INTERSIL EL5203IS

EL5102, EL5103, EL5202, EL5203, EL5302
®
October 3, 2005
Data Sheet
400MHz Slew Enhanced VFAs
Features
The EL5x02 and EL5x03 families represent high-speed
VFAs based on a CFA amplifier architecture. This gives the
typical high slew rate benefits of a CFA family along with the
stability and ease of use associated with the VFA type
architecture. With slew rates of 3500V/µs this family of
devices enables the use of voltage feedback amplifiers in a
space where the only alternative has been current feedback
amplifiers. This family will also be available in single, dual,
and triple versions, with 200MHz, 400MHz, and 750MHz
versions. These are all available in single, dual, and triple
versions.
• Operates off 3V, 5V, or ±5V applications
Both families operate on single 5V or ±5V supplies from
minimum supply current. EL5x02 also features an output
enable function, which can be used to put the output in to a
high-impedance mode. This enables the outputs of multiple
amplifiers to be tied together for use in multiplexing
applications.
• AVOL = 2000
Typical applications for these families will include cable
driving, filtering, A-to-D and D-to-A buffering, multiplexing
and summing within video, communications, and
instrumentation designs.
FN7331.4
• Power-down to 0µA (EL5x02)
• -3dB bandwidth = 400MHz
• ±0.1dB bandwidth = 50MHz
• Low supply current = 5mA
• Slew rate = 3500V/µs
• Low offset voltage = 5mV max
• Output current = 140mA
• Diff gain/phase = 0.01%/0.01°
• Pb-Free plus anneal available (RoHS compliant)
Applications
• Video amplifiers
• PCMCIA applications
• A/D drivers
• Line drivers
• Portable computers
• High speed communications
• RGB applications
• Broadcast equipment
• Active filtering
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002-2005. All Rights Reserved.
All other trademarks mentioned are the property of their respective owners.
EL5102, EL5103, EL5202, EL5203, EL5302
Ordering Information (Continued)
Ordering Information
PART
PART NUMBER MARKING
PACKAGE
TAPE &
REEL
PKG.
DWG. #
TAPE &
REEL
PKG.
DWG. #
8 Ld SO
(Pb-free)
7”
MDP0027
EL5203ISZ-T13 5203ISZ
(See Note)
8 Ld SO
(Pb-free)
13”
MDP0027
MDP0027
-
MDP0027
EL5203IY
BSAAA
8 Ld MSOP
-
MDP0043
EL5203IY-T7
BSAAA
8 Ld MSOP
7”
MDP0043
8 Ld SO
(Pb-free)
7”
MDP0027
EL5203IY-T13
BSAAA
8 Ld MSOP
13”
MDP0043
8 Ld SO
(Pb-free)
13”
EL5203IYZ
(See Note)
BAAAE
8 Ld MSOP
(Pb-free)
-
MDP0043
5102IS
8 Ld SO
-
MDP0027
EL5102IS-T7
5102IS
8 Ld SO
7”
MDP0027
EL5102IS-T13
5102IS
8 Ld SO
13”
EL5102ISZ
(See Note)
5102ISZ
8 Ld SO
(Pb-free)
EL5102ISZ-T7
(See Note)
5102ISZ
MDP0027
EL5203ISZ-T7
(See Note)
PACKAGE
5203ISZ
EL5102IS
EL5102ISZ-T13 5102ISZ
(See Note)
PART
PART NUMBER MARKING
EL5102IW-T7
q
6 Ld SOT-23
7”
MDP0038
(3K pcs)
EL5203IYZ-T7
(See Note)
BAAAE
8 Ld MSOP
(Pb-free)
7”
MDP0043
EL5102IW-T7A
q
6 Ld SOT-23
7”
MDP0038
(250 pcs)
EL5203IYZ-T13 BAAAE
