CA3100 Semiconductor CT ODU ODUCT R P PR TE OLE TITUTE S B O UBS 5 LE S HA-252 B I S OS January 1999 [ /Title (CA31 00) /Subject (38MH z, Operational Amplifier) /Autho r () /Keywords (Harris Semiconductor, single, operational amplifier, op amp, general purpose, industrial military 38MHz, Operational Amplifier P Features Description • High Open Loop Gain at Video Frequencies . . . . . . . . . . . . . . . . . . 42dB (Typ) at 1MHz The CA3100 is a large signal wideband, high speed operational amplifier which has a unity gain cross over frequency (fT) of approximately 38MHz and an open loop, 3dB corner frequency of approximately 110kHz. It can operate at a total supply voltage of from 14V to 36V (±7V to ±18V when using split supplies) and can provide at least 18VP-P and 30mAP-P at the output when operating from ±15V supplies. The CA3100 can be compensated with a single external capacitor and has DC offset adjust terminals for those applications requiring offset null. (See Figure 1). • Unity Gain Crossover Frequency (fT) . . . . . . . . . . . . . 38MHz (Typ) • Full Power Bandwidth V = 18VP-P . . . . . . . . . . . . . . . . . . . . . . . 1.2MHz (Typ) O • Slew Rate - 20dB Amplifier . . . . . . . . . . . . . . . . . . . . 70V/µs (Typ) - Unity Gain Amplifier. . . . . . . . . . . . . . . . 25V/µs (Typ) • Settling Time . . . . . . . . . . . . . . . . . . . . . . . . 0.6µs (Typ) The CA3100 circuit contains both bipolar and PMOS transistors on a single monolithic chip. • Output Current . . . . . . . . . . . . . . . . . . . . . . ±15mA (Min) Part Number Information • Single Capacitor Compensation PART NUMBER (BRAND) • Offset Null Terminals Applications • Video Amplifiers TEMP. RANGE (oC) PACKAGE PKG. NO. CA3100E -40 to 85 8 Ld PDIP E8.3 CA3100M (3100) -40 to 85 8 Ld SOIC M8.15 CA3100T -55 to 125 8 Pin Metal Can T8.C • Fast Peak Detectors • Meter Driver Amplifiers • High Frequency Feedback Amplifiers • Video Pre-Drivers • Oscillators • Multivibrators • Voltage Controlled Oscillator • Fast Comparators Pinouts CA3100 (PDIP, SOIC) TOP VIEW CA3100 (METAL CAN) TOP VIEW PHASE COMPENSATION OFFSET NULL INV. INPUT NON-INV. INPUT 1 8 2 7 V+ V- 4 3 + PHASE COMP AND OFFSET NULL INV. INPUT 6 OUTPUT 5 OFFSET NULL 1 - 2 NON-INV. INPUT PHASE COMP TAB 8 7 V+ 6 + 5 3 4 OUTPUT OFFSET NULL V- CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © Harris Corporation 1999 3-1 File Number 625.4 CA3100 Absolute Maximum Ratings Thermal Information Supply Voltage (Between V+ and V- Terminals) . . . . . . . . . . . . . 