INTERSIL CA3450

CT
T
ODU CEMEN 7
R
P
E
A
74
T
L
7
E
OL
REP 00-442OBS ENDED
8
1
m
s.co
MM
ions
ECO pplicat p@harri
R
O
N
ral A centap
Cent
:
Call or email
220MHz, Video Line Driver, High Speed
Operational Amplifier
The CA3450 is a large signal video line driver and high
speed operational amplifier capable of driving 50Ω
transmission lines and flash A/Ds. The uncompensated unity
gain crossing occurs at 230MHz without load. It can operate
at dual or single supplies of ±7.25V or 14.5V, respectively.
The CA3450 can be compensated with a single capacitor
network. It has output drive capability of 75mA SINK or
SOURCE. The CA3450 is capable of driving Flash A/Ds in
video or high speed instrumentation (accurate) applications
with bandwidth up to 10MHz. Offset voltage nulling terminals
are also available.
CA3450
January 1999
File Number
1732.5
Features
• High Open Loop Gain at Video Frequencies
- AOL . . . . . . . . . . . . . . . . . . . . . . . . . . >40dB at f = 5MHz
• Power Bandwidth of 10MHz . . . . . . . ACL = 5; VO = ±3.5V
• Slew Rate at Full Load . . . . . . . . . . . . . 330V/µs (AV ≥ 10)
• fT = 220MHz; CC = 0pF With a Load of 50Ω ||20pF|| 1MΩ
(Scope Input)
• VOUT = ±4.1V Into 75Ω
• Offset Null Terminals
Applications
• Video Line Driver
Pinout
• High Frequency Unity Gain Buffer
CA3450
(PDIP)
TOP VIEW
• Pulse Amplifier
• High Speed Comparator
OFFSET NULL 1
NC 2
16 OFFSET NULL
• High Frequency Oscillator and Video Amplifiers
15 NC
• Driver for A/Ds in Video Applications . . . . . . . .10MHz BW
14 + INPUT
- INPUT 3
V- 4
13 V-
V- 5
12 V-
VO 6
11 COMP
V+ 7
10 NC
Part Number Information
PART NUMBER
CA3450E
TEMP.
RANGE (oC)
-40 to 85
PACKAGE
16 Ld PDIP
PKG.
NO.
E16.3
9 COMP
V+ 8
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
CA3450
Block Diagram
7 V+
8 V+
BIAS CIRCUIT
+IN
14
+
3
-
X180
X0.50
6
X18
OUTPUT
-IN
INPUT CURRENT
COMPENSATED
DIFFERENTIAL
AMPLIFIER
DC LEVEL
SHIFT
STAGE
1
16
OUTPUT POWER
DRIVER AND
OUTPUT POWER
STAGE
9
OFFSET
NULL
11
4
5
PHASE
COMP
12
13
V-
Schematic Diagram
FREQUENCY
COMPENSATION
11
D2
D1
C1 Q8
Q5
Q1
Q4
Q3
Q9
Q6
Q15
C3
Q16
Q12
Q11
Q7
V+
7
Q14
C2
Q10
Q2
V+
8
Q17
Q18
D3
V-
V-
Q19
D4
R5
2K
3
INVERTING
INPUT
V+
Q26
R1
100K
R10
3.2K
Q23
Q21 Q22
R2
140
14
NONINVERTING
INPUT
R7
6
C6
D6
6
R8
30
R6
2K
C5
OUTPUT
D10
9
FREQUENCY
COMPENSATION
Q38
Q35
R3
Q27
R11
3k
Q24
R9
780
Q20
R4
8.5K
D5
C4
Q25
D7
R12
250
D9
Q28
Q29
C7
R13
860
Q30
R14
860
R15
130
1
Q31
Q32
R16
860
R17
500
16
R18
200
4, 5, 12, 13
V-
2
Q33
R19
100
Q34
R20
170
Q36
R21
270
Q37
R22
250
CA3450
Absolute Maximum Ratings
Thermal Information
Supply Voltage (Between V+ and V- Terminals) . . . . . . . . . . . 14.5V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
CC = 5pF, VSUPPLY = ±6V, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
TEMP.
