x5 ∨ x25 ) ······ (x11 ∨ x19 ∨ x24 ∨ x6 ) S = S1 ∧ S2 ∧ · · · ∧ SΘ(n) Weighted Low Rank Approximations with Provable Guarantees . 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis Given : random 4-SAT formula S on n variables each clause has 4 literals each of Θ(n4 ) clauses is picked ind. with prob. Θ(1/n3 ) Any algorithm that outputs 1 with prob. 1 when S is satisfiable outputs 0 with prob. > 1/2 when S is unsatisfiable S1 S2 SΘ(n) . Razenshteyn-Song-Woodruff (x4 ∨ x32 ∨ x9 ∨ x20 ) (x2 ∨ x13 ∨ x5 ∨ x25 ) ······ (x11 ∨ x19 ∨ x24 ∨ x6 ) S = S1 ∧ S2 ∧ · · · ∧ SΘ(n) Weighted Low Rank Approximations with Provable Guarantees . 10 / 22 Main Results - Hardness . [Feige’02, Goerdt-Lanka’04] . Random-4SAT Hypothesis Given : random 4-SAT formula S on n variables each clause has 4 literals each of Θ(n4 ) clauses is picked ind. with prob. Θ(1/n3 ) Any algorithm that outputs 1 with prob. 1 when S is satisfiable outputs 0 with prob. > 1/2 when S is unsatisfiable Requires : 2Ω(n) time S1 S2 SΘ(n) . Razenshteyn-Song-Woodruff (x4 ∨ x32 ∨ x9 ∨ x20 ) (x2 ∨ x13 ∨ x5 ∨ x25 ) ······ (x11 ∨ x19 ∨ x24 ∨ x6 ) S = S1 ∧ S2 ∧ · · · ∧ SΘ(n) Weighted Low Rank Approximations with Provable Guarantees . 10 / 22 Main Results - Hardness . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Main Results - Hardness . . Weighted Low Rank Approximation Hardness . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Main Results - Hardness . . Weighted Low Rank Approximation Hardness Given : 2 A ∈ Rn , distinct r columns W ∈ Rn 2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Main Results - Hardness . . Weighted Low Rank Approximation Hardness Given : 2 2 A ∈ Rn , distinct r columns W ∈ Rn k ∈ N, > 0, W ij ∈ {0, 1, 2, · · · , poly(n)} . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Main Results - Hardness . . Weighted Low Rank Approximation Hardness 2 2 Given : A ∈ Rn , distinct r columns W ∈ Rn k ∈ N, > 0, W ij ∈ {0, 1, 2, · · · , poly(n)} Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Main Results - Hardness . . Weighted Low Rank Approximation Hardness 2 2 Given : A ∈ Rn , distinct r columns W ∈ Rn k ∈ N, > 0, W ij ∈ {0, 1, 2, · · · , poly(n)} Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 Assume : Random-4SAT . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Main Results - Hardness . . Weighted Low Rank Approximation Hardness 2 2 Given : A ∈ Rn , distinct r columns W ∈ Rn k ∈ N, > 0, W ij ∈ {0, 1, 2, · · · , poly(n)} Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 Assume : Random-4SAT ∃0 > 0, for any algorithm with < 0 and k > 1 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Main Results - Hardness . . Weighted Low Rank Approximation Hardness 2 2 Given : A ∈ Rn , distinct r columns W ∈ Rn k ∈ N, > 0, W ij ∈ {0, 1, 2, · · · , poly(n)} Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT with prob. 9/10 Assume : Random-4SAT Requires : ∃0 > 0, for any algorithm with < 0 and k > 1 2Ω(r ) time ! . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 11 / 22 Outline of Technique Obtain a lower bound on the cost Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 12 / 22 Outline of Technique Obtain a lower bound on the cost Polynomial system verifier Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 12 / 22 Outline of Technique Obtain a lower bound on the cost Polynomial system verifier Multiple regression sketch Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 12 / 22 Outline of Technique Obtain a lower bound on the cost Polynomial system verifier Multiple regression sketch Inefficient WLRA algorithm Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 12 / 22 Outline of Technique Obtain a lower bound on the cost Polynomial system verifier Multiple regression sketch Inefficient WLRA algorithm Guess a sketch Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 12 / 22 Lower Bound on the Cost . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] Given: a real polynomial system P(x) . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] where ∆i ∈ {=, >} . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] where ∆i ∈ {=, >} d : maximum degree over all polynomials . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] where ∆i ∈ {=, >} d : maximum degree over all polynomials H : the maximum absolute value of the coefficients . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] . a real polynomial system P(x) Given: v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] where ∆i ∈ {=, >} d : maximum degree over all polynomials H : the maximum absolute value of the coefficients Rv . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] . a real polynomial system P(x) Given: v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] where ∆i ∈ {=, >} d : maximum degree over all polynomials H : the maximum absolute value of the coefficients T : {x ∈ Rv |f1 (x) > 0, · · · , f` (x) > 0, f`+1 (x) = 0, · · · , fm (x) = 0} Rv . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] . a real polynomial system P(x) Given: v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] where ∆i ∈ {=, >} d : maximum degree over all polynomials H : the maximum absolute value of the coefficients T : {x ∈ Rv |f1 (x) > 0, · · · , f` (x) > 0, f`+1 (x) = 0, · · · , fm (x) = 0} minimum value that nonnegative g takes over T is either 0 or > (H + m)−d v Rv . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Lower Bound on the Cost . [Jeronimo-Perrucci-Tsigaridas’13] . a real polynomial system P(x) Given: v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomials constraints fi ∆i (x) > 0, ∀i ∈ [m] where ∆i ∈ {=, >} d : maximum degree over all polynomials H : the maximum absolute value of the coefficients T : {x ∈ Rv |f1 (x) > 0, · · · , f` (x) > 0, f`+1 (x) = 0, · · · , fm (x) = 0} v min nonzero cost > (H + m)−d Rv . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 13 / 22 Polynomial System Verifier . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, Given: a real polynomial system P(x) . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomial constraints fi (x)∆i 0, ∀i ∈ [m] . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomial constraints fi (x)∆i 0, ∀i ∈ [m] where ∆i ∈ {>, >, =, 6=, <, 6} . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomial constraints fi (x)∆i 0, ∀i ∈ [m] where ∆i ∈ {>, >, =, 6=, <, 6} d : maximum degree over all polynomial constraints . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomial constraints fi (x)∆i 0, ∀i ∈ [m] where ∆i ∈ {>, >, =, 6=, <, 6} d : maximum degree over all polynomial constraints H : the maximum absolute value of the coefficients . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Polynomial System Verifier . Basu-Pollack-Roy’96] [Renegar’92, Given: a real polynomial system P(x) v : #variables, x = (x1 , x2 , · · · , xv ) m : #polynomial constraints fi (x)∆i 0, ∀i ∈ [m] where ∆i ∈ {>, >, =, 6=, <, 6} d : maximum degree over all polynomial constraints H : the maximum absolute value of the coefficients It takes (md)O(v ) poly(log H) time to decide if ∃ a solution to polynomial system P . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 14 / 22 Multiple Regression Sketch . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . Given : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . Given : A(1) , A(2) , · · · , A(m) ∈ Rn×k . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . Given : A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 Denote x (j) = arg minkA(j) x − b(j) k, ∀j ∈ [m] Given : x∈Rk×1 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 Denote x (j) = arg minkA(j) x − b(j) k, ∀j ∈ [m] Given : x∈Rk×1 Choose : S to be a random Gaussian matrix . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 Denote x (j) = arg minkA(j) x − b(j) k, ∀j ∈ [m] Given : x∈Rk×1 Choose : S to be a random Gaussian matrix Denote y (j) = arg minkSA(j) y − Sb(j) k, ∀j ∈ [m] y∈Rk ×1 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 Denote x (j) = arg minkA(j) x − b(j) k, ∀j ∈ [m] Given : x∈Rk×1 Choose : S to be a random Gaussian matrix Denote y (j) = arg minkSA(j) y − Sb(j) k, ∀j ∈ [m] y∈Rk ×1 Gaurantee : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 Denote x (j) = arg minkA(j) x − b(j) k, ∀j ∈ [m] Given : x∈Rk×1 Choose : S to be a random Gaussian matrix Denote y (j) = arg minkSA(j) y − Sb(j) k, ∀j ∈ [m] y∈Rk ×1 Gaurantee : For all ∈ (0, 1/2), one can set t = O(k/) s.t. . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 Denote x (j) = arg minkA(j) x − b(j) k, ∀j ∈ [m] Given : x∈Rk×1 Choose : S to be a random Gaussian matrix Denote y (j) = arg minkSA(j) y − Sb(j) k, ∀j ∈ [m] y∈Rk ×1 Gaurantee : For all ∈ (0, 1/2), one can set t = O(k/) s.t. m m P P kA(j) y (j) − b(j) k22 6 (1 + ) kA(j) x (j) − b(j) k22 j=1 j=1 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Multiple Regression Sketch . . A(1) , A(2) , · · · , A(m) ∈ Rn×k b(1) , b(2) , · · · , b(m) ∈ Rn×1 Denote x (j) = arg minkA(j) x − b(j) k, ∀j ∈ [m] Given : x∈Rk×1 Choose : S to be a random Gaussian matrix Denote y (j) = arg minkSA(j) y − Sb(j) k, ∀j ∈ [m] y∈Rk ×1 Gaurantee : For all ∈ (0, 1/2), one can set t = O(k/) s.t. m m P P kA(j) y (j) − b(j) k22 6 (1 + ) kA(j) x (j) − b(j) k22 j=1 j=1 with prob. 9/10 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 15 / 22 Inefficient WLRA Algorithm . . Razenshteyn-Song-Woodruff . . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Aij ∈ {0, ±1, ±2, · · · , ±∆} . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 W ij ∈ {0, 1, 2, · · · , ∆} . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2. write polynomial g(x1 , · · · , x2nk ) = kW ◦ (A − UV )k2F . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2. write polynomial g(x1 , · · · , x2nk ) = kW ◦ (A − UV )k2F 3. pick C ∈ [L− , L+ ], run polynomial verifier g(x) 6 C . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2. write polynomial g(x1 , · · · , x2nk ) = kW ◦ (A − UV )k2F 3. pick C ∈ [L− , L+ ], run polynomial verifier g(x) 6 C 4. optimize C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2. write polynomial g(x1 , · · · , x2nk ) = kW ◦ (A − UV )k2F 3. pick C ∈ [L− , L+ ], run polynomial verifier g(x) 6 C 4. optimize C by binary search over [L− , L+ ] Time : 2Ω(nk) . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2. write polynomial g(x1 , · · · , x2nk ) = kW ◦ (A − UV )k2F 3. pick C ∈ [L− , L+ ], run polynomial verifier g(x) 6 C 4. optimize C by binary search over [L− , L+ ] Time : 2Ω(nk) How can we do better? . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k Time : 2Ω(nk) How can we do better? . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2Ω(nk) How can we do better? polynomial verifier runs in (# constraints · degree)O(# variables) Time : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2Ω(nk) How can we do better? polynomial verifier runs in (# constraints · degree)O(# variables) O(# variables) lower bound on cost (# constraints)−degree Time : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2Ω(nk) How can we do better? polynomial verifier runs in (# constraints · degree)O(# variables) O(# variables) lower bound on cost (# constraints)−degree write a polynomial with few #variables, i.e. poly(kr ) Time : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Inefficient WLRA Algorithm . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Output : rank-k B s.t. kW ◦ (A − B)k2F 6 (1 + ) OPT Algorithm : 1. create variables 2nk variables for U, V > ∈ Rn×k 2Ω(nk) How can we do better? polynomial verifier runs in (# constraints · degree)O(# variables) O(# variables) lower bound on cost (# constraints)−degree write a polynomial with few #variables, i.e. poly(kr ) without blowing up degree and #constraints too much Time : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 16 / 22 Guess a Sketch . . . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Aij ∈ {0, ±1, ±2, · · · , ±∆} . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 W ij ∈ {0, 1, 2, · · · , ∆} . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be jth column of W DW j be diagonal matrix with vector W j 1 1 1 2 2 2 0 1 2 1 2 3 1 1 3 2 4 4 W = 0 0 4 0 4 4 1 0 5 1 6 5 0 0 6 0 6 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be jth column of W DW j be diagonal matrix with vector W j 1 1 1 2 2 2 1 0 1 2 1 2 3 0 1 1 3 2 4 4 1 W = 0 0 4 0 4 4 DW 1 = 0 1 0 5 1 6 5 1 0 0 6 0 6 6 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be jth column of W DW j be diagonal matrix with vector W j 1 1 1 2 2 2 1 0 1 2 1 2 3 1 1 1 3 2 4 4 1 W = 0 0 4 0 4 4 DW 2 = 0 1 0 5 1 6 5 0 0 0 6 0 6 6 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be jth column of W DW j be diagonal matrix with vector W j 1 1 1 2 2 2 1 0 1 2 1 2 3 2 1 1 3 2 4 4 3 W = 0 0 4 0 4 4 DW 3 = 4 1 0 5 1 6 5 5 0 0 6 0 6 6 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be jth column of W DW j be diagonal matrix with vector W j 1 1 1 2 2 2 2 0 1 2 1 2 3 1 1 1 3 2 4 4 2 W = 0 0 4 0 4 4 DW 4 = 0 1 0 5 1 6 5 1 0 0 6 0 6 6 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be