INTERSIL EL5235IS

EL5134, EL5135, EL5234, EL5235
®
Data Sheet
October 3, 2005
650MHz, Gain of 5, Low Noise Amplifiers
Features
The EL5134, EL5135, EL5234, and EL5235 are ultra-low
voltage noise, high speed voltage feedback amplifiers that
are ideal for applications requiring low voltage noise,
including communications and imaging. These devices offer
extremely low power consumption for exceptional noise
performance. Stable at gains as low as 5, these devices offer
100mA of drive performance. Not only do these devices find
perfect application in high gain applications, they maintain
their performance down to lower gain settings.
• 650MHz -3dB bandwidth
FN7383.2
• Ultra low noise 1.9nV/√Hz
• 450V/µs slew rate
• Low supply current = 7.3mA
• Single supplies from 5V to 12V
• Dual supplies from ±2.5V to ±5V
• Fast disable on the EL5134 and EL5234
These amplifiers are available in small package options
(SOT-23) as well as the MSOP and the industry-standard
SO packages. All parts are specified for operation over the
-40°C to +85°C temperature range.
• Duals EL5234 and EL5235
• Low cost
• Pb-free plus anneal available (RoHS compliant)
Applications
• Imaging
• Instrumentation
• Communications devices
Ordering Information
PART NUMBER
PART MARKING
TAPE & REEL
PACKAGE
PKG. DWG. #
EL5134IS
5134IS
-
8 Ld SO
MDP0027
EL5134IS-T7
5134IS
7”
8 Ld SO
MDP0027
EL5134IS-T13
5134IS
13”
8 Ld SO
MDP0027
EL5134ISZ (See Note)
5134ISZ
-
8 Ld SO (Pb-Free)
MDP0027
EL5134ISZ-T7 (See Note)
5134ISZ
7”
8 Ld SO (Pb-Free)
MDP0027
EL5134ISZ-T13 (See Note)
5134ISZ
13”
8 Ld SO (Pb-Free)
MDP0027
EL5135IW-T7
BDAA
7” (3K pcs)
5 Ld SOT-23
MDP0038
EL5135IW-T7A
BDAA
7” (250 pcs)
5 Ld SOT-23
MDP0038
EL5135IWZ-T7 (See Note)
BTAA
7” (3K pcs)
5 Ld SOT-23 (Pb-Free)
MDP0038
EL5135IWZ-T7A (See Note)
BTAA
7” (250 pcs)
5 Ld SOT-23 (Pb-Free)
MDP0038
EL5234IY
BWAAA
-
10 Ld MSOP
MDP0043
EL5234IY-T7
BWAAA
7”
10 Ld MSOP
MDP0043
EL5234IY-T13
BWAAA
13”
10 Ld MSOP
MDP0043
EL5235IS
5235IS
-
8 Ld SO
MDP0027
EL5235IS-T7
5235IS
7”
8 Ld SO
MDP0027
EL5235IS-T13
5235IS
13”
8 Ld SO
MDP0027
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified
at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2003-2005. All Rights Reserved.
All other trademarks mentioned are the property of their respective owners.
EL5134, EL5135, EL5234, EL5235
Pinouts
EL5135
(5 LD SOT-23)
TOP VIEW
EL5134
(8 LD SO)
TOP VIEW
NC 1
IN- 2
IN+ 3
+
VS- 4
8 CE
OUT 1
7 VS+
VS- 2
6 OUT
IN+ 3
INA+ 1
4 IN-
EL5235
(8 LD SO)
TOP VIEW
10 INA-
+
VS- 3
CEB 4
+ -
5 NC
EL5234
(10 LD MSOP)
TOP VIEW
CEA 2
5 VS+
+
-
OUTA 1
9 OUTA
INA- 2
8 VS+
INA+ 3
7 OUTB
VS- 4
8 VS+
7 OUTB
+
6 INB+
5 INB+
6 INB-
INB+ 5
2
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Absolute Maximum Ratings (TA = 25°C)
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +125°C
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +125°C
Supply Voltage from VS+ to VS- . . . . . . . . . . . . . . . . . . . . . . . 13.2V
SR, Supply Rate of Supply Voltage Slew. . . . . . . . . Maximum 1V/µs
IIN-, IIN+, CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5mA
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests
are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Specifications
PARAMETER
VOS
VS+ = +5V, VS- = -5V, RL = 500Ω, RF = 100Ω, RG = 25Ω, TA = 25°C, unless otherwise specified.