36V Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V Input Voltage to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VOffset Terminal to V- Terminal Voltage . . . . . . . . . . . . . . . . . . ±0.5V Output Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA Thermal Resistance (Typical, Note 1) θJA (oC/W) θJC (oC/W) PDIP Package . . . . . . . . . . . . . . . . . . . 100 N/A SOIC Package . . . . . . . . . . . . . . . . . . . 165 N/A Metal Can Package . . . . . . . . . . . . . . . 170 85 Maximum Junction Temperature (Metal Can) . . . . . . . . . . . . . 175oC Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range CA3100E, CA3100M. . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC CA3100T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. θJA is measured with the component mounted on an evaluation PC board in free air. 2. CA3100 does not contain circuitry to protect against short circuits in the output. Electrical Specifications TA = 25oC, VSUPPLY = ±15V, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS DC Input Offset Voltage VIO VO = 0 ±0.1V - ±1 ±5 mV Input Bias Current IIB VO = 0 ±1V - 0.7 2 µA Input Offset Current IIO VO = 0 ±1V - ±0.05 ±0.4 µA CMRR ≥ 76dB ±12 +14 -13 - V Common Mode Input Voltage Range VlCR Common Mode Rejection Ratio CMRR VCM = ±12V 76 90 - dB Maximum Output Voltage VOM+ Differential Input Voltage = 0 ±0.1V, RL = 2kΩ +9 +11 - V -9 -11 - V +15 +30 - mA -15 -30 - mA - 8.5 10.5 mA VOMMaximum Output Current IOM+ Differential Input Voltage = 0 + 0.1V, RL = 250Ω IOMSupply Current Power Supply Rejection Ratio I+ VO = 0 ±0.1V, RL ≥ 10kΩ PSRR ∆V+ = ±1V, ∆V- = ±1V 60 70 - dB fT CC = 0, VO = 0.3VP-P - 38 - MHz f = 1kHz, VO = ±1V, (Note 3) 56 61 - dB f = 1MHz, CC = 0, VO = 10VP-P 36 42 - dB AV = 10, CC = 0, VI = 1V (Pulse) 50 70 - V/µs - 25 - V/µs 0.8 1.2 - MHz AV = 1, CC = 10pF, VO = 18VP-P - 0.4 - MHz DYNAMIC Unity-Gain Crossover Frequency Open Loop Voltage Gain Slew Rate AOL SR AV = 1, CC = 10pF, VI = 10V (Pulse) Full Power Bandwidth (Note 4) FPBW AV = 10, CC = 0, VO = 18VP-P Open Loop Differential Input Impedance ZI f = 1MHz - 30 - kΩ Open Loop Output lmpedance ZO f = 1MHz - 110 - Ω 3-2 CA3100 TA = 25oC, VSUPPLY = ±15V, Unless Otherwise Specified (Continued) Electrical Specifications PARAMETER SYMBOL Wideband Noise Voltage (RTI) eN (Total) Settling Time (To Within ±50mV of 9V Output Swing) tS TEST CONDITIONS MIN TYP MAX UNITS BW = 1MHz, RS = 1kΩ - 8 - µVRMS RL = 2kΩ, CL = 20pF - 0.6 - µs NOTES: 3. Low frequency dynamic characteristic. Slew Rate 4. Full Power Bandwidth = --------------------------- . πVO P – P Test Circuits V+ VO AOL = VI 7 θOL V+ 7 0.1µF VI 3 51Ω VI + CA3100 3 20pF - 2 HP606A OR EQUIV 5 1 0.1µF WITH VI = 0 