(oC)
MIN
TYP
MAX
UNITS
DC
|VIO|
Input Offset Voltage
25
-
8
20
mV
Full
-
10
35
mV
Input Bias current
|IIB|
25
-
100
400
nA
Input Offset Current
|IIO|
25
-
50
200
nA
Open Loop DC Gain
AOL
25
60
70
-
dB
VOUT = ±2.5V, RL = 50Ω
Full
55
-
-
dB
Power Supply Rejection Ratio
PSRR
∆V = ±1V
25
55
65
-
dB
Common Mode Rejection Ratio
CMRR
VICR = ±3.5V
25
50
60
-
dB
25
±3.5
±3.7
-
V
Full
±3.0
-
-
V
Common Mode Input Range
VICR
Supply Current
I+
25
-
30
40
mA
Full
-
-
50
mA
No Load
25
-
200
-
MHz
RL = 1MΩ||20pF
25
-
190
-
MHz
RL = 50Ω||20pF
25
-
185
-
MHz
No Load
25
210
230
-
MHz
RL = 20pF||1MΩ
25
180
200
-
MHz
RL = 50Ω||20pF
25
180
220
-
MHz
No Load
25
200
210
-
MHz
50Ω
25
175
190
-
MHz
DYNAMIC
-3dB Bandwidth
AV = 1 (See Figure 2)
CC = 5pF
Bandwidth (Unity Gain Crossing)
AV = Open Loop
CC = 0 (See Figure 1)
Bandwidth (Unity Gain Crossing)
AV = 10, CC = 0pF
RFEEDBACK = 450Ω
RPIN 3 - G = 50Ω (See Figure 2)
Transient Response, Overshoot
(See Figure 3)
OS
tS
Settling Time (See Figure 5)
(2V Step, RL = 50Ω||20pF)
3
1M||20pF
25
180
195
-
MHz
50Ω||1M||20pF
25
170
188
-
MHz
RL = 50Ω||20pF
25
-
30
-
%
No Load
25
-
20
-
%
AV ≥10, CC = 0pF, RL = 50Ω||20pF
25
-
10
-
%
AV = 1, CC = 5pF
AV = -1, CC = 5pF, 0.1%, 10 Bits
25
-
35
-
ns
AV = 1, CC = 5pF, 0.1%, 10 Bits
25
-
50
-
ns
AV = 10, CC = 0pF, 0.1%, 10 Bits
25
-
35
-
ns
AV = 10, CC = 0pF, 1.0%, 7 Bits
25
-
25
-
ns
CA3450
CC = 5pF, VSUPPLY = ±6V, Unless Otherwise Specified (Continued)
Electrical Specifications
PARAMETER
TEMP.
(oC)
MIN
TYP
MAX
UNITS
No Load
25
-
220
-
V/µs
RL = 50Ω||20pF
25
-
160
-
V/µs
No Load
25
370
440
-
V/µs
RL = 50Ω||20pF
25
300
330
-
V/µs
AV = 5, CC = 5pF
VOUT = ±3.5V
No Load
25
-
10
-
MHz
RL = 50Ω||20pF
25
-
7.2
-
MHz
AV ≥10, CC = 0pF
VOUT = ±2.0V
No Load
25
29
35
-
MHz
RL = 50Ω||20pF
25
24
26
-
MHz
SYMBOL
Slew Rate (See Figures 2, 4)
TEST CONDITIONS
SR
AV = 1, CC = 5pF
AV ≥10, CC = 0pF
FPBW
Full Power Bandwidth
(FPBW = SR/π VP-P)
Input Noise Voltage
eN
f = 1kHz
25
-
12
-
nV/√Hz
Differential Gain
DG
See Figure 8
25
-
0.2
-
%
DP
Differential Phase
See Figure 8
25
-
0.2
-
Degrees
Output Current
IOUT
Into +4V or -4V
25
60
75
-
mA
Output Voltage Swing
VOM+
RL = 75Ω
25
3.9
4.1
-
V
25
-3.9
-4.1
-
V
f = 1MHz
25
-
2.2
-
pF
25
-
1
-
MΩ
See Figure 14, AV = 1, 30MHz
25
-
4
-
Ω
VOM Input Capacitance
CI
Input Resistance
RI
Output Resistance
ROUT
Test Circuits and Waveforms
+
0.1µF
10Ω (NOTE 2)
+6V
4.7µF (TANT.)