DESCRIPTION
CONDITIONS
MIN
TYP
MAX
UNIT
-1
0.2
1
mV
EL5234
0.3
±1.5
mV
-0.8
Offset Voltage
TCVOS
Offset Voltage Temperature Coefficient
Measured from TMIN to TMAX
IB
Input Bias Current
VIN = 0V
2.5
3.7
5.5
µA
IOS
Input Offset Current
VIN = 0V
-0.7
0.3
0.7
nA
TCIOS
Input Bias Current Temperature
Coefficient
Measured from TMIN to TMAX
PSRR
Power Supply Rejection Ratio
VS+ = 4.75V to 5.25V
CMRR
Common Mode Rejection Ratio
CMIR
µV/°C
-3
nA/°C
75
85
dB
VCM = ±3V
80
108
dB
Common Mode Input Range
Guaranteed by CMRR test
±3
±3.3
V
RIN
Input Resistance
Common mode
5
16
MΩ
CIN
Input Capacitance
1
pF
IS
Supply Current
AVOL
Open Loop Gain
VO
Voltage Swing
5.6
6.7
7.8
mA
RL = 1kΩ to GND
4.0
8.0
kV/V
RL = 1kΩ, RF = 900Ω, RG = 100Ω
±3.5
3.9
V
RL = 150Ω, RF = 900Ω, RG = 100Ω
±3.3
3.65
V
70
140
mA
ISC
Short Circuit Current
RL = 10Ω
BW
-3dB Bandwidth
AV = 5, RL = 1kΩ
600
MHz
BW
±0.1dB Bandwidth
AV = 5, RL = 1kΩ
40
MHz
GBWP
Gain Bandwidth Product
1500
MHz
PM
Phase Margin
RL = 1kΩ, CL = 6pF
55
°
SR
Slew Rate
VS = +5V, RL = 150Ω, VOUT = 0V to 3V
475
V/µs
tR
Rise Time
±0.1VSTEP
1.75
ns
tF
Fall Time
±0.1VSTEP
1.75
ns
OS
Overshoot
±0.1VSTEP
25
%
tS
0.01% Settling Time
14
ns
dG
Differential Gain
AV = 5, RF = 1kΩ
0.01
%
dP
Differential Phase
AV = 5, RF = 1kΩ
0.01
°
eN
Input Noise Voltage
f = 10kHz
1.9
nV/√Hz
iN
Input Noise Current
f = 10kHz
0.9
pA/√Hz
3
350
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Electrical Specifications
PARAMETER
VS+ = +5V, VS- = -5V, RL = 500Ω, RF = 100Ω, RG = 25Ω, TA = 25°C, unless otherwise specified. (Continued)
DESCRIPTION
CONDITIONS
MIN
TYP
MAX
UNIT
+25
µA
SUPPLY (EL5134, EL5234)
ISOFF+
Supply Current - Disabled, per Amplifier
ISOFF-
Supply Current - Disabled, per Amplifier
0
No load, VIN = 0V
-25
-14
0
µA
ENABLE (EL5134, EL5234)
IIHCE
CE Pin Input High Current
CE = VS+
1
10
+25
µA
IILCE
CE Pin Input Low Current
CE = (VS+) -5V
-1
0
+1
µA
VIHCE
CE Input High Voltage for Power-down
VILCE
CE Input Low Voltage for Power-down
VS+ - 1
V
VS+ - 3
V
Typical Performance Curves
5
240
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
NORMALIZED GAIN (dB)
3
2
1
120
0
-1
-2
60
0
-60
-120
-3
-4
-180
-3dB BW @ 667MHz
-5
0.1
1
10
100
-240
0.1
1K
FREQUENCY (MHz)
70
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
0.2
0.1
100
1K
VS = ±5V
RL = 500Ω
GAIN = 40dB or 100
FREQUENCY = 15.9MHz
GAIN BW PRODUCT = 15.9 x 100
= 1590MHz
60
0.1dB BW @ 40MHz
GAIN (dB)
0.3
10
FIGURE 2. PHASE vs FREQUENCY
0.5
0.4
1
FREQUENCY (MHz)
FIGURE 1. GAIN vs FREQUENCY (-3dB BANDWIDTH)
NORMALIZED GAIN (dB)
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
180
PHASE (°)
4
0
-0.1
50
40
-0.2
30
-0.3
-0.4
-0.5
1
10