(See Note)
8 Ld MSOP
(Pb-free)
13”
MDP0043
EL5103IC-T7
B
5 Ld SC-70
7”
(3K pcs)
P5.049
EL5302IU
5302IU
16 Ld QSOP
-
MDP0040
EL5302IU-T7
5302IU
16 Ld QSOP
7”
MDP0040
EL5103IC-T7A
B
5 Ld SC-70
7”
(250 pcs)
P5.049
EL5302IU-T13
5302IU
16 Ld QSOP
13”
MDP0040
EL5103IW-T7
g
5 Ld SOT-23
MDP0038
7”
(3K pcs)
EL5302IUZ
(See Note)
5302IUZ
16 Ld QSOP
(Pb-free)
-
MDP0040
EL5103IW-T7A
g
5 Ld SOT-23
7”
MDP0038
(250 pcs)
EL5302IUZ-T7
(See Note)
5302IUZ
16 Ld QSOP
(Pb-free)
7”
MDP0040
EL5202IY
BRAAA
10 Ld MSOP
-
MDP0043
EL5302IUZ-T13 5302IUZ
(See Note)
16 Ld QSOP
(Pb-free)
13”
MDP0040
EL5202IY-T7
BRAAA
10 Ld MSOP
7”
MDP0043
EL5202IY-T13
BRAAA
10 Ld MSOP
13”
MDP0043
EL5202IYZ
(See Note)
BAAAD
10 Ld MSOP
(Pb-free)
-
MDP0043
EL5202IYZ-T7
(See Note)
BAAAD
10 Ld MSOP
(Pb-free)
7”
MDP0043
EL5202IYZ-T13 BAAAD
(See Note)
10 Ld MSOP
(Pb-free)
13”
MDP0043
EL5203IS
5203IS
8 Ld SO
-
MDP0027
EL5203IS-T7
5203IS
8 Ld SO
7”
MDP0027
EL5203IS-T13
5203IS
8 Ld SO
13”
MDP0027
EL5203ISZ
(See Note)
5203ISZ
8 Ld SO
(Pb-free)
-
MDP0027
2
NOTE: Intersil Pb-free products employ special Pb-free material sets;
molding compounds/die attach materials and 100% matte tin plate
termination finish, which are RoHS compliant and compatible with both
SnPb and Pb-free soldering operations. Intersil Pb-free products are
MSL classified at Pb-free peak reflow temperatures that meet or
exceed the Pb-free requirements of IPC/JEDEC J STD-020.
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Pinouts
EL5103
(5 LD SOT-23)
TOP VIEW
EL5102
(6 LD SOT-23)
TOP VIEW
OUT 1
VS- 2
+ -
IN+ 3
6 VS+
OUT 1
5 CE
VS- 2
4 IN-
IN+ 3
8 CE
IN- 2
+
IN+ 3
VS- 4
INA- 2
6 OUT
INA+ 3
IN+ 3
9 OUT
+
VS- 4
CE 5
7 OUTB
+
6 INB+
8 IN-
INA+ 1
CEA 2
16 INA+
7 IN+
CEB 4
6 CE
INB+ 5
CEC 7
INC+ 8
15 OUTA
14 VS+
VS- 3
+
-
13 OUTB
12 INB-
NC 6
3
5 INB+
EL5302
(16 LD QSOP)
TOP VIEW
10 VS+
+
8 VS+
VS- 4
EL5202
(10 LD MSOP)
TOP VIEW
IN- 2
4 IN-
OUTA 1
7 VS+
5 NC
OUT 1
+ -
EL5203
(8 LD SO, MSOP)
TOP VIEW
EL5102
(8 LD SO)
TOP VIEW
NC 1
5 VS+
11 NC
+
-
10 OUTC
9 INC-
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Absolute Maximum Ratings (TA = 25°C)
Supply Voltage between VS+ and GND . . . . . . . . . . . . . . . . . 13.2V
Maximum Supply Slewrate between VS+ and VS- . . . . . . . . . 1V/µs
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±4V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 80mA
Maximum Current into IN+, IN-, CE . . . . . . . . . . . . . . . . . . . . . ±5mA
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C
Ambient Operating Temperature Range . . . . . . . . . .-40°C to +85°C
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150°C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests
are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
DC Electrical Specifications
PARAMETER
VS+ = +5V, VS- = -5V, TA = 25°C, RL = 500Ω, VENABLE = +5V, unless otherwise specified.