ADJ POTENTIOMETER (RX) TO GIVE VO = 0 ± 0.1VDC +1V PULSE tR ≤ 10ns tWIDTH ≥ 1µs 4 51Ω 2kΩ 0.1 µF 2kΩ CC RX SET VI TO GIVE 10kΩ DESIRED VO LEVEL AT TEST FREQUENCY NULL ADJUST AT FREQUENCY > 1MHz VI POTENTIOMETER AND VO MEASURED WITH HF8405A VECTOR VOLTMETER 6 - 2 V- 4 8 2kΩ VO + CA3100 VO 6 SLOPE = SR 0.1µF 20 pF 220Ω V- FIGURE 2. SLEW RATE IN 10X AMPLIFIER TEST CIRCUIT FIGURE 1. OPEN-LOOP VOLTAGE GAIN TEST CIRCUIT AND OFFSET ADJUST CIRCUIT AV = 100 10pF V+ +15V 1 3 VI 51Ω 2 +10V PULSE tR ≤ 10ns tWIDTH ≥ 1µs 0.1µF 7 3 INPUT REFERRED NOISE VOLTAGE eNO eNI = 100 3 SLOPE = SR + CA3100 VO 6 2 - 7 0.1µF + CA3100 6 - POST AMPL. AND 2 POLE 1MHz FILTER 2kΩ 5 4 HP400EL VTVM RS 420Ω 500pF 0.1µF 0.1µF 4 47Ω eNO -15V V- FIGURE 4. WIDEBAND INPUT NOISE VOLTAGE TEST CIRCUIT FIGURE 3. FOLLOWER SLEW RATE TEST CIRCUIT 3-3 CA3100 Test Circuits (Continued) 1pF 7 ±1V 2kΩ RL = 250Ω FOR IOM TEST VO IOM = 250Ω +15V +15V 9.1kΩ 3 + CA3100 2kΩ VO = ±9V CA3100 VOM + 3 6 4 8 4 1kΩ 0.1µF - 2 6 - 2 7 VI = ±9V RL 2kΩ 1kΩ 51Ω 1kΩ 0.1 µF 1 12pF 20pF -15V -15V 2kΩ FIGURE 5. OUTPUT VOLTAGE SWING (VOM), OUTPUT CURRENT SWING (IOM) TEST CIRCUIT 2kΩ SETTLING POINT TO SCOPE FIGURE 6. SETTLING TIME TEST CIRCUIT Schematic Diagram 7 R4 750Ω R6 12kΩ Q2 R5 750Ω Q4 NONINVERT INPUT + 3 Q5 Q8 - Q11 D3 Q15 Q23 Q16 Q22 Q17 Q19 Q21 6 8 PHASE COMP Q13 Q10 R11 20Ω R10 20Ω OUTPUT C1 10pF D4 Q14 R7 10kΩ D2 Q9 Q12 R1 2.5kΩ Q6 Q7 INVERT INPUT 2 Q3 Q1 V+ R8 200Ω R9 200Ω Q18 Q20 D5 OFFSET NULL 5 R12 50Ω V- 4 R14 1.1kΩ R13 20Ω R15 1.1kΩ R16 150Ω R17 600Ω 3-4 R19 600Ω R18 150Ω 1 OFFSET NULL AND PHASE COMP CA3100 Typical Applications +15V +15V 3dB BANDWIDTH = 15MHz ACL = 20dB 7 INPUT 0.1µF 0.33µF 3 3 6 220Ω 3kΩ 2N5320 + CA3100 0.33µF - 2 7 INPUT OUTPUT + CA3100 4.7 kΩ 0.1µF 10Ω 6 - 2 3kΩ 1N5393 4 4 OUTPUT TO TERMINATED 50Ω TRANSMISSION LINE 10Ω 0.1µF 3pF -15V 220Ω DELIVERS FOLLOWING PEAK VOLTAGES TO 50Ω LINE: 2kΩ FREQ 1MHz 2MHz 4MHz 6MHz -3dB BANDWIDTH ≈ 20MHz TOTAL INPUT NOISE VOLTAGE REFERRED TO INPUT ≈ 35µVRMS 3pF VO 8V 5V 2V 1V FIGURE 7. 20dB VIDEO AMPLIFIER 2kΩ 0.1µF GAIN = 20dB -15V FIGURE 8. 20dB VIDEO LINE DRIVER ZERO ADJ 200Ω 10pF 6 - 1N914 2 51kΩ TEST LEADS 2N2102 7 1 2 - VO (DC) = +VI PEAK 0.1µF 6 51kΩ + 0.1 µF -15V 1.2kΩ 1VRMS FULL SCALE 1N914 + CA3100 4 4 0.1µF 8 3 + CA3100 3kΩ INPUT IMPEDANCE ≈ 50kΩ 0.1µF 7 3 +15V 20kΩ +15V VI(AC) 2N5322 220Ω 250Ω POT. 330Ω 1mA FULL SCALE DC METER 1000pF FULL SCALE CALIBRATION ADJUST -15V FIGURE 9. FAST POSITIVE PEAK DETECTOR FIGURE 10. 