FREQUENCY (MHz)
FIGURE 3. 0.1dB BANDWIDTH
4
100
20
1
10
100
FREQUENCY (MHz)
FIGURE 4. GAIN BANDWIDTH PRODUCT
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Typical Performance Curves (Continued)
5
VS = ±5V
RL = 500Ω
4
1600
NORMALIZED GAIN (dB)
GAIN BANDWIDTH PRODUCT (MHz)
1800
1400
1200
1000
800
2.0
AV = +5
1
0
-1
-2
AV = +20
-3
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGES (±V)
5.5
-5
0.1
6.0
3
2
4
VS = ±6V
1
0
-1
VS = ±5V
-2
-4
1
0
-1
-3
RL = 100Ω
-4
10
100
FREQUENCY (MHz)
-5
0.1
1K
RL = 50Ω
1
10
100
FREQUENCY (MHz)
1K
FIGURE 8. GAIN vs FREQUENCY FOR VARIOUS RLOAD
(AV = +5)
5
VS = ±5V
AV = +10
RG = 25Ω
CL = 10pF
4
RL = 500Ω
1
0
RL = 1kΩ
-1
-2
RL = 150Ω
-3
RL = 100Ω
-4
-5
0.1
RL = 500Ω
1
VS = ±3V
10
100
FREQUENCY (MHz)
1K
FIGURE 9. GAIN vs FREQUENCY FOR VARIOUS RLOAD
(AV = +10)
5
3
2
1
VS = ±5V
AV = +5
RG = 25Ω
RF = 100Ω
RL = 500Ω
CL = 18pF
CL = 12pF
CL = 8.2pF
0
-1
CL = 4.7pF
-2
-3
CL = 0pF
-4
RL = 50Ω
1
NORMALIZED GAIN (dB)
2
1K
RL = 1kΩ
VS = ±2.5V
5
3
2
RL = 150Ω
FIGURE 7. GAIN vs FREQUENCY FOR VARIOUS ±VS
4
3
VS = ±5V
AV = +5
RL = 500Ω
CL = 5pF
-2
VS = ±4V
-3
-5
0.1
10
100
FREQUENCY (MHz)
5
AV = +5V
RG = 25Ω
RL = 500Ω
CL = 5pF
NORMALIZED GAIN (dB)
4
AV = +10
1
FIGURE 6. GAIN vs FREQUENCY FOR VARIOUS +AV
5
NORMALIZED GAIN (dB)
2
-4
FIGURE 5. GAIN BANDWIDTH PRODUCT vs SUPPLY
VOLTAGES
NORMALIZED GAIN (dB)
3
VS = ±5V
RG = 25Ω
RL = 500Ω
CL = 5pF
-5
0.1
1
10
100
FREQUENCY (MHz)
1K
FIGURE 10. GAIN vs FREQUENCY FOR VARIOUS CLOAD
(AV = +5)
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Typical Performance Curves (Continued)
3
2
VS = ±5V
AV = +10
RG = 25Ω
RF = 225Ω
RL = 500Ω
CL = 27pF
5
CL = 47pF
4
CL = 12pF
1
0
-1
-2
CL = 4.7pF
-3
0
-1
-2
-5
0.1
10
100
FREQUENCY (MHz)
1K
3
2
RF = 4.53kΩ
4
RF = 2.74kΩ
RF = 909Ω
0
-1
-2
RF = 225Ω
-3
-4
1
10
100
FREQUENCY (MHz)
1
2
1
CIN = 8.2pF
CIN = 4.7pF
0
-1
CIN = 2.7pF
-2
CIN = 0pF
-3
1
10
100
FREQUENCY (MHz)
1K
200
90
VS = ±5V
AV = +20
RG = 25Ω
RL = 500Ω
CL = 10pF
CIN = 20pF
CIN = 15pF
-1
CIN = 10pF
-2
-3
-4
CIN = 0pF
1
10
100
FREQUENCY (MHz)
1K
FIGURE 15. GAIN vs FREQUENCY FOR VARIOUS CIN(-)
(AV = +10)
6
VS = ±5V
80
0
-5
0.1
1K
FIGURE 14. GAIN vs FREQUENCY FOR VARIOUS CIN(-)
(AV = +5)
OPEN LOOP GAIN (dB)
2
3
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
-5
0.1
1K
5
3
10
100
FREQUENCY (MHz)
-4
RF = 100Ω
FIGURE 13. GAIN vs FREQUENCY FOR VARIOUS RF
(AV = +10)
4
1
5
VS = ±5V
AV = +10
RL = 500Ω
CL = 10pF
1
-5
0.1
RF = 50Ω
FIGURE 12. GAIN vs FREQUENCY FOR VARIOUS RF
(AV = +5)
NORMALIZED GAIN (dB)
4
RF = 100Ω
-3
-4
1
RF = 160Ω
RF = 400Ω
1
-5
0.1
5
NORMALIZED GAIN (dB)
2
-4
FIGURE 11. GAIN vs FREQUENCY FOR VARIOUS CLOAD
(AV = +10)