TYP
MAX
UNIT
EL5102, EL5103, EL5202, EL5203
1
5
mV
EL5302
2
8
mV
Offset Voltage Temperature Coefficient
Measured from TMIN to TMAX
10
Input Bias Current
VIN = 0V
-12
2
12
µA
Input Offset Current
VIN = 0V
-8
1
8
µA
TCIOS
Input Bias Current Temperature
Coefficient
Measured from TMIN to TMAX
PSRR
Power Supply Rejection Ratio
VS = ±4.75V to ±5.25V
CMRR
Common Mode Rejection Ratio
CMIR
VOS
TCVOS
IB
IOS
DESCRIPTION
Offset Voltage
CONDITIONS
MIN
µV/°C
50
nA/°C
-70
-80
dB
VCM = -3V to 3.0V
-60
-80
dB
Common Mode Input Range
Guaranteed by CMRR test
-3
±3.3
RIN
Input Resistance
Common mode
200
400
kΩ
CIN
Input Capacitance
SO package
1
pF
3
V
IS,ON
Supply Current - Enabled per amplifier
4.6
5.2
5.8
mA
IS,OFF
Supply Current - Shut-down per amplifier VS+
+1
0
+25
µA
VS-
-25
7
-1
µA
VOUT = ±2.5V, RL = 1kΩ to GND
58
66
dB
60
dB
AVOL
Open Loop Gain
VOUT = ±2.5V, RL = 150Ω to GND
VOUT
IOUT
Output Voltage Swing
Output Current
RL = 1kΩ to GND
±3.5
±3.9
V
RL = 150Ω to GND
±3.4
±3.7
V
AV = 1, RL = 10Ω to 0V
±80
±150
mA
VCE-ON
CE Pin Voltage for Power-up
(VS+)-5
(VS+)-3
V
VCE-OFF
CE Pin Voltage for Shut-down
(VS+)-1
VS+
V
IEN-ON
Pin Current - Enabled
CE = 0V
-1
0
+1
µA
IEN-OFF
Pin Current - Disabled
CE = +5V
1
14
25
µA
4
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Closed Loop AC Electrical Specifications VS+ = +5V, VS- = -5V, TA = 25°C, VENABLE = +5V, AV = +1, RF = 0Ω, RL = 150Ω to
GND pin, unless otherwise specified. (Note 1)
PARAMETER
DESCRIPTION
CONDITIONS
BW
-3dB Bandwidth (VOUT = 400mVP-P)
AV = 1, RF = 0Ω
SR
Slew Rate
AV = +2, RL = 100Ω, VOUT = -3V to +3V
MIN
TYP
MAX
400
1100
RL = 500Ω, VOUT = -3V to +3V
2200
UNIT
MHz
5000
V/µs
4000
V/µs
tR,tF
Rise Time, Fall Time
±0.1V step
2.8
ns
OS
Overshoot
±0.1V step
10
%
tS
0.1% Settling Time
VS = ±5V, RL = 500Ω, AV = 1, VOUT = ±3V
20
ns
dG
Differential Gain (Note 2)
AV = 2, RF = 1kΩ
0.01
%
dP
Differential Phase (Note 2)
AV = 2, RF = 1kΩ
0.01
°
eN
Input Noise Voltage
f = 10kHz
12
nV/√Hz
iN
Input Noise Current
f = 10kHz
11
pA/√Hz
tDIS
Disable Time (Note 3)
50
ns
tEN
Enable Time (Note 3)
25
ns
NOTES:
1. All AC tests are performed on a “warmed up” part, except slew rate, which is pulse tested.
2. Standard NTSC signal = 286mVP-P, f = 3.58MHz, as VIN is swept from 0.6V to 1.314V.RL is DC coupled.
3. Disable/Enable time is defined as the time from when the logic signal is applied to the ENABLE pin to when the supply current has reached half
its final value.