-
7
GEN
8
50Ω
14
+
11
CC
0.001µF
9 CC
50Ω
SCOPE INPUT
6
CA3450
50Ω
-
3
12
4
10Ω
MULTILAYER 0.1µF
CERAMIC CHIP
1M
16
13 OFFSET
NULL
5
0.1µF
20pF
1
+
10Ω (NOTE 2)
-6V
4.7µF (TANT.)
All 0.1µF and 0.001µF supply decoupling capacitors
are multilayer ceramic chip types.
51K
820pF SILVER MICA
OR EQUIVALENT
NOTE:
2. A 10Ω, 1/4W supply decoupling resistor is shown in all application circuits of this device. The resistor serves two purposes. First it provides a
means of decoupling the IC directly at its terminal without introducing additional supply resonance due to parallel connected capacitors. Second,
it also provides protection for the device in event of a sustained short circuit applied directly to the output terminals.
FIGURE 1. OPEN LOOP GAIN vs FREQUENCY TEST CIRCUIT
4
CA3450
Test Circuits and Waveforms
GEN
(Continued)
0pF (AV = 10)
5pF (AV = 1)
50Ω
10Ω
9
0.1µF
11
14
+
+6V
+
-
4.7µF (TANT.)
8
7
50Ω
6
CA3450
15
3
12
5
2
CABLE
LENGTH
1M
13
10
CABLE
LENGTH
1M
4
10Ω
450Ω
FOR AV = 10 3
0.1µF
6
+
-6V
4.7µF (TANT.)
50Ω
TEKTRONIX 2465
OSCILLOSCOPE
50Ω
50Ω
FIGURE 2. UNITY GAIN AND X10 NON-INVERTING AMPLIFIER/AND SLEW RATE TEST CIRCUIT
Transient Response Waveforms
FIGURE 3. TRANSIENT RESPONSE WAVEFORM
5
FIGURE 4. SLEW RATE WAVEFORM
CA3450
Test Circuits and Waveforms
(Continued)
11
+6V
54Ω
2-10pF
9
10Ω
8
CC 11
0.01
µF
511Ω
7
BITS
8
9
INPUT
7
3
174
Ω
-
6
5
CA3450
14
50
Ω
12
4
SIMULATED
TWO
TRANSMISSION
LINE
6
+
4
3
2
11
1
15
5
30
35
40
45
FIGURE 6. ACCURACY IN BITS AS A FUNCTION OF SETTLING
TIME
10Ω
82.5Ω
2
10
15
0.5kΩ
2-HP-5082-2835
DIODES
10kΩ
0.5kΩ
1
16
4
V-
FIGURE 5. CIRCUIT USED TO MEASURE SETTLING TIME
FIGURE 7. NULLING CIRCUIT FOR THE CA3450
5pF
10Ω
MODULATED
STAIRCASE
INPUT SIGNAL
+6V
11
+
0.1µF
9
14
+
- 4.7µF
8
SHIELDED CABLE
7
75Ω
75Ω
6
CA3450
220Ω
12
-
3
5
2
1VP-P
75Ω
15
TEKTRONIX VM700A
NTSC TEST SET
13
10
4
10Ω
-6V
0.1µF
220Ω
4.7µF
FIGURE 8. CONFIGURATION USED TO MEASURE DIFFERENTIAL GAIN AND PHASE
6
50
SETTLING TIME TO ±1/2LSB (ns)
-6V
MEASUREMENT
POINT
25
20
ALL RESISTORS
ARE 1%
MULTILAYER
CERAMIC CHIP
0.1µF
82.5Ω
2V STEP
10
CA3450
Test Circuits and Waveforms
(Continued)
+8V
10Ω