NORMALIZED GAIN (dB)
3
RF = 200Ω
VS = ±5V
AV = +5
RL = 500Ω
CL = 5pF
180
OPEN LOOP GAIN
70
160
60
140
50
120
40
100
30
20
80
60
OPEN LOOP PHASE
10
40
0
20
-10
0.001
0.01
0.1
1
10
FREQUENCY (MHz)
PHASE (°)
NORMALIZED GAIN (dB)
4
NORMALIZED GAIN (dB)
5
100
100
0
1K
FIGURE 16. OPEN LOOP GAIN and PHASE vs FREQUENCY
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Typical Performance Curves (Continued)
-10
100
-30
10
CMRR (dB)
OUTPUT IMPEDNACE (Ω)
VS = ±5V
1
-50
-70
-90
0.1
0.0
0.01
0.1
1
10
-110
1K
100
10K
100K
FREQUENCY (MHz)
-10
VS+
-30
VS-
-50
VSVS+
-90
1K
10K
100K
1M
10M
100M 500M
MAX OUTPUT VOLTAGE SWING (VP-P)
PSRR (dB)
AV=+10
VS=±5V
-70
10
VS = ±5V
AV = +5
RG = 25Ω
CL = 5pF
9
8
7
6
5
4
RLOAD = 150Ω
3
2
1
0
0.1
1.0
-40
20
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
-60
0
-5
-10
-15
-20
-25
-70
-80
INPUT TO OUTPUT
-90
OUTPUT TO INPUT
-100
-110
-120
-30
-130
-35
-40
0.1
1K
VS = ±5V
AV = +5
RG = 25Ω
CHIP DISABLED
-50
ISOLATION (dB)
GROUP DELAY (ns)
5
10
100
FREQUENCY (MHz)
FIGURE 20. MAX OUTPUT VOLTAGE SWING vs FREQUENCY
FIGURE 19. PSRR vs FREQUENCY
10
100M 500M
RLOAD = 1kΩ
FREQUENCY (Hz)
15
10M
FIGURE 18. CMRR vs FREQUENCY
FIGURE 17. OUTPUT IMPEDANCE vs FREQUENCY
10
1M
FREQUENCY (Hz)
1
10
100
FREQUENCY (MHz)
FIGURE 21. GROUP DELAY vs FREQUENCY
7
1K
-140
0.1
1.0
10
100
FREQUENCY (MHz)
1K
FIGURE 22. INPUT AND OUTPUT ISOLATION
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Typical Performance Curves (Continued)
-40
-50
-60
VS = ±5V
AV = =5
RG = 25Ω
RL = 500Ω
CL = 5pF
VOUT = 2VP-P
-20
-40
T.H.D
2nd H.D
-70
3rd H.D
-80
-50
-60
-70
Fin = 1MHz
-90
-100
0.1
1.0
10
FUNDAMENTAL FREQUENCY (MHz)
ENABLE SIGNAL
5
4
OUTPUT SIGNAL
3
5
4
1
0
3
2
3
4
5
6
7
8
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
VOUT = 4VP-P
DISABLE SIGNAL
2
1
0
-1
-1
-2
-2
0
1
FIGURE 24. TOTAL HARMONIC DISTORTION vs OUTPUT
VOLTAGES
6
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
VOUT = 4VP-P
2
-3
-200 -100
0
OUTPUT VOLTAGES (VP-P)
AMPLITUDE (V)
6
-100
100
FIGURE 23. HARMONIC DISTORTION vs FREQUENCY
-3
-500 -400 -300 -200 -100
100 200 300 400 500 600 700 800
OUTPUT SIGNAL
0
100 200 300 400
TIME (ns)
TIME (ns)
FIGURE 25. TURN-ON TIME
FIGURE 26. TURN-OFF TIME
100
1K
VS = ±5V
CURRENT NOISE (pA/√Hz)
VS = ±5V
VOLTAGE NOISE (nV/√Hz)
Fin = 10MHz
-80
-90
AMPLITUDE (V)
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
-30
THD (dBc)
HARMONIC DISTORTION (dBc)
-30
10
1.0
0.1
0.01
0.10
1.0
10
FREQUENCY (kHz)
100
FIGURE 27. EQUIVALENT INPUT VOLTAGE NOISE vs
FREQUENCY
8
1K
100
10
1.0
0.01
0.10
1.0
10
FREQUENCY (kHz)
100
1K
FIGURE 28. EQUIVALENT INPUT CURRENT NOISE vs
FREQUENCY