5
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Typical Performance Curves
5
3
2
VS=±5V
AV=+1
RF=0
RL=500Ω
CL=+3.3pF
180
120
60
PHASE (°)
NORMALIZED GAIN (dB)
240
VS=±5V
AV=+1
RF=0
RL=500Ω
CL=+3.3pF
4
1
0
-1
-2
0
-60
-120
-3
-4
-180
-3dB BW @ 438MHz
-240
-5
0.1
1
10
100
FREQUENCY (MHz)
0.1
1000
FIGURE 1. GAIN vs FREQUENCY (-3dB BANDWIDTH)
70
0.3
0.2
0.1
GAIN=40dB or 100
FREQ.=1.64 MHz
GAIN BW PRODUCT=1.64x100=164MHz
0.1dB BW @ 35MHz
0
-0.1
1000
VS=±5V
RL=500Ω
60
GAIN (dB)
NORMALIZED GAIN (dB)
0.4
10
100
FREQUENCY (MHz)
FIGURE 2. PHASE vs FREQUENCY
0.5
VS=±5V
AV=+1
RF=0
RL=500Ω
CL=+3.3pF
1
50
40
-0.2
30
-0.3
-0.4
20
-0.5
1
10
FREQUENCY (MHz)
100
1
10
FREQUENCY (MHz)
100
FIGURE 4. GAIN BANDWIDTH PRODUCT
300
5
VS=±5V
RL=500Ω
4
NORMALIZED GAIN (dB)
GAIN-BANDWIDTH PRODUCT (MHz)
FIGURE 3. 0.1dB BANDWIDTH
0
250
200
150
100
3
VS=±5V
RL=500Ω
CL=+3.3pF
AV=+2
RF=RG=400Ω
2
AV=+1
RF=0
1
0
-1
-2
AV=+5
RF=1.6K, RG=400
-3
-4
50
-5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
SUPPLY VOLTAGES (±V)
FIGURE 5. GAIN BANDWIDTH PRODUCT vs SUPPLY
VOLTAGES
6
0.1
1
10
100
1000
FREQUENCY (MHz)
FIGURE 6. GAIN vs FREQUENCY FOR VARIOUS +AV
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Typical Performance Curves
(Continued)
5
3
2
5
AV=+1
RF=0
RL=500Ω
CL=+3.3pF
1
0
-1
VS=±6
-2
VS=±5V
VS=±4V
-3
VS=±3V
-4
-5
1
10
3
2
100
1
0
-1
-2
RL=150Ω
-3
RL=75Ω
-5
1000
RL=50Ω
0.1
1
FREQUENCY (MHz)
4
RL=500Ω
RL=1kΩ
1
0
-1
RL=50Ω
-2
RL=70Ω
-3
RL=150Ω
-4
1
10
100
FREQUENCY (MHz)
3
2
CL=15pF
CL=27pF
-1
0
-1
CL=3.3pF
-2
-3
CL=0pF
-4
RL=50Ω
-2
-3
4
CL=8.2pF
1
RL=1kΩ
0
5
VS=±5V
AV=+1
RF=0
RL=500Ω
RL=500Ω
1
RL=75Ω
RL=150Ω
0.1
1
10
FREQUENCY (MHz)
100
FIGURE 10. GAIN vs FREQUENCY FOR VARIOUS
RLOAD (AV = +5)
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
4
2
-5
1000
FIGURE 9. GAIN vs FREQUENCY FOR VARIOUS
RLOAD (AV = +2)
5
3
VS=±5V
AV=+5
RF=402Ω
CL=+3.9pF
-4
-5
0.1
1000
5
VS=±5V
AV=+2
RF=402Ω
CL=+3.9pF
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
2
100
FIGURE 8. GAIN vs FREQUENCY FOR VARIOUS
RLOAD (AV = +1)
5
3
10
FREQUENCY (MHz)
FIGURE 7. GAIN vs FREQUENCY FOR VARIOUS ±VS
4
RL=1kΩ
RL=500Ω
-4
VS=±2.5V
0.1
VS=±5V
AV=+1
RF=0
CL=+3.3pF
4
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
4
3
2
VS=±5V
AV=+2
RF=400Ω
RL=500Ω
CL=33pF
CL=18pF
1
0
-1