jth column of W DW j be diagonal matrix with vector W j 1 1 1 2 2 2 2 0 1 2 1 2 3 2 1 1 3 2 4 4 4 W = 0 0 4 0 4 4 DW 5 = 4 1 0 5 1 6 5 6 0 0 6 0 6 6 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be jth column of W DW j be diagonal matrix with vector W j 1 1 1 2 2 2 2 0 1 2 1 2 3 3 1 1 3 2 4 4 4 W = 0 0 4 0 4 4 DW 6 = 4 1 0 5 1 6 5 5 0 0 6 0 6 6 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : k(UV − A) ◦ W k2F Algorithm : 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : = k(UV − A) ◦ W k2F Algorithm : 2 V ( U − A )◦ F . Razenshteyn-Song-Woodruff W Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : = k(UV − A) ◦ W k2F 2 j=1 kDW j UV j − DW j Aj k2 Algorithm : Pn 2 V ( U − A )◦ F . Razenshteyn-Song-Woodruff W Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : = k(UV − A) ◦ W k2F = 2 j=1 kDW j UV j − DW j Aj k2 Algorithm : Pn 2 V ( U − A )◦ F . Razenshteyn-Song-Woodruff W Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Algorithm : Pn 2 V ( U − A )◦ F . Razenshteyn-Song-Woodruff W Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Algorithm : Pn . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Algorithm : Pn S T . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn 2 j=1 kSDW j UV j − SDW j Aj k2 Algorithm : Pn . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Algorithm : Pn . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t Algorithm : Pn . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t 1 SDW 1 U = S 0 1 U 0 1 0 Algorithm : Pn . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t 1 SDW 2 U = S 1 1 U 0 0 0 Algorithm : Pn . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t 1 SDW 3 U = S 2 3 U 4 5 6 Algorithm : Pn . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t 2 SDW 4 U = S 1 2 U 0 1 0 Algorithm : Pn . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t 2 SDW 5 U = S 2 4 U 4 6 6 Algorithm : Pn . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t 2 SDW 6 U = S 3 4 U 4 5 6 Algorithm : Pn . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t Algorithm : Pn Create t × k variables for each of n SDW j U s? . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) . = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t Algorithm : Pn Create t × k variables for each of n SDW j U s? n ×t × k . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) . = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t Algorithm : Pn Create t × k variables for each of n SDW j U s? ? ×t × k . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k /) . = k(UV − A) ◦ W k2F = Pn 2 i i 2 j=1 kDW j UV j − DW j Aj k2 i=1 kU V DW i − A DW i k2 Sketch by Gaussian S, T > ∈ Rt×n Pn Pn 2 i i 2 j=1 kSDW j UV j − SDW j Aj k2 i=1 kU V DW i T − A DW i T k2 Guess SDW j U ∈ Rt×k and V DW i T ∈ Rk×t Algorithm : Pn Create t × k variables for each of n SDW j U s? r ×t × k . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 17 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 1 0 1 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 W1 = W1 1 1 0 0 1 1 = 0 0 1 1 0 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 W2 = W2 1 1 1 1 1 1 = 0 0 0 0 0 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 W3 = W3 1 1 2 2 3 3 = 4 4 5 5 6 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 W4 = W1 + W2 2 1 1 1 0 1 2 1 1 = + 0 0 0 1 1 0 0 0 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 W5 = W1 + W3 2 1 1 2 0 2 4 1 3 = + 4 0 4 6 1 5 6 0 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : W j be ith column of W 1 0 1 W = 0 1 0 1 1 1 0 0 0 1 2 3 4 5 6 2 1 2 0 1 0 2 2 4 4 6 6 2 3 4 4 5 6 W6 = W2 + W3 2 1 1 3 1 2 4 1 3 = + 4 0 4 5 0 5 6 0 6 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] create t × k variables for SDW 1 U 1 0 1 0 1 0 Weighted Low Rank Approximations with Provable Guarantees U . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] create t × k variables for SDW 2 U 1 1 1 0 0 0 Weighted Low Rank Approximations with Provable Guarantees U . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] create t × k variables for SDW 3 U 1 2 3 4 5 6 Weighted Low Rank Approximations with Provable Guarantees U . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 4 U as SDW 1 U + SDW 2 U 2 1 2 0 1 0 Weighted Low Rank Approximations with Provable Guarantees U . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 4 U as SDW 1 U + SDW 2 U 1+1 0+1 1+1 0+0 1+0 U 0+0 . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 4 U as SDW 1 U + SDW 2 U 1 1 0 1 1 1 ) U ( + 0 0 1 0 0 0 Weighted Low Rank Approximations with Provable Guarantees . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 5 U as SDW 1 U + SDW 3 U 2 2 4 4 6 6 Weighted Low Rank Approximations with Provable Guarantees U . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 5 U as SDW 1 U + SDW 3 U 1+1 0+2 1+3 0+4 1+5 U 0+6 . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 5 U as SDW 1 U + SDW 3 U 1 1 0 2 1 3 ) U ( + 0 4 1 5 0 6 Weighted Low Rank Approximations with Provable Guarantees . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 6 U as SDW 2 U + SDW 3 U 2 3 4 4 5 6 Weighted Low Rank Approximations with Provable Guarantees U . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 6 U as SDW 2 U + SDW 3 U 1+1 1+2 1+3 0+4 0+5 U 0+6 . Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees . 18 / 22 Guess a Sketch . n2 Given : . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : . Algorithm : S . Razenshteyn-Song-Woodruff P k(UV − A) ◦ W k2F = nj=1 kDW j UV j − DW j Aj k22 P sketch nj=1 kSDW j UV j − SDW j Aj k22 create variables for SDW j U, ∀i ∈ [r ] write SDW 6 U as SDW 2 U + SDW 3 U 1 1 1 2 1 3 ) U ( + 0 4 0 5 0 6 Weighted Low Rank Approximations with Provable Guarantees . 18 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/), Algorithm : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/), Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/), Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (SDW U)† SDW Aj write V j j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/), Algorithm : SDW j U ∈ Rt×k is non-degenerate Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (SDW U)† SDW Aj write V j j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/), Algorithm : SDW j U ∈ Rt×k is non-degenerate Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = ((SDW U)> (SDW U))−1 (SDW U)> SDW Aj write V j j j j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = ((SDW U)> (SDW U))−1 (SDW U)> SDW Aj write V j j j j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j j =1 b1 = V -1 (Q > 1 Q1 ) Q> 1 S 1 0 1 0 1 0 . Razenshteyn-Song-Woodruff A1 Weighted Low Rank Approximations with Provable Guarantees . 19 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j j =2 b2 = V -1 (Q > 2 Q2 ) Q> 2 S 1 1 1 0 0 0 . Razenshteyn-Song-Woodruff A2 Weighted Low Rank Approximations with Provable Guarantees . 19 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j j =3 b3 = V -1 (Q > 3 Q3 ) Q> 3 S 1 2 3 4 5 6 . Razenshteyn-Song-Woodruff A3 Weighted Low Rank Approximations with Provable Guarantees . 19 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j j =4 b4 = V -1 (Q > 4 Q4 ) Q> 4 S 2 1 2 0 1 0 . Razenshteyn-Song-Woodruff A4 Weighted Low Rank Approximations with Provable Guarantees . 19 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j j =5 b5 = V -1 (Q > 5 Q5 ) Q> 5 S 2 2 4 4 6 6 . Razenshteyn-Song-Woodruff A5 Weighted Low Rank Approximations with Provable Guarantees . 19 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j j =6 b6 = V -1 (Q > 6 Q6 ) Q> 6 S 2 3 4 4 5 6 . Razenshteyn-Song-Woodruff A6 Weighted Low Rank Approximations with Provable Guarantees . 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j by Cramer’s rule . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j by Cramer’s rule -1 (Q > j Qj ) f11 (x) f12 (x) · · · 1 f21 (x) f22 (x) · · · = hj (x) ··· ··· ··· fk1 (x) fk2 (x) · · · f1k (x) f2k (x) fkk (x) . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : Pn 2 b := arg min V V ∈Rk ×n j=1 kSDW j UV j − SDW j Aj k2 b j = (Q > Q j )−1 Q > SDW Aj write V j j j by Cramer’s rule -1 (Q > j Qj ) f11 (x) f12 (x) · · · 1 f21 (x) f22 (x) · · · = hj (x) ··· ··· ··· fk1 (x) fk2 (x) · · · f1k (x) f2k (x) fkk (x) polynomials h, f have degree O(k) . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 19 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : −1 gives h (x), ∀j ∈ [n], (Q > j j Qj ) . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b V . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b V . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U b V b U . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U degree of pji (x), gj (x), qij (x), hj (x) = O(k) b V b U . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U degree of pji (x), gj (x), qij (x), hj (x) = O(k) Choose : C ∈ [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U degree of pji (x), gj (x), qij (x), hj (x) = O(k) C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U degree of pji (x), gj (x), qij (x), hj (x) = O(k) C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U degree of pji (x), gj (x), qij (x), hj (x) = O(k) C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U degree of pji (x), gj (x), qij (x), hj (x) = O(k) Not done yet. C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : −1 gives h (x), b ij = qij (x)/hj (x) ∀j ∈ [n], (Q > then ∀i ∈ [k ], V j j Qj ) b ji = pji (x)/gj (x) ∀j ∈ [n], (P j P j > )−1 gives gj (x), then ∀i ∈ [k], U degree of pji (x), gj (x), qij (x), hj (x) = O(k) We need to remove denominators. C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : We need to remove denominators. G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C ·G(x) G(x)· k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : O(# variables) (# constraints · degree) G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C ·G(x) G(x)· k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : ( O(n) · degree) O(# variables) G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C ·G(x) G(x)· k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : ( O(n) · O(nk ) ) O(# variables) G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C ·G(x) G(x)· k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : ( O(n) · O(nk ) ) O(krt) G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C ·G(x) G(x)· k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : . n2 n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : ( O(n) 2 · O(nk ) ) O(rk /) G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C ·G(x) G(x)· k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Guess a Sketch . Given : n2 . n2 A ∈ R , W ∈ R , r ∈ N, k ∈ N, > 0 Assumption : t = O(k/),Q j =SDW j U ∈ Rt×k is non-degenerate P j = V DW j T ∈ Rk×t is non-degenerate Algorithm : 2 Time (n)O(rk /) G(x) = Πnj=1 gj2 (x)hj2 (x) of degree O(nk ) Denote : C ∈ [L− , L+ ] Choose : Polynomial system : bV b − A) ◦ W k2 6 C ·G(x) G(x)· k(U F ∀j ∈ [n], gj2 (x) 6= 0, hj2 (x) 6= 0 Optimize : C by binary search over [L− , L+ ] . Razenshteyn-Song-Woodruff . Weighted Low Rank Approximations with Provable Guarantees 20 / 22 Applications Guess a sketch with coding schemes Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 21 / 22 Applications Guess a sketch with coding schemes I Adversial matrix completion Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 21 / 22 Applications Guess a sketch with coding schemes I Adversial matrix completion Guess a sketch with [Landsberg-Manivel’04, Landsberg’12] Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 21 / 22 Applications Guess a sketch with coding schemes I Adversial matrix completion Guess a sketch with [Landsberg-Manivel’04, Landsberg’12] I Weighted low (border) rank tensor completion Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 21 / 22 Applications Guess a sketch with coding schemes I Adversial matrix completion Guess a sketch with [Landsberg-Manivel’04, Landsberg’12] I Weighted low (border) rank tensor completion Guess a sketch with [Arora-Ge-Kannan-Moitra’12, Moitra’13] Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 21 / 22 Applications Guess a sketch with coding schemes I Adversial matrix completion Guess a sketch with [Landsberg-Manivel’04, Landsberg’12] I Weighted low (border) rank tensor completion Guess a sketch with [Arora-Ge-Kannan-Moitra’12, Moitra’13] I Weighted nonnegative matrix factorization Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 21 / 22 Open Problems Can we come up a poly(n) · 2poly(kr /) time algorithm for WLRA problem with rank-r W or prove a nΩ(r ) lower bound for WLRA problem with rank-r W ? Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 22 / 22 Open Problems Can we come up a poly(n) · 2poly(kr /) time algorithm for WLRA problem with rank-r W or prove a nΩ(r ) lower bound for WLRA problem with rank-r W ? Can we prove a hardness result respect to parameter k or , 2Ω(k) or 2Ω(1/) lower bound for WLRA problem? Razenshteyn-Song-Woodruff Weighted Low Rank Approximations with Provable Guarantees 22 / 22