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Typical Performance Curves (Continued)
2
0.6
AMPLITUDE (V)
AMPLITUDE (V)
0.4
0.2
TFALL = 1.75 ns
0.0
TRISE = 1.75ns
-0.2
-0.4
-0.6
-20
0
20
40
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
VOUT = 500mV
TFALL = 2.4ns
0
1
-2
-20
60
80 100 120 140 160
TIME (ns)
0
600
SLEW RATE (V/µs)
6.8
6.6
6.4
500
400
POSITIVE SLEW RATE
300
6.0
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGES (V)
5.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGES (±V)
5.5
6.0
50
VS = ±5V
AV = +10
RF = 226Ω
RL = 100Ω
CL = 10pF
Delta IM = (4.3) - (-69.4) = 73.7dB
IP3 = 4.3 + (73.7/2) = 41dBm
f2 = 4.3dBm
@ 1.05MHz
-50
2f2-f1 = -66.3dBm
@ 1.15MHz
2f1-f2 = -69.4dBm
-60 @ 0.85MHz
-70
40
30
25
20
15
-80
10
-90
5
0.8
0.9
VS = ±5V
AV = +10
RF = 226Ω
RL = 100Ω
CL = 10pF
45
35
@ 0.95MHz
f1 = 4.3dBm
-40
-100
2.5
FIGURE 32. SLEW RATE vs SUPPLY VOLTAGES
IP3 (dBm)
AMPLITUDE (dBm)
-30
NEGATIVE SLEW RATE
200
2.0
6.0
FIGURE 31. SUPPLY CURRENT vs SUPPLY VOLTAGE
-20
60
80 100 120 140 160
TIME (ns)
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
VOUT = 4VP-P
Please note that the curve showed positive current.
The negative current was almost the same.
-10
40
700
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
6.2
0
20
FIGURE 30. LARGE SIGNAL STEP RESPONSE_RISE AND
FALL TIME
7.0
10
VS = ±5V
AV = +5
RG = 25Ω
RL = 500Ω
CL = 5pF
VOUT = 2.0V
TRISE = 2.4ns
FIGURE 29. SMALL SIGNAL STEP RESPONSE_RISE AND
FALL TIME
SUPPLY CURRENT (mA)
1
1.0
1.1
1.2
FREQUENCY (MHz)
FIGURE 33. THIRD ORDER IMD INTERCEPT (IP3)
9
0
1
10
100
FREQUENCY (MHz)
FIGURE 34. THIRD ORDER IMD INTERCEPT vs FREQUENCY
FN7383.2
October 3, 2005
EL5134, EL5135, EL5234, EL5235
Typical Performance Curves (Continued)
1
1.2
1
909mW
0.8
870mW
0.6
SO8
θJA=110°C/W
435mW
MSOP8/10
θJA=115°C/W
0.4
SOT23-5/6
θJA=230°C/W
0.2
0
JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
0.9
0
POWER DISSIPATION (W)
POWER DISSIPATION (W)
1.4
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
25
0.8
0.7 625mW
0.6
486mW
0.5
0.4
391mW
0.3
75 85 100
125
0
150
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE (°C)
AMBIENT TEMPERATURE (°C)
FIGURE 35. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
DIFFERENTIAL GAIN (%)
MSOP8/10
θJA=206°C/W
SOT23-5/6
θJA=265°C/W
0.2
0.1
50
SO8
θJA=160°C/W
FIGURE 36. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
0.15
0.10
0.05
0
-0.05
-0.10
-0.15
0
10
20
30
40
50
60
70
80
90
100
IRE
DIFFERENTIAL PHASE (°)
FIGURE 37. DIFFERENTIAL GAIN (%)
0.15
0.10
0.05
0
-0.05
-0.10
-0.15
-0.20
0
10
20
30
40
50
60
70
80
90
100
IRE
FIGURE 38. DIFFERENTIAL PHASE (°)
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
10
FN7383.2
October 3, 2005