CL=8.2pF
-2
-3
CL=0pF
-4
-5
CL=47pF
-5
0.1
1
10
100
FREQUENCY (MHz)
FIGURE 11. GAIN vs FREQUENCY FOR VARIOUS
CLOAD (AV =+1)
7
1000
0.1
1
10
100
FREQUENCY (MHz)
1000
FIGURE 12. GAIN vs FREQUENCY FOR VARIOUS
CLOAD (AV = +2)
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Typical Performance Curves
(Continued)
5
3
2
5
VS=±5V
AV=+5
RF=400Ω
RL=500Ω
CL=220pF
CL=150pF
4
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
4
CL=100pF
1
0
-1
CL=56pF
-2
-3
-4
3
2
VS=±5V
AV=+1
RL=500Ω
CL=+3pF
1
0
-1
RF=50Ω
-2
RF=25Ω
-3
RF=0Ω
-4
CL=0pF
-5
-5
0.1
1
10
0.1
100
1
FREQUENCY (MHz)
3
2
5
VS=±5V
AV=+2
RL=500Ω
CL=+8pF
RF=1.0kΩ
4
RF= 680Ω
1
0
-1
RF=402Ω
-2
RF=274Ω
-3
-4
-5
1
10
3
2
VS=±5V
AV=+5
RL=500Ω
CL=+12pF
1000
RF=4kΩ
RF=2kΩ
1
0
-1
RF=100Ω
RF=1kΩ
-2
-3
-4
RF=100Ω
0.1
100
FIGURE 14. GAIN vs FREQUENCY FOR VARIOUS RF (AV = +1)
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
4
10
FREQUENCY (MHz)
FIGURE 13. GAIN vs FREQUENCY FOR VARIOUS
CLOAD (AV =+5)
5
RF=150Ω
RF=100Ω
100
-5
1000
RF=402Ω
0.1
1
10
100
FREQUENCY (MHz)
FREQUENCY (MHz)
FIGURE 15. GAIN vs FREQUENCY FOR VARIOUS RF (AV = +2)
FIGURE 16. GAIN vs FREQUENCY FOR VARIOUS RF (AV = +5)
NORMALIZED GAIN (dB)
4
3
2
VS=±5V
AV=+2
RF=RG=402Ω
RL=500Ω
CL=+8pF
CIN=3.3pF
5
CIN=4.7pF
4
NORMALIZED GAIN (dB)
5
CIN=2.2pF
1
0
-1
-2
CIN=1pF
-3
CIN=0pF
-4
-5
0.1
1
10
100
FREQUENCY (MHz)
2
CIN=8.2pF
CIN=10pF
CIN=6.8pF
1
0
-1
-2
CIN=0pF
CIN=4.7pF
-3
-4
1000
FIGURE 17. GAIN vs FREQUENCY FOR VARIOUS CIN(-)
(AV = +2)
8
3
VS=±5V
AV=+5
RG=402Ω
RL=1600Ω
CL=+12pF
-5
0.1
1
10
FREQUENCY (MHz)
100
FIGURE 18. GAIN vs FREQUENCY FOR VARIOUS CIN(-)
(AV = +5)
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
-45
70
0
45
PHASE
50
90
40
135
30
180
20
225
GAIN
10
270
0
315
-10
-20
10
VCC=+5V
VEE=-5V
100
OUTPUT IMPEDANCE (Ω)
80
60
GAIN (dB)
(Continued)
PHASE (°)
Typical Performance Curves
360
1K
10K 100K 1M
AV=+2
VS=±5V
10
1
0.1
0.01
405
10M 100M 1G
10K
100K
FREQUENCY (Hz)
FIGURE 19. OPEN LOOP GAIN AND PHASE vs FREQUENCY
-10
-10
-40
-20
-50
-60
-70
-30
-40
-50
-80
-60
-90
-70
-100
-80
10K
100K
1M
10M
+PSRR
-90
1K
100M 500M
-PSRR
10K
9
RLOAD=1kΩ
8
GROUP DELAY (ns)
MAX OUTPUT VOLTAGE SWING (Vp-p)
10
7
6
5
4
1
0
VS=±5V
AV=+2
RF=RG=402Ω
CL=8pF
0.1
1
RLOAD=150Ω
10
100
1000
FREQUENCY (MHz)
FIGURE 23. MAX OUTPUT VOLTAGE SWING vs FREQUENCY