1MHz METER-DRIVER AMPLIFIER Typical Performance Curves |AOL| 12pF 50 40 0pF CC = 24pF 30 CC = 24pF 20 θ 12pF -270 -225 0pF -180 -135 24pF -90 -45 0 0pF 10 12pF 0 0.001 0.01 0.1 1 FREQUENCY (MHz) 10 OPEN LOOP VOLTAGE GAIN (dB) 70 60 70 TA = 25oC VS = ±15V RL = 2kΩ CL = 20pF OPEN LOOP PHASE SHIFT (DEGREES) OPEN LOOP VOLTAGE GAIN (dB) 80 VS = ±15V RL = 2kΩ CC = 0 60 50 TA = -55oC 40 30 25oC 125oC 20 10 0 0.001 100 0.01 0.1 1 FREQUENCY (MHz) 10 FIGURE 12. OPEN LOOP GAIN vs FREQUENCY FIGURE 11. OPEN LOOP GAIN, OPEN LOOP PHASE SHIFT vs FREQUENCY 3-5 100 CA3100 Typical Performance Curves (Continued) TA = 25oC RL = 2kΩ CL = 20pF CC = 0 60 COMP CAP PINS 1 TO 8 (pF) OPEN LOOP VOLTAGE GAIN (dB) 70 VS = ±18V 50 40 ±12V ±10V ±7V 30 20 TA = 25oC RL = 2kΩ CL = 20pF 25 20 15 VS = ±15V 10 5 ±10V 10 0 0.001 0 0.01 0.1 1 10 0 6 (0) 100 FREQUENCY (MHz) FIGURE 13. OPEN LOOP GAIN vs FREQUENCY 350 OPEN LOOP OUTPUT IMPEDANCE (Ω) SLEW RATE (V/µs) 80 60 40 VS = ±15V ±10V 0 5 10 15 20 TA = 25oC VS = ±15V 300 +15V 7 200 3 CA3100 100 25 - 6 4 VO 1 10 K 10 20 -15V 30 40 FREQUENCY (MHz) FIGURE 16. TYPICAL OPEN LOOP OUTPUT IMPEDANCE vs FREQUENCY 106 30 HEWLETT PACKARD VECTOR IMPEDANCE METER4815A 5 0 FIGURE 15. SLEW RATE vs COMPENSATION CAPACITANCE TA = 25oC OPEN LOOP DIFFERENTIAL INPUT IMPEDANCE (Ω) TOTAL INPUT REFERRED NOISE VOLTAGE (µVRMS) + 2 COMP CAP PINS 1 TO 8 (pF) BW AT 6dB = 1MHz 20 10 0 102 20 (19.1) FIGURE 14. REQUIRED COMPENSATION CAPACITANCE vs CLOSED LOOP GAIN TA = 25oC RL = 2kΩ CL = 20pF 20 10 (6) NONINVERTING GAIN (dB), INVERTING GAIN (dB) CLOSED LOOP GAIN (dB) TA = 25oC VS = ±15V 105 104 103 103 0.1 104 1 10 FREQUENCY (MHz) SOURCE RESISTANCE (Ω) FIGURE 17. WIDEBAND INPUT NOISE VOLTAGE vs SOURCE RESISTANCE FIGURE 18. TYPICAL OPEN LOOP DIFFERENTIAL INPUT IMPEDANCE vs FREQUENCY 3-6 100 CA3100 Typical Performance Curves COMMON MODE INPUT VOLTAGE RANGE (V) (Continued) 25 OUTPUT VOLTAGE (VP-P) TA = 25oC VS = ±15V 20 15 CIRCUIT FIG. 3 (FOLLOWER) CIRCUIT FIG. 2 10X AMPL 10 5 0 0.01 0.1 1 10 TA = 25oC 15.0 12.5 10.0 +VICR 7.5 -VICR 5.0 2.5 0 100 ±2.5 0 ±5 ±7.5 FREQUENCY (MHz) ±10 ±12.5 ±15 FIGURE 19. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY TA = 25oC TA = 25oC 15 VOM - 12.5 SUPPLY CURRENT (mA) MAXIMUM OUTPUT VOLTAGE (V) ±20 FIGURE 20. COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE 15 VOM + 10 7.5 5 12.5 10 7.5 5 2.5 2.5 0 ±17.5 SUPPLY VOLTAGE (V) 0 ±2.5 ±5 ±7.5 ±10 ±12.5 ±15 ±17.5 0 ±20 ±2.5 0 ±5 ±7.5 SUPPLY VOLTAGE (V) FIGURE 21. MAXIMUM OUTPUT VOLTAGE vs SUPPLY VOLTAGE INPUT BIAS CURRENT (µA) 15.0 12.5 10.0 7.5 5.0 2.5 0 ±12.5 ±15 ±17.5 ±20 FIGURE 22. SUPPLY CURRENT vs SUPPLY VOLTAGE TA = 25oC 0 ±10 SUPPLY VOLTAGE (V) ±2.5 ±5 ±7.5 ±10 ±12.5 ±15 ±17.5 ±20 SUPPLY VOLTAGE (V) FIGURE 23. INPUT BIAS CURRENT vs SUPPLY VOLTAGE 3-7