0.001µF
7
75Ω, 1VP-P
VIDEO INPUT
14
8
+
75Ω
10Ω
11
6
CA3450
5pF
16
9
3
-
390Ω
12
4
21
FLASH A/D
INPUT
0.001µF
13
5
10Ω
750Ω
-4V
110Ω
0.1µF
0V TO -10V OFFSET
SOURCE, RS <10Ω
FIGURE 9. TYPICAL HIGH BANDWIDTH X5 AMPLIFIER FOR DRIVING THE CA3318 FLASH A/D
35o MARGIN
PHASE
SHIFT
AOL
1
10
100
1000
FREQUENCY (MHz)
FIGURE 10. BODE PLOT FOR THE CA3450
7
-85
-100
-115
-130
-145
-160
-175
-190
-205
-220
-235
-250
-265
10
AV = 1
CC = 5pF
0
CC = 7pF
-10
CC = 5pF
0
45
CC = 7pF
90
135
180
1
10
FREQUENCY (MHz)
100
PHASE (DEGREES)
RL = 50Ω, || 20pF
CC = 0pF, TA = 25oC
VS = ±6V
CLOSED LOOP GAIN (dB)
60
55
50
45
40
35
30
25
20
15
10
5
0
-5
PHASE ANGLE (DEGREES)
OPEN LOOP GAIN (dB)
Typical Performance Curves
300
FIGURE 11. CLOSED LOOP GAIN AND PHASE vs FREQUENCY
CA3450
(Continued)
30
20
GAIN
10
0
PHASE
45
0
90
135
180
300
-10
1
10
FREQUENCY (MHz)
100
PHASE (DEGREES)
CLOSED LOOP GAIN (dB)
AV = 10
100
10
1
101
100
10.0
90
9.0
80
70
60
50
40
30
20
102
103
104
FREQUENCY (MHz)
105
106
FIGURE 13. EQUIVALENT INPUT NOISE vs FREQUENCY
OUTPUT VOLTAGE SWING (VP-P)
OUTPUT RESISTANCE (Ω)
FIGURE 12. CLOSED LOOP GAIN AND PHASE vs FREQUENCY
EQUIVALENT INPUT NOISE VOLTAGE (nV/√Hz)
Typical Performance Curves
AV = 10, CC = 0pF
RL = 660Ω || 20pF
RL = 75Ω || 20pF
8.0
7.0
RL = 50Ω || 20pF
6.0
5.0
4.0
3.0
2.0
1.0
10
0.0
0
1
10
FREQUENCY (MHz)
100
200
1
10
100
FREQUENCY (MHz)
FIGURE 14. OUTPUT RESISTANCE vs FREQUENCY
FIGURE 15. OUTPUT VOLTAGE vs FREQUENCY
Metallization Mask Layout
0
66
10
20
30
40
50
60
70
80
90
100 106
Dimensions in parenthesis are in millimeters and are derived
from the basic inch dimensions as indicated. Grid graduations
are in mils (10-3 inch).
60
50
40
66
(1.676)
30
20
10
0
106
(2.692)
8
The photographs and dimensions of each CMOS chip represent
a chip when it is part of the wafer. When the wafer is cut into
chips, the angle of cleavage may vary with respect to the chip
face for different chips. The actual dimensions of the isolated
chip, therefore, may differ slightly from the nominal dimensions
shown. The user should consider a tolerance of -3mils to +6mils
applicable to the nominal dimensions shown.
300