9
1M
10M
100M 500M
FIGURE 22. PSRR vs FREQUENCY
FIGURE 21. CMRR vs FREQUENCY
2
100K
FREQUENCY (Hz)
FREQUENCY (Hz)
3
100M
AV=+1
VS=±5V
0
PSRR (dB)
CMRR (dB)
10
-30
-110
1K
10M
FIGURE 20. OUTPUT IMPEDANCE/PHASE vs FREQUENCY
AV=+5
VS=±5V
-20
1M
FREQUENCY (Hz)
30
25 VS=±5V
A =+1
20 RV=0
F
15 RL=500Ω
10
5
0
-5
-10
-15
-20
-25
-30
0.1
1
10
100
FREQUENCY (MHz)
1000
FIGURE 24. GROUP DELAY vs FREQUENCY
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Typical Performance Curves
(Continued)
-10
ISOLATION (dB)
-30
VS=±5V
AV=+1
RF=0
CHIP DISABLED
OUTPUT to INPUT
-40
-50
-60
INPUT to OUTPUT
-70
-80
-90
-100
0.1
1
10
100
1000
GAIN (dB)
-20
10
NOTE:
0 VS=±5V
This was done on the
-10 AV=+1
EL5203 (Dual Op-Amps)
RF=0
-20 R =500Ω
L
-30
B in to A Out
-40
-50
A in to B Out
-60
-70
-80
-90
-100
-110
-120
0.1
1
10
100
FREQUENCY (MHz)
FIGURE 25. INPUT AND OUTPUT ISOLATION
FIGURE 26. CHANNEL TO CHANNEL ISOLATION
-20
-30
-40
-50
-60
VS=±5V
AV=+1
RF=0
RL=500Ω
CL=3.3pF
VOUT=2Vp-p
VS=±5V
AV=+5
RG=402Ω
RF=1600Ω
RL=500Ω
CL=12pF
-30
-40
THD (dBc)
HARMONIC DISTORTION (dBc)
1000
FREQUENCY (MHz)
T.H.D
-70
2nd HD
-80
-50
FIN=10MHz
-60
-70
-80
-90
FIN=1MHz
-90
3rd HD
-100
0.1
-100
1
10
100
6
5
ENABLE SIGNAL
AMPLITUDE (V)
4
3
VS=±5V
AV=+1
RF=0
RL=500Ω
VOUT=2Vp-p
OUTPUT SIGNAL
2
1
0
VS=±5V
5 AV=+1
RF=0
4 R =500Ω
L
3 VOUT=2Vp-p
2
-2
FIGURE 29. TURN-ON TIME
10
4
5
6
7
8
DISABLE SIGNAL
OUTPUT SIGNAL
0
-1
TIME (ns)
3
1
-2
0 200 400 600 800 1000 1200 1400 1600
2
6
-1
-3
-600 -400 -200
1
FIGURE 28. TOTAL HARMONIC DISTORTION vs OUTPUT
VOLTAGES
AMPLITUDE (V)
FIGURE 27. HARMONIC DISTORTION vs FREQUENCY
0
OUTPUT VOLTAGES (Vp-p)
FUNDAMENTAL FREQUENCY (MHz)
-3
-600 -400 -200 0
200 400 600 800 1000 1200 1400 1600
TIME (ns)
FIGURE 30. TURN-OFF TIME
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Typical Performance Curves
(Continued)
0.5
AMPLITUDE (V)
NOISE VOLTAGE (nV/√Hz)
RL=500Ω
CL=3.3pF
VOUT=400mV
VS=±5V
0.4 AV=+1
RF=0
0.3
VS=±5V
100
10
0.2
TFALL=0.9ns
0.1
0.0
TRISE=0.923ns
-0.1
-0.2
1
10
100
1K
10K
-0.3
-20
100K
0
20
FREQUENCY (Hz)
FIGURE 31. EQUIVALENT NOISE VOLTAGE vs FREQUENCY
6.0
AMPLITUDE (V)
3
2
1
TFALL=1.167ns
0
TRISE=1.243ns
-1
-2
5.6
5.4
5.2
5.0
4.8
4.6
Please note that the curve showed
positive Current. The negative current was almost the same.
4.4
4.2
4.0
2.5
-3
0
20
40
60 80 100 120 140 160
TIME (ns)
FIGURE 33. LARGE SIGNAL STEP RESPONSE_RISE AND
FALL TIME
10
0
-10
-20
-30
-40
-50
Delta IM=(1)-(-77)=78dB
IP3=1+(78/2)=40dBm
40
35
2f2-f1=-77.0dBm
@ 1.15MHz
2f1-f2=-76.8dBm
-60 @ 0.85MHz
-70
5.5
6.0
VS=±5V
AV=+5
RF=1600Ω
RL=100Ω
CL=12pF
45
f2=1dBm
@ 1.05MHz
f1=1dBm
@ 0.95MHz
30
25
20
15
-80
10
-90
5
0
0.9
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
50
VS=±5V
AV=+5
RF=1600Ω
RL=100Ω
CL=12pF
-100
0.8
3.0
FIGURE 34. SUPPLY CURRENT vs SUPPLY VOLTAGE
IP3 (dBm)
-20
AMPLITUDE (dBm)
AV=+1
RF=0
RL=500Ω
CL=3.3pF
5.8
SUPPLY CURRENT (mA)
4
RL=500Ω
CL=5pF
VOUT=4.0V
60 80 100 120 140 160
TIME (ns)
FIGURE 32. SMALL SIGNAL STEP RESPONSE_RISE AND
FALL TIME
5
VS=±5V
AV=+5
RG=25Ω
40
1.0
1.1
FREQUENCY (MHz)
1.2
FIGURE 35. THIRD ORDER IMD INTERCEPT (IP3)
11
1
10
FREQUENCY (MHz)
100
FIGURE 36. THIRD ORDER IMD INTERCEPT vs FREQUENCY
FN7331.4
October 3, 2005
EL5102, EL5103, EL5202, EL5203, EL5302
Typical Performance Curves
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
1 1.087W
M
θ
JA
=
0.8
SO
11
5
P8
°C
0.6
543mW
0.4
θJ
SO
0
0
/W
T2 3
A =23
0.2
/1
1.4
POWER DISSIPATION (W)
POWER DISSIPATION (W)
1.2
(Continued)
- 5/6
0° C
/W
1.2 1.136W
25
75 85 100
50
125
0.8
QSOP16
θJA=112°C/W
0.6
0.4
0.2
150
0
25
FIGURE 37. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
POWER DISSIPATION (W)
POWER DISSIPATION (W)
1
607mW
MSOP8/10
θJA=206°C/W
488mW
0.5
0.4
SOT23-5/6
θJA=256°C/W
0.3
0.2
0.1
0
0
25
75 85 100
50
125
75 85 100
150
125
FIGURE 38. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
0.6
50
AMBIENT TEMPERATURE (°C)
AMBIENT TEMPERATURE (°C)
0.7
SO8
θJA=110°C/W
1 1.116W
0
0
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
150
AMBIENT TEMPERATURE (°C)
FIGURE 39. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
791mW
0.8
QSOP16
θJA=158°C/W
781mW
0.6
SO8
θJA=160°C/W
0.4
0.2
0
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE (°C)
FIGURE 40. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
12
FN7331.4
October 3, 2005